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FIG. 14. Transverse momentum distributions of flavor–singlet
unpolarized valence and sea quarks at x = 0.1. Panel (a)

shows fu+d−ū−d̄
1 and f ū+d̄

1 as functions of p2T on a logarithmic

scale; panel (b) shows the radial distribution 2πpT f
u+d−ū−d̄
1

and 2πpT f
ū+d̄
1 on a linear scale, such that the area un-

der the curves corresponds to the integral over pT . Dashed
lines: Valence quark distribution fu+d−ū−d̄

1 (see Fig. 6). Solid

lines: Sea quark distribution f ū+d̄
1 (PV regularization). [Self–

consistent soliton profile Eq. (A4) with M = 0.35GeV,MN =
3.26M .]

I. Sea vs. valence quark distribution

Using the numerical approximation of Sec. VH we now
want to compare our results for the sea quark transverse
momentum distribution with those of the valence quarks
calculated in Sec. IV. Figure 14 summarizes the numer-
ical results for the valence distribution fu+d−ū−d̄

1 (x, pT )

and the sea quark distribution f ū+d̄
1 (x, pT ) at a represen-

tative value of x = 0.1. Panel (a) shows the distributions

themselves on a logarithmic scale; panel (b) the radial
distributions on a linear scale, such that the area un-
der the curves corresponds directly to their integral over
pT . Similar results are obtained at other values of x:
the shape of the individual pT distribution changes little
with x (cf. Fig. 4 for the valence distribution); only their
normalization changes in proportion to the total valence
and sea quark density.

The numerical estimates clearly show very different
shapes of the valence and sea quark transverse momen-
tum distributions, especially at large values of pT , as
first observed in the calculation of Ref. [40]. Based on
our theoretical analysis we can now explain this strik-
ing behavior as the effect of dynamical chiral symmetry
breaking in the QCD vacuum on the intrinsic transverse
momentum distribution of the sea quarks. Even with the
strong modification of the would–be 1/p2T tail by the UV
cutoff, the sea quark transverse momentum distribution
in the chiral quark–soliton model is qualitatively differ-
ent from that of the valence quarks. While the precise
numerical values depend on the model implementation
(see e.g. Fig. 11), the fact as such is rooted in the basic
structure of the effective dynamics chiral and should be
model–independent.

When interpreting the results of Figure 14 one should
keep in mind that the accuracy of the approximation
Eq. (5.66) used in our numerical estimate of f ū+d̄

1 (x, pT )
is not sufficient to predict the values at p2T <∼ 2M2

with meaningful relative accuracy (cf. the discussion in
Sec. VH). In this sense the plot of the radial distribu-
tion, in which the low–pT region is suppressed, conveys a
more realistic picture. This uncertainty, however, in no
way influences our conclusions regarding the qualitatively
different behavior of valence and sea quark distributions
at large pT .

The qualitative difference between the pT distribution
of valence and sea quarks is the most important practical
result of our study. Its numerous implications for deep–
inelastic processes are explored in Sec. VIII.

J. Polarized sea quark distribution

To complete our study of the sea quark transverse
momentum distribution we want to investigate also the
flavor–nonsinglet polarized sea quark distribution. The
gradient expansion of this distribution can be carried out
in complete analogy to the flavor–singlet unpolarized case
starting from Eq. (3.38), cf. Secs. VA and VB; we do not
present the intermediate steps here. The result can again
be represented as a convolution integral over the momen-
tum of the classical chiral field, analogous to Eq. (5.16),

gū−d̄
1,grad(x, pT ) =

∫
dy

y

∫
d2kT gcl(y,kT )

× gqq̄(x, y;pT ,kT ). (5.67)
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FIG. 5. (a) Distribution of the values of the ratios hk2
?,dv i/hk

2
?,uv

i vs. hk2
?,seai/hk2

?,uv
i obtained from fitting 200 replicas of

the original data points in the scenario of the default fit. The white squared box indicates the center of the 68% confidence
interval for each ratio. The shaded area represents the two-dimensional 68% confidence region around the white box. The
dashed lines correspond to the ratios being unity; their crossing point corresponds to the result with no flavor dependence. For
most of the points, hk2

?,dv i < hk2
?,uv

i < hk2
?,seai. (b) Same as previous panel, but for the distribution of the values of the ratios

hP 2
?,unfi/hP 2

?,favi vs. hP 2
?,uKi/hP 2

?,favi. For all points, hP 2
?,favi < hP 2

?,unfi ⇠ hP 2
?,uKi.
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FIG. 6. Same content and notation as in the previous figure, but for the scenario with the cut Q2
> 1.6 .

B. Fit with Q

2
> 1.6 GeV2

In this scenario, we restrict the Q

2 range compared to the default fit by imposing the cut Q

2

> 1.6 GeV2. The
set of data is reduced to 1274 points. The mean value of the �

2/d.o.f is smaller, since we are fitting less data.
Moreover, the disregarded Q

2 bin contains high statistics. As for the default fit, the behavior of transverse momenta
over the 200 replicas is summarized in Fig. 6. The exclusion of low-Q2 data leads to partial di↵erences in the
features of the extracted TMD PDFs: the average width of valence quarks slightly increases, while the distribution
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Functional form of TMDs
Input distributions at Q2 = 1 GeV2

x-dependent width:

g1(x) = N1
(1� x)↵ x

�

(1� x̂)↵ x̂

�

where
N1 ⌘ g1(x̂) with x̂ = 0.1

↵, �, N1, �: free parameters (4 for TMD PDFs, 6 for TMD FFs)
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•  Many	
  results	
  exist.	
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  in	
  collinear	
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–  CSS	
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•  	
  Formalisms	
  o[en	
  appear	
  different	
  on	
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  surface.	
  

•  	
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  (and	
  

results)	
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–  Bring	
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•  CSS1	
  -­‐	
  Mul7ple	
  redefini7ons	
  of	
  factors	
  	
  
(star7ng	
  from	
  TMD	
  defini7ons)	
  No	
  explicit	
  hard	
  part.	
  

–  Match	
  to	
  collinear	
  for	
  ΛQCD	
  <<	
  qT	
  <<	
  Q	
  and	
  qT	
  ≈	
  Q.	
  
	
  
•  Catani,	
  de	
  Florian,	
  Grazzini	
  et	
  al.	
  	
  

	
  
–  Factoriza7on	
  takes	
  a	
  simple	
  form.	
  
	
  	
  

–  Large	
  transverse	
  momentum	
  (e.g.,	
  Y-­‐term)	
  results	
  are	
  	
  
	
  	
  	
  automa7c.	
  
	
  

–  	
  Ressuma7on	
  scheme	
  dependence;	
  shown	
  there	
  is	
  no	
  
	
  	
  	
  uniquely	
  defined	
  hard	
  part.	
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on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2s; (b) The TMD hard scattering coe�cient
for Drell-Yan to order a2s; (c) The anomalous dimensions
to order a3s; (d) The CSS2 evolution kernel K̃ to order
a2s. We give full details of the non-trivial methods by
which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3s
value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3s. That the result
of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].

II. THE FORMALISMS

A. Notation and conventions

To match the conventions of Moch et al. [7], we use

as =
↵s

4⇡
=

g2s
16⇡2

(1)

as the expansion parameter.

B. Original CSS formalism

The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
b
T

. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large b

T

, and then redefined various functions.
The result was of the form

d�

dQ2 dy dq2
T

=
4⇡2↵2

9Q2s

X
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µ02
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, C
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⇥ exp
h
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T

; b
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0

)
i

+ suppressed corrections. (2)

Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and q

T

. The total
center of mass energy is

p
s, we define xA = Qey/

p
s

and xB = Qe�y/
p
s, we define ej to be the charge of

quark j (in units of the elementary charge unit e), and ↵
is the usual fine-structure constant. Auxiliary quantities

15

5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
One defines zk2T = k. Then a change of variables gives

C
h
F [+]
f/p Dh/f

i
=

X

f

Z
d2k1T d2k2T �

(2)(k1T + qT � k2T )F
[+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z, zk2T ; ⇣FF;µ)

=
X

f

Z
d2k1T d2k2T �

(2)(k1T +PBT,�/z � k/z)F [+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ)

=
X

f

Z
d2k1T d2k �(2)(zk1T +PBT,� � k)F [+]

f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ) .

(107)

Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:

b⇤(bT ) !
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(108)

where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2

0 to
some arbitrary µ and ⇣PDF.

F̃f/P (x,bT ; ⇣PDF, µ)

= F̃f/P (x,bT ;Q
2
0, µ0)

⇥ exp

⇢
ln

p
⇣PDF

Q0
K̃(b⇤;µb⇤) +

Z µ

µ0

dµ0

µ0


�F (↵s(µ

0); 1)� ln

p
⇣PDF

µ0 �K(g(µ0))

�

+

Z µb⇤

µ0

dµ0

µ0 ln

p
⇣PDF

Q0
�K(↵s(µ

0))

�

⇥ exp

⇢
�gK(bT ) ln

p
⇣PDF

Q0

�
. (112)

No	
  explicit	
  hard	
  part	
  here	
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on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2s; (b) The TMD hard scattering coe�cient
for Drell-Yan to order a2s; (c) The anomalous dimensions
to order a3s; (d) The CSS2 evolution kernel K̃ to order
a2s. We give full details of the non-trivial methods by
which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3s
value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3s. That the result
of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].

II. THE FORMALISMS

A. Notation and conventions

To match the conventions of Moch et al. [7], we use

as =
↵s

4⇡
=

g2s
16⇡2

(1)

as the expansion parameter.

