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The	Main	Message
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• Small-x	helicity	PDFs	are	enhanced	by	“polarized	BFKL	evolution”
• Exotic	polarized	evolution	intimately	related	to	DGLAP	physics

adapted	from	Aschenauer et	al.,	Phys.	Rev.	D92 (2015)	no.9	094030

With	Small-x	EvolutionWithout	Small-x	Evolution
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Factorization	at	Moderate	x
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Factorization:		
A	one-to-one	correspondence	between	the	DIS	cross-section	and	PDFs



PDFs	and	Factorization
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“Annihilation”	PDF

At	small	x,	the	process	looks	different,	but	the	relationship	still	holds
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U [0, r]
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“Annihilation”	PDF

At	small	x,	the	process	looks	different,	but	the	relationship	still	holds

The	high-energy	limit	of	the	cross-section	is	the	small-x	limit	of	the	PDF
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Wilson	Lines	and	Dipoles
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At	small	x,	the	virtual	photon	
fluctuates	into	a dipole(qq̄)
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The	PDF	is	expressed	in	terms	of	a	dipole	scattering	amplitude
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Dipole	S-matrix	(cross-section)	resums
multiple	unpolarized scattering

At	small	x,	the	virtual	photon	
fluctuates	into	a dipole(qq̄)



Energy	Dependence	of	the	Dipole	Amplitude
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Initial	conditions from,	
e.g.,	quark	target	model.
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Initial	conditions from,	
e.g.,	quark	target	model.

Soft	gluons are	radiated	uniformly	
over	the	full	rapidity	interval p+q�
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x0

x1

0

Initial	conditions from,	
e.g.,	quark	target	model.

Soft	gluons are	radiated	uniformly	
over	the	full	rapidity	interval

Successive	emissions	with	longitudinal	
ordering are	systematically	enhanced
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x0

x1

0

Initial	conditions from,	
e.g.,	quark	target	model.

Soft	gluons are	radiated	uniformly	
over	the	full	rapidity	interval

Successive	emissions	with	longitudinal	
ordering are	systematically	enhanced

1 � z � z0 � z00 � · · ·
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z0q�
z00q�

Leading-log	resummation of	the	unpolarized
gluon	radiation	drives	the	high-energy	limit



Unpolarized BFKL	/	B-JIMWLK	Evolution
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Unpolarized BFKL	/	B-JIMWLK	Evolution
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Unpolarized BFKL	/	B-JIMWLK	Evolution
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Unpolarized Small-x	Asymptotics
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Operator	hierarchy	closes in	the	large-Nc limit:
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Operator	hierarchy	closes in	the	large-Nc limit:

BFKL:	The	dilute	limit



Unpolarized Small-x	Asymptotics
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Operator	hierarchy	closes in	the	large-Nc limit:

BFKL:	The	dilute	limit

Solve	by	Laplace/Mellin transform:		the	Pomeron intercept



Small-x	Evolution:
The	Quark	Helicity	Case

• Kirschner and	Lipatov,	Nucl.Phys.	B213 (1983)	122	
• Kirschner,	Z.Phys.	C65 (1995)	505	[hep-th/9407085]
• Kirschner,	Z.Phys.	C67 (1995)	459	[hep-th/9404158]
• Bartels,	Ermolaev,	and	Ryskin,	Z.Phys.	C70 (1996)	273	[hep-ph/9507271]
• Bartels,	Ermolaev,	and	Ryskin,	Z.Phys.	C72 (1996)	627	[hep-ph/9603204]
• Griffiths	and	Ross,	Eur.Phys.J.	C12 (2000)	277	[hep-ph/9906550]
• Itakura,	Kovchegov,	McLerran,	and	Teaney,	Nucl.	Phys.	A730 (2004)	160	[hep-ph/0305332].

• Kovchegov and	M.	S.,	Nucl.	Phys.	B903 (2016)	164	[arXiv:1505.0117]
• Kovchegov,	Pitonyak,	and	M.	S.,	JHEP	01 (2016)	072	[arXiv:1511.0673]
• Kovchegov,	Pitonyak,	and	M.	S.,	Phys.	Rev.	D95 (2017)	014033	[arXiv:1610.0619]

M.	Sievert 11	/	31Small-x	Evolution	of	Quark	Helicity



Polarized	DIS	and	Quark	Helicity
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DIS	Longitudinal	Spin	Asymmetry
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What	Makes	Helicity	Special?
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Helicity	sensitivity	is	power	suppressed	at	small	x	 (scale	it	out)
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Helicity	sensitivity	is	power	suppressed	at	small	x	 (scale	it	out)
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s
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p2 p2 − k
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σσ′Exactly	one	spin-dependent	
scattering	dominates	at	high	
energy

Especially	sensitive	to	fluctuations
about	the	distinct	polarized	line.



Polarized	Dipoles	and	Wilson	Lines
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Helicity	PDF	is	expressed	in	terms	of	a	polarized	dipole	amplitude
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Helicity	PDF	is	expressed	in	terms	of	a	polarized	dipole	amplitude
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Polarized	dipole:	spin-dependent	dipole	S-matrix	(cross-section)
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Helicity	PDF	is	expressed	in	terms	of	a	polarized	dipole	amplitude
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Origins	of	Helicity	Evolution
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Example:	the	(Anti)Collinear	BFKL	Sector
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BFKL-type	corrections:
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Emissions	about	the	polarized	line	acquire	an	anti-
collinear	logarithm	and	become	double-logarithmic
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The	lifetime	of	large	dipoles	may	be	more	constrained	by	smaller	
“neighbor	dipoles”	than	the	anticollinear phase	space
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Need	to	solve	these	coupled	equations	
for	the	high-energy	asymptotics

G(x2
10, zs) ⇠ (zs)↵h



Solution	and	Implications

• Kovchegov,	Pitonyak,	and	M.	S.,	Phys.	Rev.	Lett.	118 (2017)	052001	[arXiv:1610.0618]
• Kovchegov,	Pitonyak,	and	M.	S.,	accepted	to	Phys.	Lett.	B	(2017)	[arXiv:1703.0580]
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Evolve	to	exponential	
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the	helicity	intercept

Emergent	Features:
Ø Scaling	behavior
Ø Insensitive	to	initial	conditions

G(s10, ⌘) = G(⌘ � s10)

�(s10, s21, ⌘) = �(⌘ � s10, ⌘ � s21)
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Robust	QCD	prediction for	the	small-x	
tail	of	the	quark	helicity	PDF!

Generally	integrable as	x	à 0:	guide	for	extrapolation	of	DS

Small-x	asymptotics are	flavor-
blind.		All	helicity	PDFs	have	the	
same	small-x	power	law?
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Fixed	vs.	Running	BK	Evolution:

de	Florian	et	al.,	Phys.	Rev.	D80
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• Fixed-coupling calculation:		
unclear	at	this	order	what	
sets	the	scale	of	as.

• Higher-order and	running	
coupling corrections	matter	a	
lot for	unpolarized PDFs

• Depends	strongly	on	where	
small-x	behavior	sets	in	and	on	
the	approach	to	small	x

Kovchegov and	Levin,	Quantum	Chromodynamics	at	High	Energy	(2012)
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• Fixed-coupling calculation:		
unclear	at	this	order	what	
sets	the	scale	of	as.

