Connecting Different TMD Factorization Formalisms in QCD

Old Dominion University and
Jefferson Laboratory
Ted Rogers

- Based on:
J. Collins, T. Rogers: arXiv:1750.07167 (2017)

TMD Factorization

- Non-perturbative transverse momentum
- Relationship to hadron structure, spin, power corrections etc...
- Important to have explicit TMD definitions
- Extract from data and compare across processes to test universality
- Predict with non-perturbative techniques: lattice, etc...

Phenomenology and Partons

Talk by C. Pisano

(Schweitzer, Strikman, Weiss, (2013))

(Signori, Bacchetta, Radici, Schnell (2013))

TMD Factorization

- Non-perturbative transverse momentum
- Relationship to hadron structure, spin, power corrections etc...
- Important to have explicit TMD definitions
- Extract from data and compare across processes to test universality
- Predict with non-perturbative techniques: lattice, etc...
- Issues in semi-inclusive deeply inelastic scattering
- Smallish Q is typical
- Match to central \& target regions
- Limited range of rapidity and transverse momentum at small Q and/or large x
- Nature of power corrections from hadron masses?

Talks by E. Moffat and J. Guerrero

TMD Factorization

- Many results exist.
- Resummation in collinear factorization
- CSS
- SCET
- Sudakov Factors
- Formalisms often appear different on the surface.
- Goals:
- Map old styles to new.
- Is there convergence toward a standardized set of definitions (and results) for TMD definitions?
- Bring diverse results together with consistent conventions (notation, etc)?

Older Formalisms...

- CSS1 - Multiple redefinitions of factors (starting from TMD definitions) No explicit hard part.
(Collins, Soper, Sterman (1981-1985))
- Match to collinear for $\Lambda_{\mathrm{QCD}} \ll \mathrm{q}_{\mathrm{T}} \ll \mathrm{Q}$ and $\mathrm{q}_{\mathrm{T}} \approx \mathrm{Q}$.
- Catani, de Florian, Grazzini et al.
- Factorization takes a simple form.
- Large transverse momentum (e.g., Y-term) results are automatic.
- Ressumation scheme dependence; shown there is no uniquely defined hard part.
(Catani, de Florian, Grazzini (2001))

Drell-Yan

$$
\left.\begin{array}{rl}
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}= & \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} e_{j}^{2} \int \frac{\mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \quad \equiv C_{2} Q \\
\mu_{b} \equiv C_{1} / b_{\mathrm{T}} \\
\mu_{b_{*}} \equiv C_{1} / b_{*}
\end{array}\right] \begin{aligned}
& \times \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \tilde{C}_{j / j_{A}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right) \tilde{C}_{\bar{\jmath} / j_{B}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \exp \left\{-\int_{\mu_{b_{*}}^{2}}^{\mu_{Q}^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[A_{\mathrm{CSS} 1}\left(a_{s}\left(\mu^{\prime}\right) ; C_{1}\right) \ln \left(\frac{\mu_{Q}^{2}}{\mu^{\prime 2}}\right)+B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\left(\mu^{\prime}\right) ; C_{1}, C_{2}\right)\right]\right\} \\
& \times \exp \left[-g_{j / A}^{\mathrm{CSS} 1}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{\bar{\jmath} / B}^{\mathrm{CSS} 1}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)-g_{K}^{\mathrm{CSS} 1}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(Q^{2} / Q_{0}^{2}\right)\right] \\
& +\operatorname{suppressed} \operatorname{corrections.}
\end{aligned}
$$

No explicit hard part here

Drell-Yan

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}= \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} e_{j}^{2} \int \frac{\mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \quad \begin{array}{r}
\mu_{Q} \equiv C_{2} Q \\
\mu_{b} \equiv C_{1} / b_{\mathrm{T}} \\
\mu_{b_{*}} \equiv C_{1} / b_{*}
\end{array} \\
& \times \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \\
& \times \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} \frac{f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right)}{\tilde{C}_{j / j_{A}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right)} \\
& \tilde{C}_{\bar{\jmath} / j_{B}}^{\mathrm{CSS} 1, \mathrm{DY}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right)} \\
& \times \exp \left\{-\int_{\mu_{b_{*}}^{2}}^{\mu_{Q}^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[A_{\mathrm{CSS} 1}\left(a_{s}\left(\mu^{\prime}\right) ; C_{1}\right) \ln \left(\frac{\mu_{Q}^{2}}{\mu^{\prime 2}}\right)+B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\left(\mu^{\prime}\right) ; C_{1}, C_{2}\right)\right]\right\} \\
& \times \exp \left[-g_{j / A}^{\mathrm{CSS} 1}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{\bar{\jmath} / B}^{\mathrm{CSS} 1}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)-g_{K}^{\mathrm{CSS} 1}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(Q^{2} / Q_{0}^{2}\right)\right]
\end{aligned}
$$