B. Original CSS formalism

The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
b
T

. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large b
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, and then redefined various functions.
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Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and q

T

. The total
center of mass energy is

p
s, we define xA = Qey/

p
s

and xB = Qe�y/
p
s, we define ej to be the charge of

quark j (in units of the elementary charge unit e), and ↵
is the usual fine-structure constant. Auxiliary quantities
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
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Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
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where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.
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on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2s; (b) The TMD hard scattering coe�cient
for Drell-Yan to order a2s; (c) The anomalous dimensions
to order a3s; (d) The CSS2 evolution kernel K̃ to order
a2s. We give full details of the non-trivial methods by
which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3s
value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3s. That the result
of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].

II. THE FORMALISMS

A. Notation and conventions

To match the conventions of Moch et al. [7], we use

as =
↵s

4⇡
=

g2s
16⇡2

(1)

as the expansion parameter.

B. Original CSS formalism

The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
b
T

. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large b
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, and then redefined various functions.
The result was of the form
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Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and q

T

. The total
center of mass energy is

p
s, we define xA = Qey/

p
s

and xB = Qe�y/
p
s, we define ej to be the charge of

quark j (in units of the elementary charge unit e), and ↵
is the usual fine-structure constant. Auxiliary quantities
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
One defines zk2T = k. Then a change of variables gives
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Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:

b⇤(bT ) !
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(108)

where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2
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on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2s; (b) The TMD hard scattering coe�cient
for Drell-Yan to order a2s; (c) The anomalous dimensions
to order a3s; (d) The CSS2 evolution kernel K̃ to order
a2s. We give full details of the non-trivial methods by
which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3s
value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3s. That the result
of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].

II. THE FORMALISMS

A. Notation and conventions

To match the conventions of Moch et al. [7], we use

as =
↵s

4⇡
=

g2s
16⇡2

(1)

as the expansion parameter.

B. Original CSS formalism

The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
b
T

. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large b
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Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and q

T

. The total
center of mass energy is

p
s, we define xA = Qey/

p
s

and xB = Qe�y/
p
s, we define ej to be the charge of

quark j (in units of the elementary charge unit e), and ↵
is the usual fine-structure constant. Auxiliary quantities
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
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Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:
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where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
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Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
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The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
One defines zk2T = k. Then a change of variables gives

C
h
F [+]
f/p Dh/f

i
=

X

f

Z
d2k1T d2k2T �

(2)(k1T + qT � k2T )F
[+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z, zk2T ; ⇣FF;µ)

=
X

f

Z
d2k1T d2k2T �

(2)(k1T +PBT,�/z � k/z)F [+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ)

=
X

f

Z
d2k1T d2k �(2)(zk1T +PBT,� � k)F [+]

f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ) .

(107)

Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:

b⇤(bT ) !
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(108)

where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2

0 to
some arbitrary µ and ⇣PDF.

F̃f/P (x,bT ; ⇣PDF, µ)

= F̃f/P (x,bT ;Q
2
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p
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�

+
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µ0 ln

p
⇣PDF

Q0
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0))

�

⇥ exp

⇢
�gK(bT ) ln

p
⇣PDF

Q0

�
. (112)
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(465)

gCSS1
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j/H (x, bT; bmax) = gj/H(x, bT; bmax) (470)

�j(µ), �K(µ), K(bT;µ), H(↵s(µ);µ/Q) (471)

Cross Section = Hf
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= Hf (473)
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d�

dQ2 dy dq2
T
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4⇡2↵2

9Q2s

X

j

HDY

j|̄ (Q,µQ, as(µQ))

Z
d2b

T

(2⇡)2
eiqT

·b
T f̃j/A(xA, bT;Q

2, µQ) f̃|̄/B(xB , bT;Q
2, µQ)

+ suppressed corrections, (6)

where the hard scattering factor HDY

j|̄ is normalized so that its lowest order term is e2j . The scale argument of
H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, b

T

;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-b
T

OPE of the TMD parton densities:

@ ln f̃f/H(x, b
T

; ⇣;µ)

@ ln
p
⇣

= K̃(b
T

;µ). (7)

dK̃(b
T

;µ)

d lnµ
= � �K(as(µ)) , (8)

d ln f̃j/H(x, b
T

; ⇣;µ)

d lnµ
= �j(as(µ))� 1

2
�K(as(µ)) ln

⇣

µ2

, (9)

f̃j/H(x, b
T

; ⇣;µ) =
X

k

Z
1+

x�

d⇠

⇠
C̃PDF

j/k (x/⇠, b
T

; ⇣, µ, as(µ)) fk/H(⇠;µ) + O[(mb
T

)p] . (10)

A solution that corresponds to Eq. (2) is

d�

dQ2 dy dq2
T

=
4⇡2↵2

9Q2s

X

j,jA,jB

HDY

j|̄ (Q,µQ, as(µQ))

Z
d2b

T

(2⇡)2
eiqT

·b
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T
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)

Z
1

xA

d⇠A
⇠A
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✓
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2
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◆
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T
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)

Z
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d⇠B
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fjB/B(⇠B ;µb⇤) C̃
PDF

|̄/jB

✓
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, b⇤;µ

2
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◆
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�gK(b
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; b
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) ln
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0

+ K̃(b⇤;µb⇤) ln
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b⇤
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Z µQ

µb⇤

dµ0
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
2�j(as(µ

0))� ln
Q2

(µ0)2
�K(as(µ

0))

�)

+ suppressed corrections. (11)

Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄ (Q,µQ, as(µQ)), to indicate that this hard part
is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and q
T

are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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� ⇠
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and the renormalization group equations:

d

˜K(bT ;µ)

d lnµ
= ��K(as(µ)) (186)

d ln

˜f(x, bT ;µ, ⇣)

d lnµ
= �j(as(µ); ⇣/µ

2

) (187)

@ ln

˜f(x, bT ;µ, ⇣)

@ ln

p
⇣

=

˜K(bT ;µ) (188)

II. DISCUSSION
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
One defines zk2T = k. Then a change of variables gives
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Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:
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The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)
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µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions
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and the renormalization group equations:
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where the hard scattering factor HDY

j|̄ is normalized so that its lowest order term is e2j . The scale argument of
H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, b

T

;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-b
T

OPE of the TMD parton densities:
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄ (Q,µQ, as(µQ)), to indicate that this hard part
is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and q
T

are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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where the hard scattering factor HDY

j|̄ is normalized so that its lowest order term is e2j . The scale argument of
H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, b

T

;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄ (Q,µQ, as(µQ)), to indicate that this hard part
is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and q
T

are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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where the hard scattering factor HDY

j|̄ is normalized so that its lowest order term is e2j . The scale argument of
H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, b

T

;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-b
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OPE of the TMD parton densities:
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄ (Q,µQ, as(µQ)), to indicate that this hard part
is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and q
T

are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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where the hard scattering factor HDY

j|̄ is normalized so that its lowest order term is e2j . The scale argument of
H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, b
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;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
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Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄ (Q,µQ, as(µQ)), to indicate that this hard part
is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and q
T

are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.



Compare CSS1 vs. CSS2  
 

19	
  

2

on the basis of existing calculations of the quark form fac-
tor by Moch et al. [7], and of hard scattering in collinear
factorization by Catani et al. [8]. These results are: (a)
The coe�cients relating TMD and collinear parton densi-
ties to order a2s; (b) The TMD hard scattering coe�cient
for Drell-Yan to order a2s; (c) The anomalous dimensions
to order a3s; (d) The CSS2 evolution kernel K̃ to order
a2s. We give full details of the non-trivial methods by
which the coe�cients are obtained from the previous re-
sults. In particular we find that we need some apparently
new technical results concerning the collinear factors used
for factorization for the quark form factor. We verify
that our results agree with calculations of correspond-
ing quantities by very di↵erent methods by Gehrmann
et al. [9, 10] and by Echevarria et al. [11]. Those calcu-
lations start from the operator definitions of the TMD
functions, and so the agreement with our calculations
provides a non-trivial test of the correctness of the TMD
factorization methods. We point out that the order a3s
value for the hard scattering is available from results by
Gehrmann et al. [12], and that a calculation by Li and
Zhu [13] gives the value of K̃ to order a3s. That the result
of Ref. [13] in fact gives exactly the perturbative expan-
sion of K̃ is not immediately apparent from their paper,
so we give a derivation of the correspondence in App. B,
where we also show how to map their factorization and
TMD parton densities onto those given by CSS2 and by
Echevarŕıa et al. [5].

II. THE FORMALISMS

A. Notation and conventions

To match the conventions of Moch et al. [7], we use

as =
↵s

4⇡
=

g2s
16⇡2

(1)

as the expansion parameter.