• Higher-order and	running	
coupling corrections	matter	a	
lot for	unpolarized PDFs

• Depends	strongly	on	where	
small-x	behavior	sets	in	and	on	
the	approach	to	small	x

• Needs	serious	phenomenology

Kovchegov and	Levin,	Quantum	Chromodynamics	at	High	Energy	(2012)
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At	Large:
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Persons	of	Interest:
• Large	Nc +	Nf limit
• Single	logarithmic	+	saturation	corrections
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1 Introduction

The investigation of the structure functions g1 and g2 provides the basis for the theoretical
description of polarization effects in deep inelastic lepton nucleon scattering. Particular in-
terest has been given to the behavior of g1 at small x: experimental data [1] on both gP

1 and
gN
1 are limited to x > 10−2, and numerical values of the moments ΓP,N =

∫ 1
0 dxgP,N

1 therefore
depend upon the extrapolation in the region x < 10−2.

In QCD the Q2 evolution at not too small x of g1 is, like in the unpolarized case, de-
scribed by the GLAP-evolution equations [2, 3]. The prediction for the small-x behavior is
that both the quark and the gluon polarized structure functions go as

∆q(x, Q2), ∆g(x, Q2) ∼ exp
√

const · αs ln(Q2/µ2) ln(1/x). (1.1)

In particular, in the flavor singlet part the gluons and the quarks mix. In a recent paper
[4] it has been shown, for the flavor nonsinglet contribution to g1, that this simple double
log extrapolation (1) of the GLAP evolution equations, in fact, strongly underestimates the
rise at small x. The reason is that, at x ≪ 1, new double logarithmic contributions appear
which are beyond the control of the standard evolution framework. To be more precise, in
the region of not too small x where the standard analysis applies the leading behavior in the
n-th order of αs is of the type

(αs ln(Q2/µ2))n[an(ln(1/x))n + an−1(ln(1/x)n−1 + ...] (1.2)

(where µ denotes the renormalization scale, and for simplicity we restrict ourselves to a fixed
αs), whereas at very small x the dominant contributions are of the form:

(αs ln(1/x) ln(1/x))n. (1.3)

These double logarithmic contributions are not included in the standard evolution scheme
[3]. In [4] the sum of the double logarithms

(αs)
n[bn(ln(1/x))2n + bn−1(ln(1/x))2n−1 ln(Q2/µ2) + ... + b0(ln(1/x))n(ln(Q2/µ2))n (1.4)

has been shown to give rise to a power-like increase of the flavor nonsinglet structure function
at small-x which is stronger than the GLAP predicition (1).

In this paper we continue our investigation of the small-x behavior of g1 in the double
logarithmic approximation, by calculating the flavour singlet contribution. Like in the fla-
vor nonsinglet case, we derive and solve evolution equations which describe the dependence
upon the infrared cutoff of the transverse momentum integrations. Our main results is the
power-like growth of g1 at small-x (eqs.(4.21) - (4.23)). A discussion of the phenomenological
implications of our result will be presented in a forthcoming paper.

2

Bartels et al., Z.Phys. C72 (1996) 627

•Re-sums mixed logarithms:

•They have ladder + non-ladder gluons

• Feynman gauge!

• They	also	have	both	ladder	and	non-ladder	gluons	
(the	primary	source	of	our	complexity)
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Bartels et al., Z.Phys. C72 (1996) 627

•Re-sums mixed logarithms:

•They have ladder + non-ladder gluons

• Feynman gauge!

• Their	calculation	uses	Feynman	gauge	(we	use	light-cone	gauge).

What	do	BER	do?
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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1/q2 ≈ 1
αqβ′s , 1/k2

2 ∼ 1/k2
2t and the spin part of the propagators, which for the nonsense,

longitudinally polarization (gn
νν′ ≈ Q′

νpν′/(Q′p)) in the DL kinematical region β2 ≪ β ′ ≃ β1

(αq ≫ α′) gives the factor ≃ −(qp)(2k1Q′)/(pQ) ≃ αqβ ′s. This factor cancels the propagator
1/q2, while the next propagator 1/k2

2t ∼ 1
k′2

t
provides the logarithmic integration dk′2

t /k′2
t in

the region k′
t > k1t. As it is known [14], the sum of such contributions is equal to the ladder

contribution (Fig. 4) but has an opposite sign. So it cancels the double logs coming from
k′

t > kti and restores the conventional DGLAP ordering kt,i+1 > kt,i for the gluon loops.
Fortunately, this does not happen for the spin dependent structure function g1. In this case
the vertex of the ”nonsense” gluon k′ emission changes the sign, if unstead of the longitudi-
nal polarizations of t-channel gluons k1 and k2 (in the left side of Figs.7c,d we consider the
transverse polarization et

1 ⊥ k1t.6. Thus the amplitudes of the Fig.7 type, where the gluon
k′ is emitted one time by the transverse gluon and another time by the longitudinal one,
cancel each other and we come back to the ladder configuration with the ordering eqs.(2.30),
(2.31).

3 Infrared Evolution Equations

In this section we construct the infrared evolution equations which are necessary for the
calculation of T3 and g1. We shall follow [4], and we begin with the amplitude T3 which,
following the discussion of the previous section, consists of the two components:

T3 =

(

T3(γ∗g)
T3(γ∗q)

)

(3.1)

(from now on it will be understood that we consider the singlet part only, and we suppress
the subscript “S“.) The structure function then follows from the relation (2.3), and we
have to take into account both DL-contributions and iπ -terms. We write T3 as a Mellin
transform:

T3 =
∫ i∞

−i∞

dω

2πi
(

s

µ2
)ωξ(ω)R(ω, y), (3.2)

where R(ω, y) is a two-component vector, defined on analogy to (3.1). The signature factor
ξ(ω) = is:

=
e−iπω − 1

2
≈

−iπω

2
, (3.3)

6To save logarithm in dβ′/β′ integration the gluon k′ should be the longitudinal, nonsence one; on the
other hand the polarization vectors of the t-channel gluons k1 (or k2) and k̃1 should be — one transverse
and one longitudinal (for the small-x limit of g1) as it was discussed just before eq. (11). If the vector e1 ∥ p

than the leading contribution comes from the graphs Fig.7e,f and Γµνρ · pµQ′

νQ′

ρ/(pQ′) ≃ −k1Q′

pQ′ = −α1,

while for the transverse vector e1 = e1t = e2t only the diagram Fig.7e do work and Γµνρe1tµe2tνQ′

ρ/pQ′ ≈
+α1 + O(α2); (α2 ≪ α1).
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Indeed, let us first take βi+1 ≪ βi and kt,i+1 > kt,i. In this case αi+1 ≈ k2
t,i+1

sβi
≫ αi ≈

k2
t,i

sβi−1

(we have used the fact that s-channel partons with the momenta ki − ki+1 are on mass shell;

(ki − ki+1)2 ≈ −k2
t,i+1 − αi+1βis = 0). On the other hand, if kt,i+1 < kt,i one has αi+1 ≈

k2
ti

sβi
.

In order to save the leading logarithm, we have to satisfy the condition: k2
i+1 ≈ −k2

t,i+1, i. e.
αi+1βi+1s ≪ k2

t,i+1. In other words, our condition looks as

α̃i+1 =
k2

t,i+1

βi+1s
≫

k2
ti

βis
≡ α̃i (2.31)

and as in [6] we can simply use the ordering eq.(2.19) with the α̃i (eq.(2.31)) instead of the αi.