Drell-Yan

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}= \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} e_{j}^{2} \int \frac{\mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \times \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \\
& \mu_{b} \equiv C_{2} Q \\
& \mu_{b_{*}} \equiv C_{1} / b_{\mathrm{T}}
\end{aligned}
$$

Drell-Yan

$$
\begin{aligned}
& \mu_{Q} \equiv C_{2} Q \\
& \frac{\mathrm{~d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} e_{j}^{2} \int \frac{\mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \mu_{b} \equiv C_{1} / b_{\mathrm{T}} \\
& \mu_{b_{*}} \equiv C_{1} / b_{*} \\
& \times \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \tilde{C}_{j / j_{A}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \left.\times \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} \underline{f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right.}\right) \underline{C}_{\bar{\jmath} / j_{B}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \left.\times \exp \left\{-\int_{\mu_{b_{*}}^{2}}^{\mu_{Q}^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[\underline{A_{\mathrm{CSS} 1}\left(a_{s}\left(\mu^{\prime}\right) ; C_{1}\right)} \ln \left(\frac{\mu_{Q}^{2}}{\mu^{\prime 2}}\right)+\underline{B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\left(\mu^{\prime}\right)\right.} ; C_{1}, C_{2}\right)\right]\right\} \\
& \times \exp \left[-g_{j / A}^{\mathrm{CSS} 1}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{\bar{J} / B}^{\mathrm{CSS} 1}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)-g_{K}^{\mathrm{CSS} 1}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(Q^{2} / Q_{0}^{2}\right)\right] \\
& + \text { suppressed corrections. }
\end{aligned}
$$

No explicit hard part here

$b_{\text {max }}$ method

- Replacement

$$
\boldsymbol{b}_{*}\left(\boldsymbol{b}_{T}\right) \rightarrow \begin{cases}\boldsymbol{b}_{T} & b_{T} \ll b_{\max } \\ \boldsymbol{b}_{\max } & b_{T} \gg b_{\max }\end{cases}
$$

- One commonly used functional form.

$$
\mathbf{b}_{*}\left(\mathbf{b}_{\mathrm{T}}\right) \equiv \frac{\mathbf{b}_{\mathrm{T}}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}
$$

$$
\begin{aligned}
\mu_{Q} & \equiv C_{2} Q \\
\mu_{b} & \equiv C_{1} / b_{\mathrm{T}} \\
\mu_{b_{*}} & \equiv C_{1} / b_{*}
\end{aligned}
$$

New TMD methods

- Improved TMD function definitions (e.g., CSS2).
(J. Collins textbook, (2011))
- SCET-based approaches
- Main differences from CSS2: Implementation of regulators.
- At least two are equivalent to CSS2
(Echevarria, Idilbi, Scimemi (2012); Collins, TCR (2013))
(Li, Neill, Zhu, (2016); Collins, TCR (2017) App. B)
(See talks by V. Vaidya and Esp. I. Scimemi)
- Better oriented for hadron structure studies (e.g. lattice QCD)
- Structurally familiar from phenomenology.

$$
H_{f} \int \mathrm{~d}^{2} \boldsymbol{k}_{\mathrm{T}} F_{f / p}\left(x, \boldsymbol{k}_{\mathrm{T}}-q_{\mathrm{T}}\right) D_{h / f}\left(z, z, \boldsymbol{k}_{\mathrm{T}}\right)
$$

- Hard parts are fixed by factorization of operator structures.

$$
\frac{\text { Cross Section }}{\int \mathrm{d}^{2} \boldsymbol{k}_{\mathrm{T}} F_{f / p}\left(x, \boldsymbol{k}_{\mathrm{T}}-\boldsymbol{q}_{\mathrm{T}}\right) D_{h / f}\left(z, z \boldsymbol{k}_{\mathrm{T}}\right)}=H_{f}
$$

New TMD methods

- TMD parton model structure + evolution equations.