B. Original CSS formalism

The original CSS formula [3, (3.17) and (5.8)], as used
in the fits in [1, 2], was obtained starting from a TMD
factorization formula, using the specific definitions of
TMD parton densities that had been given by Collins
and Soper (CS) [14]. Earlier, CS [15, 16] had obtained
TMD factorization for dihadron production in e+e� an-
nihilation. The natural extension to the Drell-Yan pro-
cess was stated by CSS in [3]; CSS argued that the then-
recent work on the cancellation of the Glauber region
was su�cient to allow the extension of the proof of TMD
factorization to Drell-Yan.
Associated with factorization are evolution equations

for the TMD functions and a kind of operator-product
expansion (OPE) for the TMD parton densities at small
b
T

. CSS solved these equations with neglect of power-
suppressed terms, segregated non-perturbative contribu-
tions at large b

T

, and then redefined various functions.
The result was of the form

d�

dQ2 dy dq2
T

=
4⇡2↵2

9Q2s

X

j,jA,jB

e2j

Z
d2b

T

(2⇡)2
eiqT

·b
T

⇥
Z

1
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CSS1, DY

j/jA

✓
xA

⇠A
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2
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, as(µb⇤)

◆

⇥
Z

1

xB

d⇠B
⇠B

fjB/B(⇠B ;µb⇤) C̃
CSS1, DY

|̄/jB

✓
xB

⇠B
, b⇤;µ

2

b⇤ , µb⇤ , C2

, as(µb⇤)

◆

⇥ exp

(
�
Z µ2

Q

µ2

b⇤

dµ02

µ02

"
A

CSS1

(as(µ
0);C

1

) ln

 
µ2

Q

µ02

!
+B

CSS1, DY

(as(µ
0);C

1

, C
2

)

#)

⇥ exp
h
�gCSS1

j/A (xA, bT; bmax

)� gCSS1

|̄/B (xB , bT; bmax

)� gCSS1

K (b
T

; b
max

) ln(Q2/Q2

0

)
i

+ suppressed corrections. (2)

Here we work with the inclusive Drell-Yan process A +
B ! l+l� + X, with restriction to production of the
lepton pair through a virtual photon. The 4-momentum
of the lepton pair is qµ, and its invariant mass, rapidity
and transverse momentum are Q, y and q

T

. The total
center of mass energy is

p
s, we define xA = Qey/

p
s

and xB = Qe�y/
p
s, we define ej to be the charge of

quark j (in units of the elementary charge unit e), and ↵
is the usual fine-structure constant. Auxiliary quantities
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5. Conventions for Factors of z

A common notation is to change variables in Eq. (106) so that z does not multiply k2T in Dh/f (z, zk2T ; ⇣FF;µ).
One defines zk2T = k. Then a change of variables gives

C
h
F [+]
f/p Dh/f

i
=

X

f

Z
d2k1T d2k2T �

(2)(k1T + qT � k2T )F
[+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z, zk2T ; ⇣FF;µ)

=
X

f

Z
d2k1T d2k2T �

(2)(k1T +PBT,�/z � k/z)F [+]
f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ)

=
X

f

Z
d2k1T d2k �(2)(zk1T +PBT,� � k)F [+]

f/p(x,k1T ; ⇣PDF;µ)Dh/f (z,k; ⇣FF;µ) .

(107)

Then, k is the transverse momentum of the hadronizing parton relative to its parent jet.

V. TMD FUNCTIONS

A. Further Notation and Conventions

It will be useful to have a specific scheme for cutting o↵ the behavior of certain perturbatively calculated expressions
at large-bT. For this, many authors use the “b-star” method by defining:

b⇤(bT ) !
⇢
bT bT ⌧ bmax

bmax bT � bmax .
(108)

where bmax = bmax
bT

kbTk .

The standard MS renormalization group scale is µ, and one commonly uses scales

µQ ⌘ C2Q (109)

µb ⌘ C1/bT (110)

µb⇤ ⌘ C1/b⇤ , (111)

where C1 and C2 are arbitrary constants that are ultimately to be chosen to optimize perturbative convergence.

B. TMD Parton Distributions

The definition of a TMD PDF in coordinate space is:
The evolution equations are:
The most general and basic way to write the solution is evolve from some reference scales µ ! µ0, ⇣PDF ! Q2

0 to
some arbitrary µ and ⇣PDF.

F̃f/P (x,bT ; ⇣PDF, µ)

= F̃f/P (x,bT ;Q
2
0, µ0)

⇥ exp

⇢
ln

p
⇣PDF

Q0
K̃(b⇤;µb⇤) +

Z µ

µ0

dµ0

µ0


�F (↵s(µ

0); 1)� ln

p
⇣PDF

µ0 �K(g(µ0))

�

+

Z µb⇤

µ0

dµ0

µ0 ln

p
⇣PDF

Q0
�K(↵s(µ

0))

�

⇥ exp

⇢
�gK(bT ) ln

p
⇣PDF

Q0

�
. (112)
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Old Schemes and New Schemes  
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–  CSS1	
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  explicit	
  in	
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–  	
  Non-­‐perturba7ve	
  parts	
  in	
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  and	
  in	
  TMD	
  func7ons?	
  	
  

–  	
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  PDFs	
  vs.	
  FFs?	
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  order	
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  in	
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  to	
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•  	
  CSS1	
  and	
  CSS2	
  drop	
  same	
  subleading	
  powers:	
  
	
  

•  	
  Deriva7ves	
  given	
  by	
  evolu7on	
  equa7ons.	
  	
  
	
   	
  (anomalous	
  dimensions)	
  

•  bmax	
  independence.	
  	
  

•  Charge	
  conjuga7on	
  invariance.	
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gCSS1
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⇥ exp

(
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+

Z µQ

µb⇤

dµ0

µ0
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0))� ln
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(µ0)2
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�)

⇥ exp
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)� g|̄/B(xB , bT; bmax

)� gK(b
T

; b
max

) ln(Q2/Q2

0

)
⇤
. (12)

Although there are clear structural similarities, the structures do not exactly correspond on the two sides of this
equation. Note that the CSS1 coe�cients used here are specific to parton densities and the Drell-Yan process.

First, we di↵erentiate both sides with respect to all the dependence on lnQ2. This gives

� gCSS1

K (b
T

; b
max

)�B
CSS1, DY

(as(µQ);C1

, C
2

)�
Z µ2

Q

µ2

b⇤
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CSS1
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+�j(as(µQ))� ln
Q

µQ
�K(as(µQ))�

Z µQ
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dµ0
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(13)

Then di↵erentiating with respect to ln b2
T

gives

dgCSS1
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d ln b2
T
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A
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where we used Eq. (8) and

d ln b2⇤
d ln b2

T

=
b2⇤
b2
T

. (15)

Now each of gK and gCSS1

K is the di↵erence between an exact quantity that is a function of b
T

and the same quantity
with b

T

replaced by b⇤. We use this to get equality of the separate terms on the two sides of Eq. (14), which has the
structure

X(b
T
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b2
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Y (b⇤) = X 0(b
T

) +
b2⇤
b2
T

Y 0(b⇤), (16)

where we have segregated functions with the arguments b
T

and b⇤. Each pair (X,X 0) and (Y, Y 0) represents corre-

sponding functions in the two schemes. Furthermore X(b
T

) is defined to be Y (b
T

) � b2⇤
b2
T

Y (b⇤), and similarly for X 0,

i.e., each is the di↵erence between an exact quantity at argument b
T
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b
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) = Y 0(b
T

). It follows that Y (b⇤) = Y 0(b⇤), and X(b
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Applying this to Eq. (14) gives
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Next we substitute these results into Eq. (13). Again we equate the parts with the gK terms and the others to get

B
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, C
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gCSS1

K (b
T

; b
max

) = gK(b
T

; b
max

). (20)

Hence the “non-perturbative” gK function is the same in the two formalisms, and the A and B functions are related to
perturbative quantities in the new formalism. Calculations of A

CSS1

and B
CSS1, DY

were done to order a2s by Davies
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FIG. 1. Graphs for the space-like (a) and time-like (b) quark form factor.

lation given by Collins in Ref. [4], with its definition of
collinear factors in terms of an unsubtracted “collinear”
matrix element and a combination of soft factors, with
the relevant operators containing Wilson lines in partic-
ular directions. Collins [4] gave results for the form fac-
tor in the case of a massive Abelian theory, but using
methods later in [4], the results can be seen to generalize
to massless QCD, with results generally compatible with
those of [7, 37, 38]. In this section, we will mostly use
only the massless case, since that will be what is relevant
for our calculations.

First we specify our conventions for how results are pre-
sented in terms of coupling dependence, and for our use
of the MS scheme. Renormalized quantities are written
in terms of the coupling parameter as defined in Eq. (1).
The bare coupling,7 such as is used in the Lagrangian,
has the form

as,0 =
µ2✏

S✏
as

 
1 +

1X

n=1

nX

m=1

Anm
ans
✏m

!
, (27)

where the space-time dimension is n = 4� 2✏, and

S✏ = (4⇡e��
E)✏. (28)

The MS scheme for coupling renormalization is defined
by the requirement that the renormalization countert-
erms have the form shown in (27), where there is an over-
all factor µ2✏/S✏, and there is otherwise a series of only
negative powers of ✏ to make the counterterms. The con-
ventions specified above for the MS scheme correspond
to those used by Moch et al. [7].

The implementation of MS in Ref. [4] di↵ered in two
ways. First there was a change of variable to replace as by
asS✏; this does not change the renormalized coupling at
✏ = 0 and so does not a↵ect finite renormalized quantities
at the physical space-time dimension. Second, the value

7

Although we generally follow the conventions of Moch et al. [7],
they use “bare coupling” to refer to a di↵erently normalized

quantity than we do.

of S✏ was changed to [4]:

SJCC

✏ =
(4⇡)✏

�(1� ✏)
. (29)

This has an advantage for the presentation of quantities
whose counterterms have 2 poles per loop. The use of
the form (29) for S✏ amounts to a change of scheme for
such quantities. But it is currently less standard, so our
main results will use the standard form.
For the calculations to be presented here, we will

work within pure perturbation theory in strictly mass-
less QCD. Then the power-suppressed corrections, such
as we notated in earlier statements of TMD factoriza-
tion, are zero. Factorization for the time-like form factor
in massless QCD has the form

F Sud

j

✓�Q2 � i✏

µ2

; as(µ), ✏

◆

= HSud

j

✓�Q2 � i✏

µ2

; as(µ), ✏

◆⇥
CSud

j (Q2, µ, as(µ), ✏)
⇤
2

,

(30)

in the notation of App. A. Here HSud

j is the hard factor,
finite as ✏ ! 0, with subtractions for all collinear and soft
contributions. One of the collinear factors Cj is for the
quark of flavor j. Its first argument is the CSS ⇣ argu-
ment set to the value Q2. The second collinear factor is
for the antiquark, and by charge-conjugation invariance
it equals the quark’s collinear factor. By use of the oper-
ator definitions given in [4, Ch. 10], the collinear factors
include to leading power not only all contributions from
collinear momenta but all soft contributions as well. To
achieve this correctly, the Wilson lines used in the op-
erator matrix elements used to define Cj must be past
pointing when the quark and antiquark are incoming [4].
We will also use factorization for the space-like case.