In the final part of this section we have to consider nonladder diagrams as illustrated in
Fig.7. We will call a non-ladder gluon ”soft” if its transverse momentum is smaller than
the momenta of all the partons comprised by the non-ladder gluon. According to Gribov’s
kT -factorization theorem [7] 5 the whole amplitude of the ’soft’ gluon emission can be writ-
ten as the bremsstrahlung from one of the “external“ lines of the block comprized by this
gluon. Therefore the double logarithmic contribution coming from such a ’soft’ gluons can
be summed up with the help of the infrared evolution equation[8], in the same way as it was
done for the non-singlet structure function g1 in[4]. When summing over all possibilities of
attaching the soft gluon to the external legs, we get a total color factor which depends on
both the total t-channel color quantum number and the type of incoming partons. We will
need the color singlet channel. For incoming gluons and fermions the color factors are CA

and CF , resp. In matrix notation we define

G0 =

(

CA 0
0 CF

)

. (2.32)

Finally we note that non-ladder gluons with k′
t larger than the transverse momenta in the

part of the ladder, which is comprised by them (they will be called ’hard’) do not give double
logarithms. For a nonladder gluon that runs across the ladder from one side to the other
(e.g. from the lower left to the upper right leg), the large momentum has to flow through
some internal small kti ladder propagators, and the large momentum k′

t changes the normal
1/k2

ti factor to 1/k′2
t , in this way killing the leading logarithm dk2

ti/k
2
ti (see Fig.7). These hard

nonladder gluons therefore do not contribute to the double logarithmic approximation. Next
we consider vertex correction (Fig. 7b). Then we can say that in the ultraviolet (large k′

t)
region there are no any double logs in the Feynmann gauge for the vertex function. So, one
can anticipate that there are no DL-correction coming from large-kt-region in the Feynmann
gauge for the vertex function. However, we have to be more carefull here. For the unpolar-
ized case there exists an example (BFKL) where a special cutting of the vertex-type diagram
does give rise to a double log contribution. Indeed, let us consider the non-ladder on-shell

gluon k′ added to the amplitude: the loop integration yields d2k′
tdβ′

16π3β′ , two propagators —

5For QCD the Gribov’s theorem was considered in more detail in [8, 7, 9] and [10]
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which corresponds to the diagrams Fig.5c.

Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs

2π

∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t

and eν′′ ⊥ k2t). An additonal power of |k1t| and |k2t| comes from the traces of the lower and
upper quark loops (like in the case of eq.(2.15)) and (2.16)). So after the integration over
the azimuthal angle (⟨sin2 ϕ⟩ = 1/2) the vertex eq.(2.25) gives us the result (2.26) From this
we extract the gluon rung ∆Pgg:

∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :

M0 =

(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
analogous to (2.28) reads:

M8 =

(

2CA −Tf

CA −1/2N

)

. (2.29)

From our previous discussion we have also obtained the general pattern of the region of
phase space which gives the double logarithmic contributions.The limits of integrations fol-
low from the ordering condition given in eqs.(2.18),(2.19). In terms of βi and kti it means
that [15, 6]

k2
t,i+1 ≫ k2

t,i

βi+1

βi
(here k2

ti > 0). (2.30)
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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1/q2 ≈ 1
αqβ′s , 1/k2

2 ∼ 1/k2
2t and the spin part of the propagators, which for the nonsense,

longitudinally polarization (gn
νν′ ≈ Q′

νpν′/(Q′p)) in the DL kinematical region β2 ≪ β ′ ≃ β1

(αq ≫ α′) gives the factor ≃ −(qp)(2k1Q′)/(pQ) ≃ αqβ ′s. This factor cancels the propagator
1/q2, while the next propagator 1/k2

2t ∼ 1
k′2

t
provides the logarithmic integration dk′2

t /k′2
t in

the region k′
t > k1t. As it is known [14], the sum of such contributions is equal to the ladder

contribution (Fig. 4) but has an opposite sign. So it cancels the double logs coming from
k′

t > kti and restores the conventional DGLAP ordering kt,i+1 > kt,i for the gluon loops.
Fortunately, this does not happen for the spin dependent structure function g1. In this case
the vertex of the ”nonsense” gluon k′ emission changes the sign, if unstead of the longitudi-
nal polarizations of t-channel gluons k1 and k2 (in the left side of Figs.7c,d we consider the
transverse polarization et

1 ⊥ k1t.6. Thus the amplitudes of the Fig.7 type, where the gluon
k′ is emitted one time by the transverse gluon and another time by the longitudinal one,
cancel each other and we come back to the ladder configuration with the ordering eqs.(2.30),
(2.31).

3 Infrared Evolution Equations

In this section we construct the infrared evolution equations which are necessary for the
calculation of T3 and g1. We shall follow [4], and we begin with the amplitude T3 which,
following the discussion of the previous section, consists of the two components:

T3 =

(

T3(γ∗g)
T3(γ∗q)

)

(3.1)

(from now on it will be understood that we consider the singlet part only, and we suppress
the subscript “S“.) The structure function then follows from the relation (2.3), and we
have to take into account both DL-contributions and iπ -terms. We write T3 as a Mellin
transform:

T3 =
∫ i∞

−i∞

dω

2πi
(

s

µ2
)ωξ(ω)R(ω, y), (3.2)

where R(ω, y) is a two-component vector, defined on analogy to (3.1). The signature factor
ξ(ω) = is:

=
e−iπω − 1

2
≈

−iπω

2
, (3.3)

6To save logarithm in dβ′/β′ integration the gluon k′ should be the longitudinal, nonsence one; on the
other hand the polarization vectors of the t-channel gluons k1 (or k2) and k̃1 should be — one transverse
and one longitudinal (for the small-x limit of g1) as it was discussed just before eq. (11). If the vector e1 ∥ p

than the leading contribution comes from the graphs Fig.7e,f and Γµνρ · pµQ′

νQ′

ρ/(pQ′) ≃ −k1Q′

pQ′ = −α1,

while for the transverse vector e1 = e1t = e2t only the diagram Fig.7e do work and Γµνρe1tµe2tνQ′

ρ/pQ′ ≈
+α1 + O(α2); (α2 ≪ α1).
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.

10

and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.

10

and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.

10

and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.

10

Indeed, let us first take βi+1 ≪ βi and kt,i+1 > kt,i. In this case αi+1 ≈ k2
t,i+1

sβi
≫ αi ≈

k2
t,i

sβi−1

(we have used the fact that s-channel partons with the momenta ki − ki+1 are on mass shell;

(ki − ki+1)2 ≈ −k2
t,i+1 − αi+1βis = 0). On the other hand, if kt,i+1 < kt,i one has αi+1 ≈

k2
ti

sβi
.

In order to save the leading logarithm, we have to satisfy the condition: k2
i+1 ≈ −k2

t,i+1, i. e.
αi+1βi+1s ≪ k2

t,i+1. In other words, our condition looks as

α̃i+1 =
k2

t,i+1

βi+1s
≫

k2
ti

βis
≡ α̃i (2.31)

and as in [6] we can simply use the ordering eq.(2.19) with the α̃i (eq.(2.31)) instead of the αi.