Ex: CSS2

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j} H_{\overline{j \bar{J}}}^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \underline{\tilde{f}_{j / A}\left(x_{A}, b_{\mathrm{T}} ; Q^{2}, \mu_{Q}\right)} \underline{\tilde{f}_{\bar{J} / B}\left(x_{B}, b_{\mathrm{T}} ; Q^{2}, \mu_{Q}\right)} \\
& + \text { suppressed corrections, } \\
& \frac{\partial \ln \tilde{f}\left(x, b_{T} ; \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{T} ; \mu\right) \quad \tilde{f}_{j / H}\left(x, b_{\mathrm{T}} ; \zeta ; \mu\right)=\sum_{k} \int_{x-}^{1+} \frac{\mathrm{d} \xi}{\xi} \tilde{C}_{j / k}^{\mathrm{PDF}}\left(x / \xi, b_{\mathrm{T}} ; \zeta, \mu, a_{s}(\mu)\right) f_{k / H}(\xi ; \mu)+O\left[\left(m b_{\mathrm{T}}\right)^{p}\right] \\
& \frac{\mathrm{d} \tilde{K}\left(b_{T} ; \mu\right)}{\mathrm{d} \ln \mu}=-\gamma_{K}\left(a_{s}(\mu)\right) \\
& \mu_{Q} \equiv C_{2} Q \\
& \mu_{b} \equiv C_{1} / b_{\mathrm{T}} \\
& \mu_{b_{*}} \equiv C_{1} / b_{*}
\end{aligned}
$$

Perturbation-Theory-Optimized Solution

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} H_{j \bar{\jmath}}^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \times e^{-g_{j / A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \tilde{C}_{j / j_{A}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times e^{-g_{\bar{J} / B}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right) \tilde{C}_{\bar{J} / j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \exp \left\{-g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \frac{Q^{2}}{Q_{0}^{2}}+\tilde{K}\left(b_{*} ; \mu_{b_{*}}\right) \ln \frac{Q^{2}}{\mu_{b_{*}}^{2}}+\int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{\mathrm{~d} \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma_{j}\left(a_{s}\left(\mu^{\prime}\right)\right)-\ln \frac{Q^{2}}{\left(\mu^{\prime}\right)^{2}} \gamma_{K}\left(a_{s}\left(\mu^{\prime}\right)\right)\right]\right\}
\end{aligned}
$$

+ suppressed corrections.

Perturbation-Theory-Optimized Solution

$$
\left.\begin{array}{rl}
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}= & \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} \underline{H_{j \bar{\jmath}}}{ }^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \times e^{-g_{j / A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \\
& \times e^{-g_{\bar{j} / B}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{j_{B} / B}^{\mathrm{PDF}}\left(\xi_{B} ; \mu_{b_{*}}\right) \\
\tilde{C}_{\tilde{\bar{J}} / j_{B}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
\xi_{B}
\end{array}, b_{*} ; \mu_{\left.b_{*}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right)}^{Q^{2}}\right)
$$

+ suppressed corrections.

Perturbation-Theory-Optimized Solution

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} H_{j \bar{\jmath}}{ }^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \times e^{-g_{j / A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \tilde{C}_{j / j_{A}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times e^{-g_{\bar{j} / B}\left(x_{B}, b_{T} ; b_{\max }\right)} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right) \tilde{C}_{\bar{j} / j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \exp \left\{-g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \frac{Q^{2}}{Q_{0}^{2}}+\tilde{K}\left(b_{*} ; \mu_{b_{*}}\right) \ln \frac{Q^{2}}{\mu_{b_{*}}^{2}}+\int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{\mathrm{~d} \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma_{j}\left(a_{s}\left(\mu^{\prime}\right)\right)-\ln \frac{Q^{2}}{\left(\mu^{\prime}\right)^{2}} \gamma_{K}\left(a_{s}\left(\mu^{\prime}\right)\right)\right]\right\}
\end{aligned}
$$

+ suppressed corrections.