By results in App. A, one of the collinear factors must
be complex conjugated, so that we have:

F Sud

j (Q2

E/µ
2; as(µ), ✏)

= HSud

j (Q2

E/µ
2; as(µ), ✏)

��CSud

j (Q2

E , µ, as(µ), ✏)
��2 , (31)

16

in the form factor case. Therefore, the renormalization
factor for a TMD function is the same as the square of
the absolute value of the renormalization factor of the
corresponding collinear factor for the form factor. By
the results of App. A 4, this square has the same value
independently of whether the Wilson lines are future- or
past-pointing and of whether the quark is initial-state or
final- state. Thus the anomalous dimensions for the TMD
functions are the same for TMD fragmentation functions
and TMD parton densities, and they are also the same
for the unpolarized TMD parton densities for SIDIS, with
their past-pointing Wilson lines, and for the TMD par-
ton densities for DY, with their future-pointing Wilson
lines.

Hence in the RG equation (9) obeyed by the TMD
parton densities, the anomalous dimensions �j and �K
are the same as in the RG equation (32) for the collinear
factors for the quark form factor. Similarly the same
anomalous dimensions are used in the RG equation for
all the TMD fragmentation functions.

These relations have been known for some time from
low-order calculations, but the present paper is the first
place we know of where they are explicitly shown to be
true generally. It is an especially important result be-

cause it means the complete evolution factor on the next-
to-last line of Eq. (11) is strongly universal.
Note that these results do not imply equality for the

coe�cients CPDF and CFF that relate TMD functions
and the corresponding collinear functions; superscripts
“PDF” and “FF” should be kept there.

VIII. VALUES OF DRELL-YAN AND SIDIS
QUANTITIES

In this section, we show in detail how to obtain values
of the coe�cients at order a2s for the Drell-Yan process
starting from results for collinear factorization and for
the quark form factor.

A. Hard factor

Since the graphs and subtractions are the same, the
hard factor for Drell-Yan scattering is obtained from the
square of the hard factor for the time-like factor:
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���HSud, TL
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From Eq. (60) we find
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  Three-­‐loop	
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  (2006))	
  	
  

•  	
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  three	
  loop	
  result	
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  Ikizleri,	
  Studerus	
  (2010)	
  )	
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FIG. 1. Graphs for the space-like (a) and time-like (b) quark form factor.
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achieve this correctly, the Wilson lines used in the op-
erator matrix elements used to define Cj must be past
pointing when the quark and antiquark are incoming [4].
We will also use factorization for the space-like case.
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in the form factor case. Therefore, the renormalization
factor for a TMD function is the same as the square of
the absolute value of the renormalization factor of the
corresponding collinear factor for the form factor. By
the results of App. A 4, this square has the same value
independently of whether the Wilson lines are future- or
past-pointing and of whether the quark is initial-state or
final- state. Thus the anomalous dimensions for the TMD
functions are the same for TMD fragmentation functions
and TMD parton densities, and they are also the same
for the unpolarized TMD parton densities for SIDIS, with
their past-pointing Wilson lines, and for the TMD par-
ton densities for DY, with their future-pointing Wilson
lines.

Hence in the RG equation (9) obeyed by the TMD
parton densities, the anomalous dimensions �j and �K
are the same as in the RG equation (32) for the collinear
factors for the quark form factor. Similarly the same
anomalous dimensions are used in the RG equation for
all the TMD fragmentation functions.

These relations have been known for some time from
low-order calculations, but the present paper is the first
place we know of where they are explicitly shown to be
true generally. It is an especially important result be-

cause it means the complete evolution factor on the next-
to-last line of Eq. (11) is strongly universal.
Note that these results do not imply equality for the

coe�cients CPDF and CFF that relate TMD functions
and the corresponding collinear functions; superscripts
“PDF” and “FF” should be kept there.

VIII. VALUES OF DRELL-YAN AND SIDIS
QUANTITIES

In this section, we show in detail how to obtain values
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with Q2

E being positive for the space-like case. Both of
F and H are now real.

In each of Eqs. (30) and (31), the di↵erent factors on
the right-hand side depend on the same variables, so at
first sight there might appear to be no content. The sig-
nificance of factorization is from the segregation of con-
tributions from di↵erent regions of momenta. The lack of
collinear and soft contributions to HSud imply that it has
no divergences and also has no large logarithms when µ is
of order Q; then it can be predicted perturbatively when
Q is large enough. The collinear factors have collinear
and soft contributions, and they diverge in the massless
limit. Furthermore, their definition allows useful equa-
tions to be derived for both their µ and Q dependence.
If masses were restored, then Eqs. (30) and (31) would
be true to leading power in masses divided by Q for large
Q, and the collinear factors would be mass-dependent8,
but the hard factor would remain mass-independent with
an unchanged value.

We will use evolution equations in the form found9 in
Ref. [4]. In addition, we will need extra results derived
in App. A concerning the real and imaginary parts of the
anomalous dimensions; these will be important in relat-
ing anomalous dimensions for the form factor to anoma-
lous dimensions for the Drell-Yan process.

The renormalization-group (RG) equation for the
collinear factor is

d lnCSud

j

d lnµ

=
1

2
�j(as(µ)) + i

⇡

4
�K(as(µ))� 1

4
�K(as(µ)) ln

Q2

µ2

=
1

2
�j(as(µ))� 1

4
�K(as(µ)) ln

�Q2 � i✏

µ2

. (32)

It is proved in App. A that the anomalous dimension
functions �j and �K are both real, and that the imagi-
nary part on the right-hand side is as shown. The normal-
izations of these functions are arranged so that they are
exactly the same as the corresponding quantities in TMD
factorization for the Drell-Yan process, with conventions
as in Ref. [22]. The equality of these quantities between
the Drell-Yan cross section and the Sudakov form fac-
tor is because the anomalous dimensions are determined
by the renormalization of the same virtual loops con-
taining the same operators. Their contribution to the
Drell-Yan cross section is obtained by the absolute value
squared of the sum of graphs for the form factor. Thus
HDY

j|̄ = |HSud

j ((�Q2 � i✏)/µ2)|2, while the anomalous
dimensions are �j and �K , with cancellation of the imag-
inary part that appears in Eq. (32).

Note that sometimes [4] �j(as(µ)) is given a second
argument, as in �j(as(µ); ⇣/µ2). The ⇣ dependence cor-
responds to the Q2 dependence in Eq. (32), and �j(as(µ))

8

If all fields were massive, then the collinear factors no longer have

actual collinear and soft divergences, of course.

9

See also Refs. [37, 38].

in Eqs. (32) and (35) corresponds to �j(as(µ); 1) in the
other notation.
The rapidity evolution equation for the collinear factor

is

@CSud

j

@ lnQ
=

1

2
KSud(as, ✏), (33)

with KSud obeying the RG equation

dKSud

d lnµ
= ��K(as) . (34)

Note that KSud has no explicit dependence on Q and µ;
it has soft divergences as ✏ ! 0, and would be finite (but
mass dependent) in a massive theory or in a theory with
confinement.
In the remainder of this section, we will work with

the time-like form factor and hard part, using the nota-
tions F Sud, TL = F Sud

j ((�Q2 � i✏)/µ2) and HSud, TL =

HSud

j ((�Q2 � i✏)/µ2).
Since the form factor is RG-invariant, it follows from

Eqs. (30) and (32) that the RG equation for H is

d lnHSud, TL

d lnµ

= ��j(as(µ))� i
⇡

2
�K(as(µ)) +

1

2
�K(as(µ)) ln

Q2

µ2

.

(35)

Each of the collinear factors in factorization (30) is a
bare collinear factor times an ultra-violet renormalization
factor. It will be convenient to work with logarithms of
the factors, for which renormalization is additive. We
have

lnF Sud, TL(Q2) = lnHSud, TL + 2 lnCbare

j

+D(as, ✏)� i⇡E(as, ✏) + ln
Q2

µ2

E(as, ✏) , (36)

where the terms involving E and D implement countert-
erms for lnCj ; the linearity in ln(Q2/µ2) follows from
Eq. (33), and the lack of Q dependence of KSud. It is
shown in App. A that each of D and E is real, and that
there is an imaginary term �i⇡E, as in Eq. (36). Each
of D and E has the usual MS form:

D =
1X

n=1

n+1X

m=1

Dnm
ans
✏m

(37)

E =
1X

n=1

nX

m=1

Enm
ans
✏m

. (38)

That the highest powers of 1/✏ in each order are as shown
can be deduced from the evolution equations.
In the massless case, all loop integrals for the unsub-

tracted bare collinear factor are scale-free and hence zero
[37, 38]. There remains only the lowest order term, which
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It is proved in App. A that the anomalous dimension
functions �j and �K are both real, and that the imagi-
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izations of these functions are arranged so that they are
exactly the same as the corresponding quantities in TMD
factorization for the Drell-Yan process, with conventions
as in Ref. [22]. The equality of these quantities between
the Drell-Yan cross section and the Sudakov form fac-
tor is because the anomalous dimensions are determined
by the renormalization of the same virtual loops con-
taining the same operators. Their contribution to the
Drell-Yan cross section is obtained by the absolute value
squared of the sum of graphs for the form factor. Thus
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j ((�Q2 � i✏)/µ2)|2, while the anomalous
dimensions are �j and �K , with cancellation of the imag-
inary part that appears in Eq. (32).