In the final part of this section we have to consider nonladder diagrams as illustrated in
Fig.7. We will call a non-ladder gluon ”soft” if its transverse momentum is smaller than
the momenta of all the partons comprised by the non-ladder gluon. According to Gribov’s
kT -factorization theorem [7] 5 the whole amplitude of the ’soft’ gluon emission can be writ-
ten as the bremsstrahlung from one of the “external“ lines of the block comprized by this
gluon. Therefore the double logarithmic contribution coming from such a ’soft’ gluons can
be summed up with the help of the infrared evolution equation[8], in the same way as it was
done for the non-singlet structure function g1 in[4]. When summing over all possibilities of
attaching the soft gluon to the external legs, we get a total color factor which depends on
both the total t-channel color quantum number and the type of incoming partons. We will
need the color singlet channel. For incoming gluons and fermions the color factors are CA

and CF , resp. In matrix notation we define

G0 =

(

CA 0
0 CF

)

. (2.32)

Finally we note that non-ladder gluons with k′
t larger than the transverse momenta in the

part of the ladder, which is comprised by them (they will be called ’hard’) do not give double
logarithms. For a nonladder gluon that runs across the ladder from one side to the other
(e.g. from the lower left to the upper right leg), the large momentum has to flow through
some internal small kti ladder propagators, and the large momentum k′

t changes the normal
1/k2

ti factor to 1/k′2
t , in this way killing the leading logarithm dk2

ti/k
2
ti (see Fig.7). These hard

nonladder gluons therefore do not contribute to the double logarithmic approximation. Next
we consider vertex correction (Fig. 7b). Then we can say that in the ultraviolet (large k′

t)
region there are no any double logs in the Feynmann gauge for the vertex function. So, one
can anticipate that there are no DL-correction coming from large-kt-region in the Feynmann
gauge for the vertex function. However, we have to be more carefull here. For the unpolar-
ized case there exists an example (BFKL) where a special cutting of the vertex-type diagram
does give rise to a double log contribution. Indeed, let us consider the non-ladder on-shell

gluon k′ added to the amplitude: the loop integration yields d2k′
tdβ′

16π3β′ , two propagators —

5For QCD the Gribov’s theorem was considered in more detail in [8, 7, 9] and [10]

8

which corresponds to the diagrams Fig.5c.

Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs

2π

∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t

and eν′′ ⊥ k2t). An additonal power of |k1t| and |k2t| comes from the traces of the lower and
upper quark loops (like in the case of eq.(2.15)) and (2.16)). So after the integration over
the azimuthal angle (⟨sin2 ϕ⟩ = 1/2) the vertex eq.(2.25) gives us the result (2.26) From this
we extract the gluon rung ∆Pgg:

∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :

M0 =

(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
analogous to (2.28) reads:

M8 =

(

2CA −Tf

CA −1/2N

)

. (2.29)

From our previous discussion we have also obtained the general pattern of the region of
phase space which gives the double logarithmic contributions.The limits of integrations fol-
low from the ordering condition given in eqs.(2.18),(2.19). In terms of βi and kti it means
that [15, 6]

k2
t,i+1 ≫ k2

t,i

βi+1

βi
(here k2

ti > 0). (2.30)
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Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs
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∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t
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∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :
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(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
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that [15, 6]
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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1/q2 ≈ 1
αqβ′s , 1/k2

2 ∼ 1/k2
2t and the spin part of the propagators, which for the nonsense,

longitudinally polarization (gn
νν′ ≈ Q′

νpν′/(Q′p)) in the DL kinematical region β2 ≪ β ′ ≃ β1

(αq ≫ α′) gives the factor ≃ −(qp)(2k1Q′)/(pQ) ≃ αqβ ′s. This factor cancels the propagator
1/q2, while the next propagator 1/k2

2t ∼ 1
k′2

t
provides the logarithmic integration dk′2

t /k′2
t in

the region k′
t > k1t. As it is known [14], the sum of such contributions is equal to the ladder

contribution (Fig. 4) but has an opposite sign. So it cancels the double logs coming from
k′

t > kti and restores the conventional DGLAP ordering kt,i+1 > kt,i for the gluon loops.
Fortunately, this does not happen for the spin dependent structure function g1. In this case
the vertex of the ”nonsense” gluon k′ emission changes the sign, if unstead of the longitudi-
nal polarizations of t-channel gluons k1 and k2 (in the left side of Figs.7c,d we consider the
transverse polarization et

1 ⊥ k1t.6. Thus the amplitudes of the Fig.7 type, where the gluon
k′ is emitted one time by the transverse gluon and another time by the longitudinal one,
cancel each other and we come back to the ladder configuration with the ordering eqs.(2.30),
(2.31).

3 Infrared Evolution Equations

In this section we construct the infrared evolution equations which are necessary for the
calculation of T3 and g1. We shall follow [4], and we begin with the amplitude T3 which,
following the discussion of the previous section, consists of the two components:

T3 =

(

T3(γ∗g)
T3(γ∗q)

)

(3.1)

(from now on it will be understood that we consider the singlet part only, and we suppress
the subscript “S“.) The structure function then follows from the relation (2.3), and we
have to take into account both DL-contributions and iπ -terms. We write T3 as a Mellin
transform:

T3 =
∫ i∞

−i∞

dω

2πi
(

s

µ2
)ωξ(ω)R(ω, y), (3.2)

where R(ω, y) is a two-component vector, defined on analogy to (3.1). The signature factor
ξ(ω) = is:

=
e−iπω − 1

2
≈

−iπω

2
, (3.3)

6To save logarithm in dβ′/β′ integration the gluon k′ should be the longitudinal, nonsence one; on the
other hand the polarization vectors of the t-channel gluons k1 (or k2) and k̃1 should be — one transverse
and one longitudinal (for the small-x limit of g1) as it was discussed just before eq. (11). If the vector e1 ∥ p

than the leading contribution comes from the graphs Fig.7e,f and Γµνρ · pµQ′

νQ′

ρ/(pQ′) ≃ −k1Q′

pQ′ = −α1,

while for the transverse vector e1 = e1t = e2t only the diagram Fig.7e do work and Γµνρe1tµe2tνQ′

ρ/pQ′ ≈
+α1 + O(α2); (α2 ≪ α1).
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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Indeed, let us first take βi+1 ≪ βi and kt,i+1 > kt,i. In this case αi+1 ≈ k2
t,i+1

sβi
≫ αi ≈

k2
t,i

sβi−1

(we have used the fact that s-channel partons with the momenta ki − ki+1 are on mass shell;

(ki − ki+1)2 ≈ −k2
t,i+1 − αi+1βis = 0). On the other hand, if kt,i+1 < kt,i one has αi+1 ≈

k2
ti

sβi
.

In order to save the leading logarithm, we have to satisfy the condition: k2
i+1 ≈ −k2

t,i+1, i. e.
αi+1βi+1s ≪ k2

t,i+1. In other words, our condition looks as

α̃i+1 =
k2

t,i+1

βi+1s
≫

k2
ti

βis
≡ α̃i (2.31)

and as in [6] we can simply use the ordering eq.(2.19) with the α̃i (eq.(2.31)) instead of the αi.