Perturbation-Theory-Optimized Solution

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} H_{j \bar{\jmath}}{ }^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right) \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \times e^{-g_{j / A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \tilde{C}_{j / j_{A}}^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times e^{-g_{\bar{j} / B}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right) \tilde{C}_{\tilde{j} / j_{B}}^{\mathrm{PDF}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \exp \left\{\underline{-g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln } \frac{Q^{2}}{Q_{0}^{2}}+\underline{\tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)} \ln \frac{Q^{2}}{\mu_{b_{*}}^{2}}+\int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{\mathrm{~d} \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma_{j}\left(a_{s}\left(\mu^{\prime}\right)\right)-\ln \frac{Q^{2}}{\left(\mu^{\prime}\right)^{2}} \gamma_{\underline{K}\left(a_{s}\left(\mu^{\prime}\right)\right)}\right]\right\}
\end{aligned}
$$

+ suppressed corrections.

Compare CSS1 vs. CSS2

$$
\begin{aligned}
& \mu_{Q} \equiv C_{2} Q \\
& \frac{\mathrm{~d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} e_{j}^{2} \int \frac{\mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \mu_{b} \equiv C_{1} / b_{\mathrm{T}} \\
& \mu_{b_{*}} \equiv C_{1} / b_{*} \\
& \times \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \tilde{C}_{j / j_{A}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} \underline{f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right)} \underline{C}_{\bar{\jmath} / j_{B}}^{\mathrm{CSS}, \mathrm{DY}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \left.\times \exp \left\{-\int_{\mu_{b_{*}}^{2}}^{\mu_{Q}^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[\underline{A_{\mathrm{CSS} 1}\left(a_{s}\left(\mu^{\prime}\right) ; C_{1}\right)} \ln \left(\frac{\mu_{Q}^{2}}{\mu^{\prime 2}}\right)+\underline{\underline{B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\right.}\left(\mu^{\prime}\right)} ; C_{1}, C_{2}\right)\right]\right\} \\
& \times \exp \left[-g_{j / A}^{\mathrm{CSS} 1}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{\bar{J} / B}^{\mathrm{CSS} 1}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)-g_{K}^{\mathrm{CSS} 1}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(Q^{2} / Q_{0}^{2}\right)\right] \\
& + \text { suppressed corrections. }
\end{aligned}
$$

Old Schemes and New Schemes

- Questions:
- CSS1 involves " A " and " B " functions not explicit in CSS2.
- Non-perturbative parts in CSS1 and in TMD functions?
- Anomalous dimension of PDFs vs. FFs?
- Many high order calculations in old resummation, SCET, etc... how to utilize in, for example, CSS2?

Fast translation to new TMD methods

- CSS1 and CSS2 drop same subleading powers:

$$
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{DY}} ^{\mathrm{CSS} 1}=\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{DY}} ^{\mathrm{CSS} 2} \quad ;\left.\quad \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{SIDIS}} ^{\mathrm{CSS} 1}=\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{SIDIS}} ^{\mathrm{CSS} 2}
$$

- Derivatives given by evolution equations.
(anomalous dimensions)
- $\mathrm{b}_{\max }$ independence.
- Charge conjugation invariance.

Fast translation to new TMD methods

- First equate $\ln (\mathrm{Q})$ and $\ln \left(\mathrm{b}_{\mathrm{T}}\right)$ derivatives
- Use $b_{\text {max }}$ independence

$$
\begin{aligned}
& A_{\mathrm{CSS} 1}\left(a_{s}\left(\mu_{b_{*}}\right) ; C_{1}\right)=-\frac{\mathrm{d} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)}{\mathrm{d} \ln b_{*}^{2}}+\frac{1}{2} \gamma_{K}\left(a_{s}\left(\mu_{b_{*}}\right)\right)=-\left.\frac{\partial \tilde{K}\left(b_{*} ; \mu\right)}{\partial \ln b_{*}^{2}}\right|_{\mu \mapsto \mu_{b_{*}}} \\
& B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\left(\mu_{Q}\right) ; C_{1}, C_{2}\right)=-\tilde{K}\left(C_{1} / \mu_{Q} ; \mu_{Q}\right)-\frac{\partial \ln H_{j \bar{j}}^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right)}{\partial \ln Q^{2}} \\
& \quad g_{K}^{\mathrm{CSS} 1}\left(b_{\mathrm{T}} ; b_{\max }\right)=g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right)
\end{aligned}
$$