Note that sometimes [4] �j(as(µ)) is given a second
argument, as in �j(as(µ); ⇣/µ2). The ⇣ dependence cor-
responds to the Q2 dependence in Eq. (32), and �j(as(µ))
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in Eqs. (32) and (35) corresponds to �j(as(µ); 1) in the
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The rapidity evolution equation for the collinear factor
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j

@ lnQ
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KSud(as, ✏), (33)

with KSud obeying the RG equation

dKSud
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Note that KSud has no explicit dependence on Q and µ;
it has soft divergences as ✏ ! 0, and would be finite (but
mass dependent) in a massive theory or in a theory with
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In the remainder of this section, we will work with

the time-like form factor and hard part, using the nota-
tions F Sud, TL = F Sud

j ((�Q2 � i✏)/µ2) and HSud, TL =
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j ((�Q2 � i✏)/µ2).
Since the form factor is RG-invariant, it follows from

Eqs. (30) and (32) that the RG equation for H is
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(35)

Each of the collinear factors in factorization (30) is a
bare collinear factor times an ultra-violet renormalization
factor. It will be convenient to work with logarithms of
the factors, for which renormalization is additive. We
have

lnF Sud, TL(Q2) = lnHSud, TL + 2 lnCbare

j

+D(as, ✏)� i⇡E(as, ✏) + ln
Q2

µ2

E(as, ✏) , (36)

where the terms involving E and D implement countert-
erms for lnCj ; the linearity in ln(Q2/µ2) follows from
Eq. (33), and the lack of Q dependence of KSud. It is
shown in App. A that each of D and E is real, and that
there is an imaginary term �i⇡E, as in Eq. (36). Each
of D and E has the usual MS form:

D =
1X
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(37)

E =
1X
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. (38)

That the highest powers of 1/✏ in each order are as shown
can be deduced from the evolution equations.
In the massless case, all loop integrals for the unsub-

tracted bare collinear factor are scale-free and hence zero
[37, 38]. There remains only the lowest order term, which
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B. RG coe�cients

Values for �j and K equal those for the quark Sudakov form factor, given our choice of normalizations, and were
already given in Eqs. (58) and (59).

C. CSS evolution coe�cient

Values for K̃ (b
T

;µ) are obtained from Eqs. (19), (59), and (63), and the renormalization group relation

K̃(b⇤;µQ) = K̃(b⇤;µb⇤)�
Z µQ
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dµ0

µ0 �K(as(µ
0)) . (68)

To use this equation to obtain terms in the perturbative expansion of K̃, the coupling as(µ0) must be expanded in
powers of as(µQ). We utilize the results up to order a2s for B
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E , 1) from Ref. [26], and obtain
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By di↵erentiating with respect to b
T

, one may easily verify that this is consistent with the so-far unused relation Eq.
(17), and the value of A

CSS1

(as; 2e��
E) in Ref. [26].

The value of K̃ up to order a3s is given by calculations of the soft factor reported by Li and Zhu [13]. The
correspondence with the CSS2 version of factorization is quite non-trivial. This is because of a di↵erent organization
of factors and a di↵erent approach to rapidity divergences, in the form given by Li et al. [25]. We obtain the
correspondence in App. B. As shown there, K̃ equals the right-hand side of Eq. (4) of Ref. [13], and equals the �R of
[25]. Then the actual perturbative coe�cients when µ = 2e��

E/bT are in Eq. (9) of Ref. [13], with the µ dependence
given in terms of �K by our Eq. (8). See also Ref. [11, 40] for other calculations of a di↵erently normalized version
of K̃ at order a2s, again starting from the operator definitions of the TMD parton densities and soft function, and in
agreement with Eq. (69).

D. Wilson coe�cients C̃ for TMD quark density

The coe�cient functions C̃ in the new formalism can now be found from those of the old by using Eq. (24), which
gives
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  DY	
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  de	
  Florian,	
  Ferrera,	
  Grazzini	
  (2012))	
  
	
  

	
  (Echevarria,	
  Scimemi,	
  Vladimirov	
  (2016))	
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The relevant renormalization group scales are
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where C
1

and C
2

are constants that are chosen to optimize perturbative convergence. After solving the evolution
equations, the W -term for SIDIS (neutral-current and neglecting heavy flavors) can be written as
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where C
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Thus,

W̃ (bT, Q) = W̃OPE(b⇤(bT), Q) +O ((bTm)p) (392)

with p > 0.
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This corresponds to the presentation of solution in Eq. (24) of Ref. [24]. F̃
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�
are, respectively, the TMD PDF and TMD FF evaluated at a reference scale Q0. The operator

definitions are given in Eqs. (13.42,13.106) of Ref. [4]. The exponential factors on the second and third lines imple-
ment the evolution from Q to Q0. The K̃(b

⇤

;µ
b⇤) is the Collins-Soper (CS) evolution kernel (see [24, Eq. (6,11,25)]),

while �
K

(↵
s

(µ)) and �(↵
s

(µ0); 1) are anomalous dimensions for the CS kernel and a TMD PDF respectively (see [24,
Eq. (7,8,9,10,12)]). See also Refs. [23, 25] and references therein for detailed discussions of the evolution equations
and their origins.

We define the normalization of the bT-space W -term through the Fourier-Bessel transform:

W (qT, Q) =

Z
d2bT
(2⇡)2

eiqT

·b
T W̃ (bT, Q) . (21)

To economize notation, we will assume there is only one flavor of parton so that we may drop the sum over j and the
j subscript. In detailed calculations, the sum needs to be restored.5

In the limit bT ⌧ 1/m, each TMD correlation function can be expanded in an OPE and expressed in terms of
collinear correlation functions. Then the transverse coordinate dependence is itself perturbatively generated. Let
us define a notation to describe this limit. First, substitute bT ! b

⇤

in Eq. (20) to regulate the bT & 1/m region.
Second, expand the result in an OPE and drop order O(bTm) corrections. We call the result W̃OPE(b

⇤

(bT), Q):

W̃OPE(b
⇤

(bT), Q) ⌘ H(µ
Q

, Q)
X

j

0
i

0

Z 1

xA

dx̂

x̂
C̃PDF

j/j

0 (x
A

/x̂, b
⇤

(bT);µ
2
b⇤ , µb⇤ ,↵s

(µ
b⇤))fj0/A(x̂;µb⇤)⇥

⇥
Z 1

zB

dẑ

ẑ3
C̃FF

i

0
/j

(z
B

/ẑ, b
⇤

(bT);µ
2
b⇤ , µb⇤ ,↵s

(µ
b⇤))dB/i

0(ẑ;µ
b⇤)⇥

⇥ exp

(
ln

Q2

µ2
b⇤

K̃(b
⇤

(bT);µb⇤) +

Z
µQ

µb⇤

dµ0

µ0


2�(↵

s

(µ0); 1)� ln
Q2

µ0

2 �K(↵
s

(µ0))

�)
. (22)

The functions f
j

0
/A

(x;µ) and d
B/j

0(z;µ) are the ordinary collinear PDF and FF. Note that using b
⇤

instead of bT
implies replacing µ

b

by µ
b⇤ (see Eq. (19)). Equation (22) is the standard result for the small bT limit and corresponds

to Eq. (22) of Ref. [24], but without the non-perturbative exponential factors. Thus,

W̃ (bT, Q) = W̃OPE(b
⇤

(bT), Q) +O ((bTm)p) (23)

with p > 0.

B. Separation of Large and Small bT

For Eq. (18), a common functional form is [26]:

b
⇤

(bT) ⌘

s
b2T

1 + b2T/b
2
max

. (24)

The standard steps for separating large and small bT are to first write a ratio,

e�gA(xA,b

T

;b
max

)�gB(zB ,b

T

;b
max

) ⌘ W̃ (bT, Q0)

W̃OPE(b
⇤

(bT), Q0)
. (25)

The ratio on the right side defines the exponential functions on the left according to some reference scale Q0. The
g-functions, therefore, account for all the error terms on the right side (23) (at some Q0).6 Next, one notices that
the CS evolution is identical for the numerator and denominator, apart from the fact that the evolution kernel is
evaluated at bT in the former and b

⇤

(bT) in the latter. Thus, one may re-express the right side of Eq. (25) in terms of

5
Recall, however, that for scattering o↵ a quark, there is no fla-

vor dependence in the hard scattering until order ↵3
s. So flavor

independence is likely a good approximation. See the discussion

at the beginning of section VIA of Ref. [24].

6
It is essentially just convention that the g-functions appear in an

exponent.
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0); 1)� ln
Q2

(µ0)2
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+ polarized terms + large qT correction, Y + p.s.c. (387)
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ẑ3
C̃FF
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Thus,

W̃ (bT, Q) = W̃OPE(b⇤(bT), Q) +O ((bTm)p) (392)

with p > 0.

e�gA(xA,b
T

;b
max

)�gB(zB ,b
T

;b
max

)�2gK(b
T

;b
max

) ln(Q/Q
0

) ⌘ W̃ (bT, Q)

W̃OPE(b⇤(bT), Q)
. (393)

(q⇠TQ) ⇠ 1/Q (394)

4

d�

dQ2 dy dq2
T

=
4⇡2↵2

9Q2s

X

j

HDY

j|̄ (Q,µQ, as(µQ))

Z
d2b

T

(2⇡)2
eiqT

·b
T f̃j/A(xA, bT;Q

2, µQ) f̃|̄/B(xB , bT;Q
2, µQ)

+ suppressed corrections, (6)

where the hard scattering factor HDY

j|̄ is normalized so that its lowest order term is e2j . The scale argument of
H is set to µQ to avoid large logarithms. The last two arguments of the parton densities, fj/H(x, b

T

;Q2, µQ), are
normally written as ⇣ and µ, and these arguments refer to e↵ective cuto↵s on rapidity and transverse momentum as
implemented by the definitions in [4].