In the final part of this section we have to consider nonladder diagrams as illustrated in
Fig.7. We will call a non-ladder gluon ”soft” if its transverse momentum is smaller than
the momenta of all the partons comprised by the non-ladder gluon. According to Gribov’s
kT -factorization theorem [7] 5 the whole amplitude of the ’soft’ gluon emission can be writ-
ten as the bremsstrahlung from one of the “external“ lines of the block comprized by this
gluon. Therefore the double logarithmic contribution coming from such a ’soft’ gluons can
be summed up with the help of the infrared evolution equation[8], in the same way as it was
done for the non-singlet structure function g1 in[4]. When summing over all possibilities of
attaching the soft gluon to the external legs, we get a total color factor which depends on
both the total t-channel color quantum number and the type of incoming partons. We will
need the color singlet channel. For incoming gluons and fermions the color factors are CA

and CF , resp. In matrix notation we define

G0 =

(

CA 0
0 CF

)

. (2.32)

Finally we note that non-ladder gluons with k′
t larger than the transverse momenta in the

part of the ladder, which is comprised by them (they will be called ’hard’) do not give double
logarithms. For a nonladder gluon that runs across the ladder from one side to the other
(e.g. from the lower left to the upper right leg), the large momentum has to flow through
some internal small kti ladder propagators, and the large momentum k′

t changes the normal
1/k2

ti factor to 1/k′2
t , in this way killing the leading logarithm dk2

ti/k
2
ti (see Fig.7). These hard

nonladder gluons therefore do not contribute to the double logarithmic approximation. Next
we consider vertex correction (Fig. 7b). Then we can say that in the ultraviolet (large k′

t)
region there are no any double logs in the Feynmann gauge for the vertex function. So, one
can anticipate that there are no DL-correction coming from large-kt-region in the Feynmann
gauge for the vertex function. However, we have to be more carefull here. For the unpolar-
ized case there exists an example (BFKL) where a special cutting of the vertex-type diagram
does give rise to a double log contribution. Indeed, let us consider the non-ladder on-shell

gluon k′ added to the amplitude: the loop integration yields d2k′
tdβ′

16π3β′ , two propagators —

5For QCD the Gribov’s theorem was considered in more detail in [8, 7, 9] and [10]
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which corresponds to the diagrams Fig.5c.

Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs

2π

∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t

and eν′′ ⊥ k2t). An additonal power of |k1t| and |k2t| comes from the traces of the lower and
upper quark loops (like in the case of eq.(2.15)) and (2.16)). So after the integration over
the azimuthal angle (⟨sin2 ϕ⟩ = 1/2) the vertex eq.(2.25) gives us the result (2.26) From this
we extract the gluon rung ∆Pgg:

∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :

M0 =

(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
analogous to (2.28) reads:

M8 =

(

2CA −Tf

CA −1/2N

)

. (2.29)

From our previous discussion we have also obtained the general pattern of the region of
phase space which gives the double logarithmic contributions.The limits of integrations fol-
low from the ordering condition given in eqs.(2.18),(2.19). In terms of βi and kti it means
that [15, 6]

k2
t,i+1 ≫ k2

t,i

βi+1

βi
(here k2

ti > 0). (2.30)
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k2
t,i+1 ≫ k2

t,i
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βi
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ti > 0). (2.30)
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Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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1/q2 ≈ 1
αqβ′s , 1/k2

2 ∼ 1/k2
2t and the spin part of the propagators, which for the nonsense,

longitudinally polarization (gn
νν′ ≈ Q′

νpν′/(Q′p)) in the DL kinematical region β2 ≪ β ′ ≃ β1

(αq ≫ α′) gives the factor ≃ −(qp)(2k1Q′)/(pQ) ≃ αqβ ′s. This factor cancels the propagator
1/q2, while the next propagator 1/k2

2t ∼ 1
k′2

t
provides the logarithmic integration dk′2

t /k′2
t in

the region k′
t > k1t. As it is known [14], the sum of such contributions is equal to the ladder

contribution (Fig. 4) but has an opposite sign. So it cancels the double logs coming from
k′

t > kti and restores the conventional DGLAP ordering kt,i+1 > kt,i for the gluon loops.
Fortunately, this does not happen for the spin dependent structure function g1. In this case
the vertex of the ”nonsense” gluon k′ emission changes the sign, if unstead of the longitudi-
nal polarizations of t-channel gluons k1 and k2 (in the left side of Figs.7c,d we consider the
transverse polarization et

1 ⊥ k1t.6. Thus the amplitudes of the Fig.7 type, where the gluon
k′ is emitted one time by the transverse gluon and another time by the longitudinal one,
cancel each other and we come back to the ladder configuration with the ordering eqs.(2.30),
(2.31).

3 Infrared Evolution Equations

In this section we construct the infrared evolution equations which are necessary for the
calculation of T3 and g1. We shall follow [4], and we begin with the amplitude T3 which,
following the discussion of the previous section, consists of the two components:

T3 =

(

T3(γ∗g)
T3(γ∗q)

)

(3.1)

(from now on it will be understood that we consider the singlet part only, and we suppress
the subscript “S“.) The structure function then follows from the relation (2.3), and we
have to take into account both DL-contributions and iπ -terms. We write T3 as a Mellin
transform:

T3 =
∫ i∞

−i∞

dω

2πi
(

s

µ2
)ωξ(ω)R(ω, y), (3.2)

where R(ω, y) is a two-component vector, defined on analogy to (3.1). The signature factor
ξ(ω) = is:

=
e−iπω − 1

2
≈

−iπω

2
, (3.3)

6To save logarithm in dβ′/β′ integration the gluon k′ should be the longitudinal, nonsence one; on the
other hand the polarization vectors of the t-channel gluons k1 (or k2) and k̃1 should be — one transverse
and one longitudinal (for the small-x limit of g1) as it was discussed just before eq. (11). If the vector e1 ∥ p

than the leading contribution comes from the graphs Fig.7e,f and Γµνρ · pµQ′

νQ′

ρ/(pQ′) ≃ −k1Q′

pQ′ = −α1,

while for the transverse vector e1 = e1t = e2t only the diagram Fig.7e do work and Γµνρe1tµe2tνQ′

ρ/pQ′ ≈
+α1 + O(α2); (α2 ≪ α1).
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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Indeed, let us first take βi+1 ≪ βi and kt,i+1 > kt,i. In this case αi+1 ≈ k2
t,i+1

sβi
≫ αi ≈

k2
t,i

sβi−1

(we have used the fact that s-channel partons with the momenta ki − ki+1 are on mass shell;

(ki − ki+1)2 ≈ −k2
t,i+1 − αi+1βis = 0). On the other hand, if kt,i+1 < kt,i one has αi+1 ≈

k2
ti

sβi
.

In order to save the leading logarithm, we have to satisfy the condition: k2
i+1 ≈ −k2

t,i+1, i. e.
αi+1βi+1s ≪ k2

t,i+1. In other words, our condition looks as

α̃i+1 =
k2

t,i+1

βi+1s
≫

k2
ti

βis
≡ α̃i (2.31)

and as in [6] we can simply use the ordering eq.(2.19) with the α̃i (eq.(2.31)) instead of the αi.

In the final part of this section we have to consider nonladder diagrams as illustrated in
Fig.7. We will call a non-ladder gluon ”soft” if its transverse momentum is smaller than
the momenta of all the partons comprised by the non-ladder gluon. According to Gribov’s
kT -factorization theorem [7] 5 the whole amplitude of the ’soft’ gluon emission can be writ-
ten as the bremsstrahlung from one of the “external“ lines of the block comprized by this
gluon. Therefore the double logarithmic contribution coming from such a ’soft’ gluons can
be summed up with the help of the infrared evolution equation[8], in the same way as it was
done for the non-singlet structure function g1 in[4]. When summing over all possibilities of
attaching the soft gluon to the external legs, we get a total color factor which depends on
both the total t-channel color quantum number and the type of incoming partons. We will
need the color singlet channel. For incoming gluons and fermions the color factors are CA

and CF , resp. In matrix notation we define

G0 =

(

CA 0
0 CF

)

. (2.32)