Fast translation to new TMD methods

- Use result and repeat for undifferentiated cross section

$$
\begin{aligned}
& e_{j}^{2} \tilde{C}_{j / j_{A}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*},}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \times \tilde{C}_{\bar{j} / j_{B}}^{\mathrm{CSI} 1, \mathrm{DY}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& g_{j / A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)+g_{\bar{j} / B}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)=g_{j / A}^{\mathrm{CSS} 1}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)+g_{\bar{j} / B}^{\mathrm{CSS} 1}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)
\end{aligned}
$$

Fast translation to new TMD methods

- Charge conjugation invariance:

$$
\begin{aligned}
& \begin{array}{l}
\left|e_{j}\right| \tilde{C}_{j / k}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
\\
=\tilde{C}_{j / k}^{\mathrm{PDF}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*},}, a_{s}\left(\mu_{b_{*}}\right)\right) \sqrt{H_{j_{\bar{j}}}^{\mathrm{DY}}\left(\mu_{b_{*}} / C_{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right)} \exp \left[-\tilde{K}\left(b_{*} ; \mu_{b_{*}}\right) \ln C_{2}\right]
\end{array} \\
& g_{j / H}^{\mathrm{CSS} 1}\left(x, b_{\mathrm{T}} ; b_{\max }\right)=g_{j / H}\left(x, b_{\mathrm{T}} ; b_{\max }\right)
\end{aligned}
$$

- "Non-perturbative" g-functions are exactly equal in CSS1 and CSS2.

Fast translation to new TMD methods

- Fitted functions are same in new approaches (CSS2 and SCET) as in CSS1.
- Ex: (Nadolsky, Stump, Yuan (1999), Landry, Brock, Nadolsky, Yuan (2003); Konychev, Nadolsky (2006))
- CSS1 "A," "B," "C" fixed by TMD-based expressions.
- TMDs have $\gamma_{j}(\mu), \gamma_{K}(\mu), K\left(b_{\mathrm{T}} ; \mu\right), H\left(\alpha_{s}(\mu) ; \mu / Q\right)$

CSS1 has " A " and " B "

- Need independent information on hard parts and anomalous dimensions

Sudakov Factors and Hard Parts

$$
H_{j \bar{j}}^{\mathrm{DY}}\left(Q, \mu ; a_{s}(\mu)\right)=e_{j}^{2}\left|H_{j}^{\mathrm{Sud}, \mathrm{TL}}\left(Q^{2}\right)\right|^{2}=e_{j}^{2}\left|H_{j}^{\mathrm{Sud}}\left(-Q^{2}-i \epsilon\right)\right|^{2}
$$

- TMD factorization hard part determined from Sudakov factor.
- Known for some time:
(Moch, Vermaseren, Vogt (2005): Three-loop poles) (Idilbi, Ji, Yuan (2006))
- Complete three loop result (Gehrmann, Glover, Huber, N. Ikizleri, Studerus (2010))

Sudakov Factors and Hard Parts

- Anomalous dimensions of collinear factors: γ_{j} and γ_{K}

$$
\begin{array}{lr}
\frac{\mathrm{d} \ln H^{\mathrm{Sud}, \mathrm{TL}}}{\mathrm{~d} \ln \mu} \\
=-\gamma_{j}\left(a_{s}(\mu)\right)-i \frac{\pi}{2} \gamma_{K}\left(a_{s}(\mu)\right)+\frac{1}{2} \gamma_{K}\left(a_{s}(\mu)\right) \ln \frac{Q^{2}}{\mu^{2},} & \ln F^{\mathrm{Sud}, \mathrm{TL}}\left(Q^{2}\right)=\ln H^{\mathrm{Sud}, \mathrm{TL}}+2 \ln C_{j}^{\mathrm{bare}} \\
+D\left(a_{s}, \epsilon\right)-i \pi E\left(a_{s}, \epsilon\right)+\ln \frac{Q^{2}}{\mu^{2}} E\left(a_{s}, \epsilon\right)
\end{array}
$$