Predictions are obtained with the aid of evolution equations and the small-b
T

OPE of the TMD parton densities:

@ ln f̃f/H(x, b
T

; ⇣;µ)

@ ln
p
⇣

= K̃(b
T

;µ). (7)

dK̃(b
T

;µ)

d lnµ
= � �K(as(µ)) , (8)

d ln f̃j/H(x, b
T

; ⇣;µ)

d lnµ
= �j(as(µ))� 1

2
�K(as(µ)) ln

⇣

µ2

, (9)

f̃j/H(x, b
T

; ⇣;µ) =
X

k

Z
1+

x�

d⇠

⇠
C̃PDF

j/k (x/⇠, b
T

; ⇣, µ, as(µ)) fk/H(⇠;µ) + O[(mb
T

)p] . (10)

A solution that corresponds to Eq. (2) is
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Z
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◆
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�gK(b

T
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max
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+ K̃(b⇤;µb⇤) ln
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dµ0
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0))� ln
Q2
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�)

+ suppressed corrections. (11)

Analogous equations apply to fragmentation functions in
processes like semi-inclusive deeply inelastic scattering
(SIDIS) and e+e� annihilation, with the same K̃, �j ,
and �K functions. (Equality of K̃ and �K between the
processes was proved in Ref. [4]; equality of �j will be
proved in our Sec. VII.) Note the DY label on the hard
part, HDY

j|̄ (Q,µQ, as(µQ)), to indicate that this hard part
is specific to the Drell-Yan scattering process. We have
used the notation C̃PDF to indicate that the correspond-
ing coe�cients will be di↵erent for fragmentation func-
tions.

D. The mismatches between CSS1 and the new
methods

In all the methods, the primary idea is to extract the
leading power behavior in an expansion where masses

and q
T

are small relative to Q. By far the simplest form
of the results for factorization is when the leading-power
expansion is used strictly; terms of non-leading power
tend to be more complicated. A problem is that when a
strict leading power expansion is done, one obtains indi-
vidual terms that have UV and rapidity divergences not
present in the original amplitudes. So at intermediate
stages of derivations and calculations, cuto↵s (or regula-
tors) are applied to the divergences. All the methods are
in agreement to deal with UV divergences by renormal-
ization, after which the UV cuto↵ can be removed. The
di↵erences between the methods concern the treatment
of rapidity divergences.

The rapidity divergences are associated with the light-
like Wilson lines that arise when the operators in the
factors are defined in the natural gauge-invariant way
that arises from the leading-power expansion, or some
equivalent property.
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W (q
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, Q) =

Z
d2b
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(2⇡)2
eiqT

·b
T W̃ (b

T

, Q) . (341)

The relevant renormalization group scales are

µb ⌘ C
1

/b
T

, µb⇤ ⌘ C
1

/b⇤ , µQ ⌘ C
2

Q , (342)

where C
1

and C
2

are constants that are chosen to optimize perturbative convergence. After solving the evolution
equations, the W -term for SIDIS (neutral-current and neglecting heavy flavors) can be written as
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ble, and has well-known dependence on partonic flavor.
There is an interesting partial universality of higher or-
der corrections. For example, in the electromagnetic hard
scattering for Drell-Yan, the ratios of the one- and two-
loop corrections to the lowest-order term are quark-flavor
independent (when quark masses are neglected). Flavor
dependence first arises at order ↵3

s, where the virtual pho-
ton can couple to a quark loop that has a di↵erent flavor
than the quark and antiquark initiating the hard scat-
tering. However, the loop corrections are generally dif-
ferent between “time-like” processes (e.g., Drell-Yan) and
“space-like” processes (e.g., SIDIS). In addition, there are
potential (and calculable) di↵erences between the hard
scattering for unpolarized quarks and the parts that de-
pend on quark polarization.

As for the complete TMD functions (parton densities
and fragmentation functions), the nonperturbative parts
that do not arise from K̃ are in general all di↵erent and
can depend on the flavors of the parton and hadron. The
shape of the nonperturbative bT dependence can depend
on both the values of x and on the flavor. It is therefore in
general incorrect to assume that the nonperturbative bT
dependence is a universal factor times the corresponding
integrated distribution. The nonperturbative modeling
by Schweitzer, Strikman, and Weiss [53] is important in
suggesting a large di↵erence between the bT dependence
for sea and valence quarks.

Each particular TMD parton density is the same in all
processes where it is used, aside from the e↵ects of evolu-
tion, and aside from the predicted reversal of sign [17] of
“time-reversal-odd” functions (Sivers function, etc) be-
tween Drell-Yan and SIDIS.

The universality properties of the nonperturbative
functions gj/A(x, bT; bmax) match those of the corre-
sponding TMD functions. (However, as pointed out

above Eq. (24), the use of functions like gj/A applies,
in its simplest form, only to the TMD densities that cor-
respond to the standard integrated densities, i.e., the un-
polarized, helicity, and transversity densities.)
The expansion coe�cients C̃ in the OPE for TMD par-

ton densities depend on the color of the partons involved.
To the extent that quark masses are neglected, the depen-
dence of C̃ on flavor is governed by exact flavor symmetry.
Beyond lowest order, they do depend on the polariza-
tion type of the TMD functions: e.g., unpolarized TMD
parton density as compared with the coe�cients for the
corresponding transversity TMD parton densities. They
can be di↵erent between the expansions for TMD parton
densities and for TMD fragmentation functions.

IV. A SINGLE MASTER FUNCTION FOR CS
EVOLUTION OF TMD DENSITIES

A. Definition and properties

In this section, we show how to gain a more unified
view of TMD evolution. The starting point is the first
form of solution (16) of the evolution equations. There,
the TMD densities are all independent of Q, and the
Q-dependence, for each combination of flavors of quark
entering the hard scattering in the first two lines, arises
from three sources:

• The Q2K̃(b
T

,µ
0

) factor.

• The exponential of anomalous dimensions.

• The coupling ↵s(µQ) in the hard scattering d�̂j|̄.

We first observe that only the first item gives dependence on bT, and therefore only this item gives a Q-dependent
change in the shape of bT distribution, which would then be reflected in the distribution of the cross section in
transverse momentum. This statement is valid for the contribution of a particular quark flavor. If di↵erent quark
flavors have di↵erent intrinsic transverse-momentum distributions, then a change in the relative normalization of the
di↵erent flavor terms would be a source of Q-dependence in the shape of the transverse-momentum dependence of the
cross section. However, the first two items in the list are flavor independent. Moreover, as regards the hard scattering,
the ratios of one- and two-loop corrections relative to the lowest graph are flavor independent, as we observed in Sec.
III. Thus flavor dependence occurs only in the third item in the above list and only at the rather high order ↵3

s(Q).
Hence to a good approximation, the Q-dependence in the cross section is merely an overall factor in the summed

integrand, W̃ , as in (5). This factor is a Q-dependent normalization times the Q2K̃(b
T

,µ
0

) factor that a↵ects the shape.
This implies that a measurement of the cross section alone is, in principle, su�cient to test the evolution in Q, and
to give a measurement of K̃. Hence, for dealing with evolution, there is essentially no need to do a decomposition by
parton flavor, even though the evolution kernel K̃ is defined as a property of the individual TMD parton densities. In
this sense, the situation is quite di↵erent from the one of testing the evolution of ordinary integrated parton densities.

What is also striking is that the same flavor independence and evolution factor apply to all cases involving triplet
quarks: not only to unpolarized Drell-Yan, but also to polarized cases, e.g., with the Sivers function, to SIDIS, and
to back-to-back hadron production in e+e� annihilation.

Now consider the contribution of a particular flavor. We defined W̃j in Eq. (2). Di↵erentiating it with respect to
Q2 (or s) at fixed xA and xB gives

@ ln W̃j(bT, Q, xA, xB)

@ lnQ2
=

@ ln W̃j(bT, Q, xA, xB)

@ ln s
= K̃(bT;µ) +GDY

j|̄ (↵s(µ), Q/µ)
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tion type of the TMD functions: e.g., unpolarized TMD
parton density as compared with the coe�cients for the
corresponding transversity TMD parton densities. They
can be di↵erent between the expansions for TMD parton
densities and for TMD fragmentation functions.

IV. A SINGLE MASTER FUNCTION FOR CS
EVOLUTION OF TMD DENSITIES

A. Definition and properties

In this section, we show how to gain a more unified
view of TMD evolution. The starting point is the first
form of solution (16) of the evolution equations. There,
the TMD densities are all independent of Q, and the
Q-dependence, for each combination of flavors of quark
entering the hard scattering in the first two lines, arises
from three sources:

• The Q2K̃(b
T

,µ
0

) factor.

• The exponential of anomalous dimensions.

• The coupling ↵s(µQ) in the hard scattering d�̂j|̄.

We first observe that only the first item gives dependence on bT, and therefore only this item gives a Q-dependent
change in the shape of bT distribution, which would then be reflected in the distribution of the cross section in
transverse momentum. This statement is valid for the contribution of a particular quark flavor. If di↵erent quark
flavors have di↵erent intrinsic transverse-momentum distributions, then a change in the relative normalization of the
di↵erent flavor terms would be a source of Q-dependence in the shape of the transverse-momentum dependence of the
cross section. However, the first two items in the list are flavor independent. Moreover, as regards the hard scattering,
the ratios of one- and two-loop corrections relative to the lowest graph are flavor independent, as we observed in Sec.
III. Thus flavor dependence occurs only in the third item in the above list and only at the rather high order ↵3

s(Q).
Hence to a good approximation, the Q-dependence in the cross section is merely an overall factor in the summed

integrand, W̃ , as in (5). This factor is a Q-dependent normalization times the Q2K̃(b
T

,µ
0

) factor that a↵ects the shape.
This implies that a measurement of the cross section alone is, in principle, su�cient to test the evolution in Q, and
to give a measurement of K̃. Hence, for dealing with evolution, there is essentially no need to do a decomposition by
parton flavor, even though the evolution kernel K̃ is defined as a property of the individual TMD parton densities. In
this sense, the situation is quite di↵erent from the one of testing the evolution of ordinary integrated parton densities.

What is also striking is that the same flavor independence and evolution factor apply to all cases involving triplet
quarks: not only to unpolarized Drell-Yan, but also to polarized cases, e.g., with the Sivers function, to SIDIS, and
to back-to-back hadron production in e+e� annihilation.

Now consider the contribution of a particular flavor. We defined W̃j in Eq. (2). Di↵erentiating it with respect to
Q2 (or s) at fixed xA and xB gives

@ ln W̃j(bT, Q, xA, xB)

@ lnQ2
=

@ ln W̃j(bT, Q, xA, xB)

@ ln s
= K̃(bT;µ) +GDY

j|̄ (↵s(µ), Q/µ)
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loop corrections to the lowest-order term are quark-flavor
independent (when quark masses are neglected). Flavor
dependence first arises at order ↵3

s, where the virtual pho-
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general incorrect to assume that the nonperturbative bT
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integrated distribution. The nonperturbative modeling
by Schweitzer, Strikman, and Weiss [53] is important in
suggesting a large di↵erence between the bT dependence
for sea and valence quarks.
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sponding TMD functions. (However, as pointed out
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form of solution (16) of the evolution equations. There,
the TMD densities are all independent of Q, and the
Q-dependence, for each combination of flavors of quark
entering the hard scattering in the first two lines, arises
from three sources:

• The Q2K̃(b
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,µ
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) factor.

• The exponential of anomalous dimensions.

• The coupling ↵s(µQ) in the hard scattering d�̂j|̄.

We first observe that only the first item gives dependence on bT, and therefore only this item gives a Q-dependent
change in the shape of bT distribution, which would then be reflected in the distribution of the cross section in
transverse momentum. This statement is valid for the contribution of a particular quark flavor. If di↵erent quark
flavors have di↵erent intrinsic transverse-momentum distributions, then a change in the relative normalization of the
di↵erent flavor terms would be a source of Q-dependence in the shape of the transverse-momentum dependence of the
cross section. However, the first two items in the list are flavor independent. Moreover, as regards the hard scattering,
the ratios of one- and two-loop corrections relative to the lowest graph are flavor independent, as we observed in Sec.
III. Thus flavor dependence occurs only in the third item in the above list and only at the rather high order ↵3

s(Q).
Hence to a good approximation, the Q-dependence in the cross section is merely an overall factor in the summed

integrand, W̃ , as in (5). This factor is a Q-dependent normalization times the Q2K̃(b
T

,µ
0

) factor that a↵ects the shape.
This implies that a measurement of the cross section alone is, in principle, su�cient to test the evolution in Q, and
to give a measurement of K̃. Hence, for dealing with evolution, there is essentially no need to do a decomposition by
parton flavor, even though the evolution kernel K̃ is defined as a property of the individual TMD parton densities. In
this sense, the situation is quite di↵erent from the one of testing the evolution of ordinary integrated parton densities.

What is also striking is that the same flavor independence and evolution factor apply to all cases involving triplet
quarks: not only to unpolarized Drell-Yan, but also to polarized cases, e.g., with the Sivers function, to SIDIS, and
to back-to-back hadron production in e+e� annihilation.

Now consider the contribution of a particular flavor. We defined W̃j in Eq. (2). Di↵erentiating it with respect to
Q2 (or s) at fixed xA and xB gives
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=
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Sec. IIA 4.) In a theory, such as a superrenormalizable
nongauge theory, where the elementary parton model is
valid, the value of a coordinate-space TMD parton den-
sity at zero bT equals the integral over all transverse mo-
mentum of the momentum space TMD function, by el-
ementary properties of Fourier transforms. The result
is also the corresponding integrated parton density. See
Ref. [9, Sec. 6.8] for details.

But in renormalizable theories and especially QCD,
there is a strong enough singularity at bT ! 0, that such
results must be modified (e.g., [9, Ch. 13]) and the ap-
propriate modification is the OPE at small bT. This en-
ables the TMD functions at small bT to be expressed in
terms of ordinary integrated parton densities and pertur-
batively calculable coe�cient functions. The coe�cient
functions in this OPE are currently known7 to order ↵2

s

[73, 74]. Intuitively, the OPE can be characterized by
saying that when a momentum-space TMD density is
integrated over transverse momenta up to order Q, the
result is the integrated parton density at scale Q plus
perturbative corrections of order ↵s(Q).

Naturally, Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) evolution also enters here, so that the
OPE plus DGLAP evolution gives the TMD parton den-
sities at small bT in terms of ordinary parton densities
at a fixed scale.

It should be added that even without any of these sub-
sidiary results, the factorization in Eq. (2) alone provides
predictions, since as regards the dependence on the lon-
gitudinal momentum fraction parameters xA and xB , the
cross section is a function jointly of both variables. But
each parton density depends only on one of these vari-
ables.

3. Evolution equations

The CSS evolution equation for the ⇣ dependence of
the TMD parton densities is

@ ln f̃f/H(x, bT; ⇣;µ)

@ ln
p
⇣

= K̃(bT;µ). (6)

The kernel K̃ is independent of the flavor and spin of the
quark, of the nature of the hadron target, and of the mo-
mentum fraction x. It is also the same for fragmentation
functions as well as parton densities, and is the same be-
tween the versions of parton densities for Drell-Yan and
the SIDIS processes, and for all the di↵erent polarized
parton densities. A di↵erent kernel does appear in gluon
densities, since K̃ depends on the color representation

7 Catani et al. [72] also give the results for a number of high-order
calculations for a version of CSS resummation. Since there may
be a scheme change compared with the formalism that we and
the authors of [73, 74] used, it remains to check consistency of
the di↵erent calculations.

carried by the parton. Note that both the parton densi-
ties and the kernel K̃ have contributions from the infra-
red or long-distance domain,8 and hence these functions
depend on quark masses, as well as on the coupling ↵s(µ);
but we have not indicated this dependence explicitly.
The renormalization group (RG) equation for the ker-

nel is

dK̃(bT;µ)

d lnµ
= ��K(↵s(µ)) , (7)

and for the parton densities, the RG equation is

d ln f̃j/H(x, bT; ⇣;µ)

d lnµ
= �j(↵s(µ); 1)�

1

2
�K(↵s(µ)) ln

⇣

µ2
,

(8)
in the notation of Ref. [9]. The RG coe�cient �j is spe-
cific to quark j. However the relevant calculations are
the same for all flavors of spin- 12 quark. The ⇣ depen-
dence on the right-hand side is determined from the fact
that di↵erentiation of a parton density with respect to
µ commutes with di↵erentiation with respect to ⇣. (An
alternative notation for the whole of the right-hand side
of (8) is �j(↵s(µ); ⇣/µ2).)
An RG equation for the hard scattering follows from

the RG invariance of physical cross sections:

d

d lnµ
ln


d�̂j|̄(Q,µ,↵s(µ))

d⌦

�

= �2�j(↵s(µ); 1) + �K(↵s(µ)) ln
Q2

µ2
. (9)

In our calculations, we will need the one-loop values
for the above quantities, and the two-loop value of �K :9

�K(↵s(µ)) = 2CF
↵s(µ)

⇡

+

✓
↵s(µ)

⇡

◆2

CF


CA

✓
67

18
� ⇡2

6

◆
� 10

9
TFnf

�

+O(↵s(µ)
3), (10)

K̃(bT;µ) = � ↵s(µ)

⇡
CF


ln

b2Tµ
2

4
+ 2�E

�

+O(↵s(µ)
2), (11)

�j(↵s(µ); 1) =
3CF

2

↵s(µ)

⇡
+O(↵s(µ)

2). (12)

8 For K̃, infra-red contributions are power-suppressed at small b
T

but not at large b
T

.
9 See [9] for one-loop calculations of �K from its definition. The
value to three-loop order was found by Moch, Vermaseren, and
Vogt [75]; they compute a quantity they call A, which is our
�K/2 — see their Eq. (2.4). Their value was recently confirmed
by Grozin et al. [76].

These	
  equadons	
  	
  
are	
  valid	
  for	
  all	
  bT	
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is a subtle shift in the meaning of gK(bT; bmax). Instead
of gK defined in Eq. (20), the fits should be regarded as

actually measuring the following quantity17

ĝK(bT; bmax) = �K̃(bT, µ0)exact+ K̃(b⇤, µ0)approx.. (63)

Here the perturbatively approximated K̃ is defined as
follows. From the RG equation for K̃ we find

K̃(bT;µ0;↵s(µ0)) = K̃(bT;µb⇤ ;↵s(µb⇤))�
Z µ

0

µb⇤

dµ0

µ0 �K(↵s(µ
0)), (64)

where the renormalization scale in K̃ on the right-hand side is chosen to avoid large logarithms in its perturbation
series. Then we define K̃(b⇤, µ0)approx by applying to the right-hand side of (64) truncated perturbation theory for
K̃, �K , and for the function � controlling evolution of the coupling. (Note that this form of approximation preserves
the property of the exact K̃(bT;µ0) that its dependence on bT and µ0 is the sum of a function of bT and a function
of µ0.) Thus a fit of gK can allow both for nonperturbative phenomena and for uncalculated higher-order terms in
the perturbative part of K̃.

To better understand the changed gK , we write it in two forms:

ĝK(bT; bmax) =
h
�K̃(bT, µ0)exact + K̃(b⇤, µ0)exact

i
+

h
�K̃(b⇤, µ0)exact + K̃(b⇤, µ0)approx.

i
(65a)

=
h
�K̃(bT, µ0)exact + K̃(bT, µ0)approx.

i
+

h
�K̃(bT, µ0)approx. + K̃(b⇤, µ0)approx.

i
. (65b)

In (65a) the quantity in the first brackets is gK as originally defined, and the second brackets contain the error in
using truncated perturbative methods to compute K̃(b⇤). In (65b) the first brackets show the di↵erence between the
exact K̃ and a truncated perturbatively-based estimate, while the second brackets give a perturbative approximation
to gK .