- Equality of $\gamma_{j}^{\text {PDF }}$ and γ_{j}^{FF} to all orders: TP invariance
(Collins, TCR (2017), Appendix A)

Rapidity Evolution Kernels

- Knowledge of B: CSS1 to CSS2, two loops
$B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\left(\mu_{Q}\right) ; C_{1}, C_{2}\right)=-\tilde{K}\left(C_{1} / \mu_{Q} ; \mu_{Q}\right)-\frac{\partial \ln H_{j j}^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right)}{\partial \ln Q^{2}}$
(B calculated in Davies and Stirling (1984))
- Direct calculation from operators (using SCET): Three loops
(Li, Neill, Zhu; Li, Zhu (2016, 2017))
(Vladimirov (2017))

Fast translation to new TMD methods

- Charge conjugation invariance:

$$
\begin{aligned}
& \begin{array}{l}
\left|e_{j}\right| \tilde{C}_{j / k}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
\\
=\tilde{C}_{j / k}^{\mathrm{PDF}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*},}, a_{s}\left(\mu_{b_{*}}\right)\right) \sqrt{H_{j_{\bar{j}}}^{\mathrm{DY}}\left(\mu_{b_{*}} / C_{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right)} \exp \left[-\tilde{K}\left(b_{*} ; \mu_{b_{*}}\right) \ln C_{2}\right]
\end{array} \\
& g_{j / H}^{\mathrm{CSS} 1}\left(x, b_{\mathrm{T}} ; b_{\max }\right)=g_{j / H}\left(x, b_{\mathrm{T}} ; b_{\max }\right)
\end{aligned}
$$

- "Non-perturbative" g-functions are exactly equal in CSS1 and CSS2.

Wilson Coefficients

- CSS1 to CSS2: order $\alpha_{s}{ }^{2}$

$$
\tilde{C}_{j / k}^{\mathrm{PDF}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right)=\frac{\tilde{C}_{j / k}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right)}{\sqrt{\left(1 / e_{j}^{2}\right) H_{j \bar{\jmath}}^{\mathrm{DY}}\left(\mu_{b_{*}} / C_{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right)}} \exp \left[\tilde{K}\left(b_{*} ; \mu_{b_{*}}\right) \ln C_{2}\right]
$$

$C^{C S S 1,}{ }^{\text {Dr }}$ taken from (Catani, Cieri, de Florian, Ferrera, Grazzini (2012))

- Directly from operators (using SCET)
(Echevarria, Scimemi, Vladimirov (2016))

$b_{\text {max }}$ method

$$
\begin{aligned}
W\left(q_{\mathrm{T}}, Q\right) & =\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}\left(b_{\mathrm{T}}, Q\right) \\
& =\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) \tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q ; b_{\max }\right)
\end{aligned}
$$

$\mathbf{b}_{\text {max }}$ method

$$
\begin{aligned}
W\left(q_{\mathrm{T}}, Q\right) & =\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}\left(b_{\mathrm{T}}, Q\right) \\
& =\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) \tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q ; b_{\max }\right)
\end{aligned}
$$

Interesting part.
(Esp. for JLab)

$$
\frac{\tilde{W}\left(b_{\mathrm{T}}, Q\right)}{\tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right)}
$$

$\mathbf{b}_{\text {max }}$ method

$$
\begin{aligned}
& W\left(q_{\mathrm{T}}, Q\right)=\int \frac{\mathrm{d}^{2} b_{\mathrm{T}}}{(2 \pi)^{2}} e^{i q_{\mathrm{T}}} \cdot \boldsymbol{b}_{\mathrm{T}} \tilde{W}\left(b_{\mathrm{T}}, Q\right) \\
& =\int \frac{\mathrm{d}^{2} b_{\mathrm{T}}}{(2 \pi)^{2}} e^{i q_{\mathrm{T}} \cdot b_{\mathrm{T}}} \tilde{W}^{\text {OPE }}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) \underbrace{\tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q ; b_{\max }\right)} \\
& \text { Interesting part. } \\
& \text { (Esp. for JLab) } \\
& \frac{\tilde{W}\left(b_{\mathrm{T}}, Q\right)}{\tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right)} \\
& \tilde{W}\left(b_{\mathrm{T}}, Q\right)=\tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right)+O\left(\left(b_{\mathrm{T}} m\right)^{p}\right) \\
& \tilde{f}_{j / H}\left(x, b_{\mathrm{T}} ; \zeta ; \mu\right)=\sum_{c} \int_{x_{-}}^{1+} \frac{\mathrm{d}}{\xi} \tilde{\tilde{C}}_{j / k}^{\mathrm{PF}}\left(x / \xi, b_{\mathrm{T}} ; \zeta, \mu, a_{s}(\mu)\right) f_{k / H}(\xi ; \mu)+O\left[\left(m b_{\mathrm{T}}\right)^{p}\right]
\end{aligned}
$$