If bmax is chosen conservatively (as in the BLNY fits), then perturbatively based calculations of K̃ are applicable for
the whole region of bT less than bmax, and even at somewhat larger bT. Actual fits for gK , or rather ĝK , particularly
with a simple quadratic approximation, are a compromise, between reproducing gK in a region where it is predicted,
and fitting gK at larger bT where it is less perturbative. Even so, we expect to estimate, roughly, the small-bT behavior
of gK from perturbative calculations. We can regard such an estimate as giving a property of the first term on the
right-hand side of (65a), i.e., of gK itself. Alternatively it gives a property of the second term on the right-hand side
of (65b). The validity of perturbation theory when bT is small is coded in a small value for the other term on each
line, which is a di↵erence between the exact K̃ and its perturbative estimate.

Real nonperturbative physics is at larger bT, and, as we will see in more detail in Sec. VII, a simple extrapolation
of gK from small bT is likely to be wrong.

Once a less conservative value of bmax is chosen, more of the fitting is concerned with e↵ects beyond those predicted
by low-order perturbation theory. This is exhibited on the right-hand side of (65a), where the first term is the exact gK
and the second term gives the error in replacing the exact value of K̃(b⇤, µ0) by a perturbatively-based approximation.

We now show how to predict approximately the quadratic behavior of gK when bT . bmax. This amounts to an
examination of the second term on the right-hand side of (65b). We will find that the results roughly reproduce the
values of the coe�cient g2 in Eq. (39) that were fitted by BLNY and KN.

If K̃ were an analytic function of bT around bT = 0, then gK as defined by Eq. (20) would be correctly given by a
quadratic in bT at small bT. But in fact K̃ has a mild singularity at bT = 0, as is verified by doing a renormalization-
group improvement, as in (64). Because the e↵ective coupling ↵s(µb⇤) is not analytic at bT = 0, neither is K̃.
This mildly modifies the quadratic small-bT behavior of gK . But normally we are not concerned with accurately
approximating gK at very small bT, precisely because gK is small there and has little e↵ect on the cross section. What
we need to obtain is an approximation that is useful when bT gets closer to bmax.

To get a simple approximation, we first set µ = µb⇤ in the definition of gK , to remove large logarithms:

gK(bT; bmax) = �K̃(bT;µb⇤ ;↵s(µb⇤)) + K̃(b⇤;µb⇤ ;↵s(µb⇤)) . (66)

17 It is not entirely clear which value µ
0

of the renormalization scale should be used here; but that only a↵ects an additive constant,
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Thus,

W̃ (bT, Q) = W̃OPE(b⇤(bT), Q) +O ((bTm)p) (410)

W̃ (bc(bT), Q) = W̃OPE(b⇤(bc(bT)), Q) +O ((bc(bT)m)p) (411)

with p > 0.

e�gA(xA,b
T

;b
max

)�gB(zB ,b
T

;b
max

)�2gK(b
T

;b
max

) ln(Q/Q
0

) ⌘ W̃ (bT, Q)

W̃OPE(b⇤(bT), Q)
. (412)

qT . O(m) O(m) ⌧ qT ⌧ O(Q) qT & O(Q) (413)

Q � O(m) (414)
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W̃ (bT, Q) = W̃ (bT, Q0) exp

⇢
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W̃ (b⇤(bT), Q) = W̃ (b⇤(bT), Q0) exp

⇢
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The relevant renormalization group scales are
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where C
1

and C
2

are constants that are chosen to optimize perturbative convergence. After solving the evolution
equations, the W -term for SIDIS (neutral-current and neglecting heavy flavors) can be written as
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j/H (x, bT; bmax) = gj/H(x, bT; bmax) (470)

�j(µ), �K(µ), K(bT;µ), H(↵s(µ);µ/Q) (471)

Cross Section = Hf
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d2kT Ff/p(x,kT � qT)Dh/f (z, zkT) (472)

Cross SectionR
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= Hf (473)

W (qT, Q) =
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TW̃OPE(b⇤(bT), Q)W̃NP(bT, Q; bmax) (474)
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Thus,
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W̃ (bc(bT), Q) = W̃OPE(b⇤(bc(bT)), Q) +O ((bc(bT)m)p) (411)

with p > 0.
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µmax

s
1

1 + C2
1/(µ

2
maxb

2
max)

. (352)

b⇤(bc(bT)) =

s
b2T + C2

1/µ
2
max

1 + b2T/b
2
max + C2

1/(µ
2
maxb

2
max)

(353)
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W (q
T

, Q) =

Z
d2b

T

(2⇡)2
eiqT

·b
T W̃ (b

T

, Q) . (341)

The relevant renormalization group scales are

µb ⌘ C
1

/b
T

, µb⇤ ⌘ C
1

/b⇤ , µQ ⌘ C
2

Q , (342)

where C
1

and C
2

are constants that are chosen to optimize perturbative convergence. After solving the evolution
equations, the W -term for SIDIS (neutral-current and neglecting heavy flavors) can be written as

W̃ (b
T

, Q) = H(µQ, Q)F̃j/A

�
xA, bT;Q

2

0

, µQ
0

�
D̃B/j

�
zB , bT;Q

2

0

, µQ
0

�

⇥ exp

(Z µQ

µQ
0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

(µ0)2
�K(↵s(µ

0))

�)

⇥ exp

("
�gK(b

T

; b
max

) + K̃(b⇤;µb⇤)�
Z µQ

0

µb⇤

dµ0

µ0 �K(↵s(µ
0))

#
ln

✓
Q2

Q2

0

◆)
(343)
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Thus,

W̃ (bT, Q) = W̃OPE(b⇤(bT), Q) +O ((bTm)p) (410)

W̃ (bc(bT), Q) = W̃OPE(b⇤(bc(bT)), Q) +O ((bc(bT)m)p) (411)

with p > 0.

e�gA(xA,b
T

;b
max

)�gB(zB ,b
T

;b
max

)�2gK(b
T

;b
max

) ln(Q/Q
0

) ⌘ W̃ (bT, Q)

W̃OPE(b⇤(bT), Q)
. (412)

qT . O(m) O(m) ⌧ qT ⌧ O(Q) qT & O(Q) (413)

Q � O(m) (414)

⌅

✓
qT
Q

, ⌘

◆
= exp

"
�
✓
qT
⌘Q

◆8
#
, (415)

with ⌘ ⇡ 1/3

X(qT/�) = 1� exp
�
�(qT/�)

4
 

. (416)

� ⇡ 0.7GeV .

= baT (417)

e�ab2
T (418)
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Ex:	
  ResBos	
  	
  
Generator	
  	
  

The bmin mechanism 

•  Simple	
  ansatz	
  will	
  tend	
  to	
  introduce	
  bmax	
  dependence.	
  
•  Other	
  op7ons	
  remove	
  bmax	
  power	
  correc7ons,	
  e.g	
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s

(276)

F̃f/P (bT , x;µ; ⇣1) = (277)

⇣
1

= x2M2

p e
2(yP�ys) (278)

x ! 1.0 (279)

h0 | WLC [a, a] | 0i (280)

F.T. hP |  ̄(0, w�,0t)  (0, 0,0t) |P i (281)

F.T. hP |  ̄(0, w�,wt)  (0, 0,0t) |P i (282)

ln

✓
Q

Q
0

◆
(283)

F̃j/P (x,bT ;µ, ⇣1) =
X

k

Z
1

x

d⇠

⇠
C̃j/k(x/⇠, bT; ⇣1, µ,↵s(µ))fk/P (⇠, µ) + O((bTmq)

a) (284)

d�

d4q d⌦

=
2

s

X

j

d�̂j|̄(Q,µ,↵s(µ))

d⌦

Z
d2k

1T d2k
2T Fj/A(xA,k1T ; ⇣A, µ) F|̄/B(xB ,k2T ;Q

4/⇣A, µ) �
(2)(qT � k

1T � k
2T )

+ polarization terms + high-q
T

term (Y ) + power-suppressed. (285)

gK(b
T

; b
max

) =
CF

⇡

b2
T

b2
max

↵s(µb⇤) +O

✓
b4
T

C2

F↵s(µb⇤)
2

b4
max

⇡2g
0

(b
max

)

◆
, (286)

gK(b
T

; b
max

) ⌘ �K̃(b
T

;µb⇤ ;↵s(µb⇤)) + K̃(b⇤;µb⇤ ;↵s(µb⇤)) =
CF

⇡

b2
T

b2
max

↵s(µb⇤) +O

✓
b4
T

⇡2b4
max

↵s(µb⇤)
2

◆
(287)

gK(b
T

; b
max

) ' ↵s(C1

/b⇤)CF

⇡

b2
T

b2
max

, (288)
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•  Many	
  calcula7ons	
  now	
  exist	
  in	
  old	
  CSS,	
  pure	
  collinear	
  

factoriza7on,	
  SCET.	
  
	
  
	
  
•  Different	
  methods	
  of	
  calcula7on	
  produce	
  same	
  results.	
  

•  Different	
  approaches	
  to	
  deriva7on	
  converging	
  on	
  standardized	
  
TMD	
  defini7ons.	
  	
  

	
  
	
  
•  Altogether	
  these	
  give	
  necessary	
  ingredients	
  for	
  new	
  operator-­‐

based	
  TMD	
  factoriza7on	
  up	
  to	
  to	
  order	
  αs
3	
  	
  (except	
  in	
  Wilson	
  

coefficient).	
  	
  