Wanted

$$
\begin{aligned}
W\left(q_{\mathrm{T}}, Q\right) & =\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}\left(b_{\mathrm{T}}, Q\right) \\
& =\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) \tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q ; b_{\max }\right)
\end{aligned}
$$

- Banish any explicit non-perturbative calculations here.
- Calculated from operator definitions.
- Allow scale dependence.
- Large contribution all the way to $b_{T} \approx 1 / Q$.

Wanted

$$
W\left(q_{\mathrm{T}}, Q\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}\left(b_{\mathrm{T}}, Q\right)
$$

$$
=\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) \tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q ; b_{\max }\right)
$$

- Banish any explicit non-perturbative calculations here.
- Calculated from operator definitions.
- Allow scale dependence.
- Large contribution all the way to $b_{T} \approx 1 / Q$.
- Banish any scale dependence here (strictly universal)
- Allow for non-perturbative b_{T}-dependence (don't necessarily require)
- Power suppression at small b_{T}

$b_{\text {max }}$ method

- Combine b_{T} argument substitution with evolution.
- Maintains exact operator definitions for all factors and for all b_{T}. (Including any possible non-perturbative b_{T}-dependence)

$b_{\text {max }}$ method

- Evolution

$$
\begin{aligned}
& \tilde{W}\left(b_{\mathrm{T}}, Q\right)=\tilde{W}\left(b_{\mathrm{T}}, Q_{0}\right) \exp \left\{\tilde{K}\left(b_{\mathrm{T}} ; \mu_{0}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)+\int_{\mu_{0}}^{\mu_{Q}} \frac{\mathrm{~d} \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma_{j}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q^{2}}{\left(\mu^{\prime}\right)^{2}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\} \\
& \tilde{W}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right)=\tilde{W}\left(b_{*}\left(b_{\mathrm{T}}\right), Q_{0}\right) \exp \left\{\tilde{K}\left(b_{*}\left(b_{\mathrm{T}}\right) ; \mu_{0}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)+\int_{\mu_{0}}^{\mu_{Q}} \frac{\mathrm{~d} \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma_{j}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q^{2}}{\left(\mu^{\prime}\right)^{2}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\}
\end{aligned}
$$

- At a reference scale Q_{0}

$$
\frac{\tilde{W}\left(b_{\mathrm{T}}, Q_{0}\right)}{\tilde{W}\left(b_{*}\left(b_{\mathrm{T}}\right), Q_{0}\right)} \equiv \tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q_{0} ; b_{\max }\right)=e^{-g_{A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{B}\left(z_{B}, b_{\mathrm{T}} ; b_{\max }\right)}
$$

- Evolution
$\frac{\partial \ln \tilde{W}_{j}\left(\boldsymbol{b}_{\mathrm{T}}, Q, x_{A}, x_{B}\right)}{\partial \ln Q^{2}}=\tilde{K}\left(b_{\mathrm{T}} ; \mu\right)+\mathrm{b}_{\mathrm{T}}$ independent parts $\} \checkmark$ Exact for all b_{T}.

$b_{\text {max }}$ method

- Evolution

$$
\frac{\partial \ln \tilde{W}_{j}\left(\boldsymbol{b}_{\mathrm{T}}, Q, x_{A}, x_{B}\right)}{\partial \ln Q^{2}}=\tilde{K}\left(b_{\mathrm{T}} ; \mu\right)+\mathrm{b}_{\mathrm{T}} \text { independent parts }
$$

These equations

- RG for K: are valid for all b_{T}
- At any scale

$$
\begin{aligned}
\tilde{K}\left(b_{\mathrm{T}} ; \mu_{0} ; \alpha_{s}\left(\mu_{0}\right)\right) & =\tilde{K}\left(b_{\mathrm{T}} ; \mu_{b_{*}} ; \alpha_{s}\left(\mu_{b_{*}}\right)\right)-\int_{\mu_{b_{*}}}^{\mu_{0}} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \\
\frac{\tilde{W}\left(b_{\mathrm{T}}, Q\right)}{\tilde{W}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right)} & =\frac{\tilde{W}\left(b_{\mathrm{T}}, Q_{0}\right)}{\tilde{W}\left(b_{*}\left(b_{\mathrm{T}}\right), Q_{0}\right)} e^{-\left[-\tilde{K}\left(b_{\mathrm{T}} ; \mu_{0}\right)+\tilde{K}\left(b_{*}\left(b_{\mathrm{T}}\right) ; \mu_{0}\right)\right] \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)} \\
& =\frac{\tilde{W}\left(b_{\mathrm{T}}, Q_{0}\right)}{\tilde{W}\left(b_{*}\left(b_{\mathrm{T}}\right), Q_{0}\right)} e^{-g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)} \\
& =e^{-g_{A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{B}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)-2 g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(Q / Q_{0}\right)}
\end{aligned}
$$

$b_{\text {max }}$ method

$$
\begin{aligned}
& W\left(q_{\mathrm{T}}, Q\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}\left(b_{\mathrm{T}}, Q\right) \\
&=\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) \tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q ; b_{\max }\right) \\
&=\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) e^{-g_{A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{B}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)-2 g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(Q / Q_{0}\right)}
\end{aligned}
$$

- Note that still:

$$
\frac{\mathrm{d}}{\mathrm{~d} b_{\max }} W\left(q_{\mathrm{T}}, Q\right)=0
$$

$b_{\text {max }}$ method

- The large b_{T} functions are scale independent. g_{k} is independent of everything except b_{T}
- Everything is written in terms of the $\mathrm{W}(\underset{\sim}{\mathrm{b}}, \mathrm{Q})$
- Can directly calculate with the definitions,

$$
\begin{aligned}
& -\frac{\tilde{W}\left(b_{\mathrm{T}}, Q\right)}{\tilde{W}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right)} \\
& \quad g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \equiv-\tilde{K}\left(b_{\mathrm{T}} ; \mu_{0}\right)+\tilde{K}\left(b_{*}\left(b_{\mathrm{T}}\right) ; \mu_{0}\right)
\end{aligned}
$$

in perturbation theory, if b_{T} is small. using non-perturbative theory and operator defs if b_{T} is large

The $\mathbf{b}_{\text {min }}$ mechanism

$$
\begin{aligned}
& W\left(q_{\mathrm{T}}, Q\right)=\int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}\left(b_{\mathrm{T}}, Q\right) \\
& \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{W}^{\mathrm{OPE}}\left(b_{*}\left(b_{\mathrm{T}}\right), Q\right) \underbrace{\tilde{W}_{\mathrm{NP}}\left(b_{\mathrm{T}}, Q\right)} \\
& \begin{array}{l}
\text { Ex: ResBos } \\
\text { Generator }
\end{array} e^{-a b_{\mathrm{T}}^{2}}
\end{aligned}
$$

- Simple ansatz will tend to introduce $b_{\max }$ dependence.
- Other options remove $b_{\max }$ power corrections, e.g

$$
g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right)=\frac{C_{F}}{\pi} \frac{b_{\mathrm{T}}^{2}}{b_{\max }^{2}} \alpha_{s}\left(\mu_{b_{*}}\right)+O\left(\frac{b_{\mathrm{T}}^{4} C_{F}^{2} \alpha_{s}\left(\mu_{b_{*}}\right)^{2}}{b_{\max }^{4} \pi^{2} g_{0}\left(b_{\max }\right)}\right)
$$

J. Collins, T. Rogers: arXiv:1750.07167 (2017)

Summary

- Many calculations now exist in old CSS, pure collinear factorization, SCET.
- Different methods of calculation produce same results.
- Different approaches to derivation converging on standardized TMD definitions.
- Altogether these give necessary ingredients for new operatorbased TMD factorization up to to order $\alpha_{s}{ }^{3}$ (except in Wilson coefficient).