Finally we note that non-ladder gluons with k′
t larger than the transverse momenta in the

part of the ladder, which is comprised by them (they will be called ’hard’) do not give double
logarithms. For a nonladder gluon that runs across the ladder from one side to the other
(e.g. from the lower left to the upper right leg), the large momentum has to flow through
some internal small kti ladder propagators, and the large momentum k′

t changes the normal
1/k2

ti factor to 1/k′2
t , in this way killing the leading logarithm dk2

ti/k
2
ti (see Fig.7). These hard

nonladder gluons therefore do not contribute to the double logarithmic approximation. Next
we consider vertex correction (Fig. 7b). Then we can say that in the ultraviolet (large k′

t)
region there are no any double logs in the Feynmann gauge for the vertex function. So, one
can anticipate that there are no DL-correction coming from large-kt-region in the Feynmann
gauge for the vertex function. However, we have to be more carefull here. For the unpolar-
ized case there exists an example (BFKL) where a special cutting of the vertex-type diagram
does give rise to a double log contribution. Indeed, let us consider the non-ladder on-shell

gluon k′ added to the amplitude: the loop integration yields d2k′
tdβ′

16π3β′ , two propagators —

5For QCD the Gribov’s theorem was considered in more detail in [8, 7, 9] and [10]
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which corresponds to the diagrams Fig.5c.

Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs

2π

∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t

and eν′′ ⊥ k2t). An additonal power of |k1t| and |k2t| comes from the traces of the lower and
upper quark loops (like in the case of eq.(2.15)) and (2.16)). So after the integration over
the azimuthal angle (⟨sin2 ϕ⟩ = 1/2) the vertex eq.(2.25) gives us the result (2.26) From this
we extract the gluon rung ∆Pgg:

∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :

M0 =

(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
analogous to (2.28) reads:

M8 =

(

2CA −Tf

CA −1/2N

)

. (2.29)

From our previous discussion we have also obtained the general pattern of the region of
phase space which gives the double logarithmic contributions.The limits of integrations fol-
low from the ordering condition given in eqs.(2.18),(2.19). In terms of βi and kti it means
that [15, 6]

k2
t,i+1 ≫ k2

t,i

βi+1

βi
(here k2

ti > 0). (2.30)
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1/q2 ≈ 1
αqβ′s , 1/k2

2 ∼ 1/k2
2t and the spin part of the propagators, which for the nonsense,

longitudinally polarization (gn
νν′ ≈ Q′

νpν′/(Q′p)) in the DL kinematical region β2 ≪ β ′ ≃ β1

(αq ≫ α′) gives the factor ≃ −(qp)(2k1Q′)/(pQ) ≃ αqβ ′s. This factor cancels the propagator
1/q2, while the next propagator 1/k2

2t ∼ 1
k′2

t
provides the logarithmic integration dk′2

t /k′2
t in

the region k′
t > k1t. As it is known [14], the sum of such contributions is equal to the ladder

contribution (Fig. 4) but has an opposite sign. So it cancels the double logs coming from
k′

t > kti and restores the conventional DGLAP ordering kt,i+1 > kt,i for the gluon loops.
Fortunately, this does not happen for the spin dependent structure function g1. In this case
the vertex of the ”nonsense” gluon k′ emission changes the sign, if unstead of the longitudi-
nal polarizations of t-channel gluons k1 and k2 (in the left side of Figs.7c,d we consider the
transverse polarization et

1 ⊥ k1t.6. Thus the amplitudes of the Fig.7 type, where the gluon
k′ is emitted one time by the transverse gluon and another time by the longitudinal one,
cancel each other and we come back to the ladder configuration with the ordering eqs.(2.30),
(2.31).

3 Infrared Evolution Equations

In this section we construct the infrared evolution equations which are necessary for the
calculation of T3 and g1. We shall follow [4], and we begin with the amplitude T3 which,
following the discussion of the previous section, consists of the two components:

T3 =

(

T3(γ∗g)
T3(γ∗q)

)

(3.1)

(from now on it will be understood that we consider the singlet part only, and we suppress
the subscript “S“.) The structure function then follows from the relation (2.3), and we
have to take into account both DL-contributions and iπ -terms. We write T3 as a Mellin
transform:

T3 =
∫ i∞

−i∞

dω

2πi
(

s

µ2
)ωξ(ω)R(ω, y), (3.2)

where R(ω, y) is a two-component vector, defined on analogy to (3.1). The signature factor
ξ(ω) = is:

=
e−iπω − 1

2
≈

−iπω

2
, (3.3)

6To save logarithm in dβ′/β′ integration the gluon k′ should be the longitudinal, nonsence one; on the
other hand the polarization vectors of the t-channel gluons k1 (or k2) and k̃1 should be — one transverse
and one longitudinal (for the small-x limit of g1) as it was discussed just before eq. (11). If the vector e1 ∥ p

than the leading contribution comes from the graphs Fig.7e,f and Γµνρ · pµQ′

νQ′

ρ/(pQ′) ≃ −k1Q′

pQ′ = −α1,

while for the transverse vector e1 = e1t = e2t only the diagram Fig.7e do work and Γµνρe1tµe2tνQ′

ρ/pQ′ ≈
+α1 + O(α2); (α2 ≪ α1).
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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Indeed, let us first take βi+1 ≪ βi and kt,i+1 > kt,i. In this case αi+1 ≈ k2
t,i+1

sβi
≫ αi ≈

k2
t,i

sβi−1

(we have used the fact that s-channel partons with the momenta ki − ki+1 are on mass shell;

(ki − ki+1)2 ≈ −k2
t,i+1 − αi+1βis = 0). On the other hand, if kt,i+1 < kt,i one has αi+1 ≈

k2
ti

sβi
.

In order to save the leading logarithm, we have to satisfy the condition: k2
i+1 ≈ −k2

t,i+1, i. e.
αi+1βi+1s ≪ k2

t,i+1. In other words, our condition looks as

α̃i+1 =
k2

t,i+1

βi+1s
≫

k2
ti

βis
≡ α̃i (2.31)

and as in [6] we can simply use the ordering eq.(2.19) with the α̃i (eq.(2.31)) instead of the αi.

In the final part of this section we have to consider nonladder diagrams as illustrated in
Fig.7. We will call a non-ladder gluon ”soft” if its transverse momentum is smaller than
the momenta of all the partons comprised by the non-ladder gluon. According to Gribov’s
kT -factorization theorem [7] 5 the whole amplitude of the ’soft’ gluon emission can be writ-
ten as the bremsstrahlung from one of the “external“ lines of the block comprized by this
gluon. Therefore the double logarithmic contribution coming from such a ’soft’ gluons can
be summed up with the help of the infrared evolution equation[8], in the same way as it was
done for the non-singlet structure function g1 in[4]. When summing over all possibilities of
attaching the soft gluon to the external legs, we get a total color factor which depends on
both the total t-channel color quantum number and the type of incoming partons. We will
need the color singlet channel. For incoming gluons and fermions the color factors are CA

and CF , resp. In matrix notation we define

G0 =

(

CA 0
0 CF

)

. (2.32)

Finally we note that non-ladder gluons with k′
t larger than the transverse momenta in the

part of the ladder, which is comprised by them (they will be called ’hard’) do not give double
logarithms. For a nonladder gluon that runs across the ladder from one side to the other
(e.g. from the lower left to the upper right leg), the large momentum has to flow through
some internal small kti ladder propagators, and the large momentum k′

t changes the normal
1/k2

ti factor to 1/k′2
t , in this way killing the leading logarithm dk2

ti/k
2
ti (see Fig.7). These hard

nonladder gluons therefore do not contribute to the double logarithmic approximation. Next
we consider vertex correction (Fig. 7b). Then we can say that in the ultraviolet (large k′

t)
region there are no any double logs in the Feynmann gauge for the vertex function. So, one
can anticipate that there are no DL-correction coming from large-kt-region in the Feynmann
gauge for the vertex function. However, we have to be more carefull here. For the unpolar-
ized case there exists an example (BFKL) where a special cutting of the vertex-type diagram
does give rise to a double log contribution. Indeed, let us consider the non-ladder on-shell

gluon k′ added to the amplitude: the loop integration yields d2k′
tdβ′

16π3β′ , two propagators —

5For QCD the Gribov’s theorem was considered in more detail in [8, 7, 9] and [10]
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which corresponds to the diagrams Fig.5c.

Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs

2π

∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t

and eν′′ ⊥ k2t). An additonal power of |k1t| and |k2t| comes from the traces of the lower and
upper quark loops (like in the case of eq.(2.15)) and (2.16)). So after the integration over
the azimuthal angle (⟨sin2 ϕ⟩ = 1/2) the vertex eq.(2.25) gives us the result (2.26) From this
we extract the gluon rung ∆Pgg:

∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :

M0 =

(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
analogous to (2.28) reads:

M8 =

(

2CA −Tf

CA −1/2N

)

. (2.29)

From our previous discussion we have also obtained the general pattern of the region of
phase space which gives the double logarithmic contributions.The limits of integrations fol-
low from the ordering condition given in eqs.(2.18),(2.19). In terms of βi and kti it means
that [15, 6]

k2
t,i+1 ≫ k2

t,i

βi+1

βi
(here k2

ti > 0). (2.30)
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
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the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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1/q2 ≈ 1
αqβ′s , 1/k2

2 ∼ 1/k2
2t and the spin part of the propagators, which for the nonsense,

longitudinally polarization (gn
νν′ ≈ Q′

νpν′/(Q′p)) in the DL kinematical region β2 ≪ β ′ ≃ β1

(αq ≫ α′) gives the factor ≃ −(qp)(2k1Q′)/(pQ) ≃ αqβ ′s. This factor cancels the propagator
1/q2, while the next propagator 1/k2

2t ∼ 1
k′2

t
provides the logarithmic integration dk′2

t /k′2
t in

the region k′
t > k1t. As it is known [14], the sum of such contributions is equal to the ladder

contribution (Fig. 4) but has an opposite sign. So it cancels the double logs coming from
k′

t > kti and restores the conventional DGLAP ordering kt,i+1 > kt,i for the gluon loops.
Fortunately, this does not happen for the spin dependent structure function g1. In this case
the vertex of the ”nonsense” gluon k′ emission changes the sign, if unstead of the longitudi-
nal polarizations of t-channel gluons k1 and k2 (in the left side of Figs.7c,d we consider the
transverse polarization et

1 ⊥ k1t.6. Thus the amplitudes of the Fig.7 type, where the gluon
k′ is emitted one time by the transverse gluon and another time by the longitudinal one,
cancel each other and we come back to the ladder configuration with the ordering eqs.(2.30),
(2.31).

3 Infrared Evolution Equations

In this section we construct the infrared evolution equations which are necessary for the
calculation of T3 and g1. We shall follow [4], and we begin with the amplitude T3 which,
following the discussion of the previous section, consists of the two components:

T3 =

(

T3(γ∗g)
T3(γ∗q)

)

(3.1)

(from now on it will be understood that we consider the singlet part only, and we suppress
the subscript “S“.) The structure function then follows from the relation (2.3), and we
have to take into account both DL-contributions and iπ -terms. We write T3 as a Mellin
transform:

T3 =
∫ i∞

−i∞

dω

2πi
(

s

µ2
)ωξ(ω)R(ω, y), (3.2)

where R(ω, y) is a two-component vector, defined on analogy to (3.1). The signature factor
ξ(ω) = is:

=
e−iπω − 1

2
≈

−iπω

2
, (3.3)

6To save logarithm in dβ′/β′ integration the gluon k′ should be the longitudinal, nonsence one; on the
other hand the polarization vectors of the t-channel gluons k1 (or k2) and k̃1 should be — one transverse
and one longitudinal (for the small-x limit of g1) as it was discussed just before eq. (11). If the vector e1 ∥ p

than the leading contribution comes from the graphs Fig.7e,f and Γµνρ · pµQ′

νQ′

ρ/(pQ′) ≃ −k1Q′

pQ′ = −α1,

while for the transverse vector e1 = e1t = e2t only the diagram Fig.7e do work and Γµνρe1tµe2tνQ′

ρ/pQ′ ≈
+α1 + O(α2); (α2 ≪ α1).
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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Indeed, let us first take βi+1 ≪ βi and kt,i+1 > kt,i. In this case αi+1 ≈ k2
t,i+1

sβi
≫ αi ≈

k2
t,i

sβi−1

(we have used the fact that s-channel partons with the momenta ki − ki+1 are on mass shell;

(ki − ki+1)2 ≈ −k2
t,i+1 − αi+1βis = 0). On the other hand, if kt,i+1 < kt,i one has αi+1 ≈

k2
ti

sβi
.

In order to save the leading logarithm, we have to satisfy the condition: k2
i+1 ≈ −k2

t,i+1, i. e.
αi+1βi+1s ≪ k2

t,i+1. In other words, our condition looks as

α̃i+1 =
k2

t,i+1

βi+1s
≫

k2
ti

βis
≡ α̃i (2.31)

and as in [6] we can simply use the ordering eq.(2.19) with the α̃i (eq.(2.31)) instead of the αi.

In the final part of this section we have to consider nonladder diagrams as illustrated in
Fig.7. We will call a non-ladder gluon ”soft” if its transverse momentum is smaller than
the momenta of all the partons comprised by the non-ladder gluon. According to Gribov’s
kT -factorization theorem [7] 5 the whole amplitude of the ’soft’ gluon emission can be writ-
ten as the bremsstrahlung from one of the “external“ lines of the block comprized by this
gluon. Therefore the double logarithmic contribution coming from such a ’soft’ gluons can
be summed up with the help of the infrared evolution equation[8], in the same way as it was
done for the non-singlet structure function g1 in[4]. When summing over all possibilities of
attaching the soft gluon to the external legs, we get a total color factor which depends on
both the total t-channel color quantum number and the type of incoming partons. We will
need the color singlet channel. For incoming gluons and fermions the color factors are CA

and CF , resp. In matrix notation we define

G0 =

(

CA 0
0 CF

)

. (2.32)

Finally we note that non-ladder gluons with k′
t larger than the transverse momenta in the

part of the ladder, which is comprised by them (they will be called ’hard’) do not give double
logarithms. For a nonladder gluon that runs across the ladder from one side to the other
(e.g. from the lower left to the upper right leg), the large momentum has to flow through
some internal small kti ladder propagators, and the large momentum k′

t changes the normal
1/k2

ti factor to 1/k′2
t , in this way killing the leading logarithm dk2

ti/k
2
ti (see Fig.7). These hard

nonladder gluons therefore do not contribute to the double logarithmic approximation. Next
we consider vertex correction (Fig. 7b). Then we can say that in the ultraviolet (large k′

t)
region there are no any double logs in the Feynmann gauge for the vertex function. So, one
can anticipate that there are no DL-correction coming from large-kt-region in the Feynmann
gauge for the vertex function. However, we have to be more carefull here. For the unpolar-
ized case there exists an example (BFKL) where a special cutting of the vertex-type diagram
does give rise to a double log contribution. Indeed, let us consider the non-ladder on-shell

gluon k′ added to the amplitude: the loop integration yields d2k′
tdβ′

16π3β′ , two propagators —

5For QCD the Gribov’s theorem was considered in more detail in [8, 7, 9] and [10]
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which corresponds to the diagrams Fig.5c.

Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs

2π

∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t

and eν′′ ⊥ k2t). An additonal power of |k1t| and |k2t| comes from the traces of the lower and
upper quark loops (like in the case of eq.(2.15)) and (2.16)). So after the integration over
the azimuthal angle (⟨sin2 ϕ⟩ = 1/2) the vertex eq.(2.25) gives us the result (2.26) From this
we extract the gluon rung ∆Pgg:

∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :

M0 =

(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
analogous to (2.28) reads:

M8 =

(

2CA −Tf

CA −1/2N

)

. (2.29)

From our previous discussion we have also obtained the general pattern of the region of
phase space which gives the double logarithmic contributions.The limits of integrations fol-
low from the ordering condition given in eqs.(2.18),(2.19). In terms of βi and kti it means
that [15, 6]

k2
t,i+1 ≫ k2

t,i

βi+1

βi
(here k2

ti > 0). (2.30)
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and

y = ln(
Q2

µ2
). (3.4)

Thus

− µ2 ∂R

∂µ2
= (ω +

∂

∂y
)R. (3.5)

Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
The right hand side is obtained from the observation that the dependence upon the cutoff
µ resides in the intermediate state with lowest virtuality (Fig.8): the µ-derivative of the
amplitudes are equal to R times quark or gluon scattering amplitudes with the external legs
having transverse momenta close to µ. We are thus lead to the definition of a quark-quark
scattering amplitude for which we use an integral representation of the form (3.2). The
partial wave will be denoted by Fqq. More general, we introduce the four amplitudes Fqq,
Fqg, Fgq, and Fgg, and in analogy with (2.28) we combine them into the two by two matrix
F0

F0 =

(

Fgg Fqg

Fgq Fqq

)

(3.6)

(it is the analogue to f (−)
0 in [4]). In terms of this F0, the vector evolution equation for R

becomes (Fig.8):

(ω +
∂

∂y
)R =

1

8π2
F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
g2

ω
M0 −

g2

2π2ω2
G0F8(ω) +

1

8π2ω
F0(ω)2. (3.8)

Here we have used the the matrices M0 and G0 defined in the previous section. The second
term on the rhs of (3.8) corres ponds to the gluon bremsstrahlung diagrams: in analogy to
the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
8 in [4]). These amplitudes satisfy the evolution equation similar to

(3.8):

F8 =
g2

ω
M8 +

g2CA

8π2ω

d

dω
F8(ω) +

1

8π2ω
F8(ω)2. (3.9)

The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8

the sum of the two bremsstrahlungs diagrams (illustrated in Fig.9b) is independent of the
type of the incoming partons, and the matrix of color factors G8 becomes CA times the unit
matrix.
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1/q2 ≈ 1
αqβ′s , 1/k2

2 ∼ 1/k2
2t and the spin part of the propagators, which for the nonsense,

longitudinally polarization (gn
νν′ ≈ Q′

νpν′/(Q′p)) in the DL kinematical region β2 ≪ β ′ ≃ β1

(αq ≫ α′) gives the factor ≃ −(qp)(2k1Q′)/(pQ) ≃ αqβ ′s. This factor cancels the propagator
1/q2, while the next propagator 1/k2

2t ∼ 1
k′2

t
provides the logarithmic integration dk′2

t /k′2
t in

the region k′
t > k1t. As it is known [14], the sum of such contributions is equal to the ladder

contribution (Fig. 4) but has an opposite sign. So it cancels the double logs coming from
k′

t > kti and restores the conventional DGLAP ordering kt,i+1 > kt,i for the gluon loops.
Fortunately, this does not happen for the spin dependent structure function g1. In this case
the vertex of the ”nonsense” gluon k′ emission changes the sign, if unstead of the longitudi-
nal polarizations of t-channel gluons k1 and k2 (in the left side of Figs.7c,d we consider the
transverse polarization et

1 ⊥ k1t.6. Thus the amplitudes of the Fig.7 type, where the gluon
k′ is emitted one time by the transverse gluon and another time by the longitudinal one,
cancel each other and we come back to the ladder configuration with the ordering eqs.(2.30),
(2.31).

3 Infrared Evolution Equations

In this section we construct the infrared evolution equations which are necessary for the
calculation of T3 and g1. We shall follow [4], and we begin with the amplitude T3 which,
following the discussion of the previous section, consists of the two components:

T3 =

(

T3(γ∗g)
T3(γ∗q)

)

(3.1)

(from now on it will be understood that we consider the singlet part only, and we suppress
the subscript “S“.) The structure function then follows from the relation (2.3), and we
have to take into account both DL-contributions and iπ -terms. We write T3 as a Mellin
transform:

T3 =
∫ i∞

−i∞

dω

2πi
(

s

µ2
)ωξ(ω)R(ω, y), (3.2)

where R(ω, y) is a two-component vector, defined on analogy to (3.1). The signature factor
ξ(ω) = is:

=
e−iπω − 1

2
≈

−iπω

2
, (3.3)

6To save logarithm in dβ′/β′ integration the gluon k′ should be the longitudinal, nonsence one; on the
other hand the polarization vectors of the t-channel gluons k1 (or k2) and k̃1 should be — one transverse
and one longitudinal (for the small-x limit of g1) as it was discussed just before eq. (11). If the vector e1 ∥ p

than the leading contribution comes from the graphs Fig.7e,f and Γµνρ · pµQ′

νQ′

ρ/(pQ′) ≃ −k1Q′

pQ′ = −α1,

while for the transverse vector e1 = e1t = e2t only the diagram Fig.7e do work and Γµνρe1tµe2tνQ′

ρ/pQ′ ≈
+α1 + O(α2); (α2 ≪ α1).
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Eq.( 3.5) represents the left-hand side of the IREE for T3 which is illustrated in Fig.8.
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Fgq Fqq
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(it is the analogue to f (−)
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becomes (Fig.8):

(ω +
∂

∂y
)R =
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F0R. (3.7)

In analogy with [4, 8] the evolution equation of F0 has the form (Fig.9a):

F0(ω) =
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the matrix F0 which carries color zero we define the matrix F8 of color octet amplitudes (it

is the analogue to f (+)
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M8 +
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The matrix M8 is taken from the previous section, and the color factor CA in front of the
second term on the rhs is the analogue of the matrix G0 in (3.8). The difference between
CA in (3.9) and G0 in (3.8) is due to the fact that for the positive signature amplitude F8
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Indeed, let us first take βi+1 ≪ βi and kt,i+1 > kt,i. In this case αi+1 ≈ k2
t,i+1

sβi
≫ αi ≈

k2
t,i

sβi−1

(we have used the fact that s-channel partons with the momenta ki − ki+1 are on mass shell;

(ki − ki+1)2 ≈ −k2
t,i+1 − αi+1βis = 0). On the other hand, if kt,i+1 < kt,i one has αi+1 ≈

k2
ti

sβi
.

In order to save the leading logarithm, we have to satisfy the condition: k2
i+1 ≈ −k2

t,i+1, i. e.
αi+1βi+1s ≪ k2

t,i+1. In other words, our condition looks as

α̃i+1 =
k2

t,i+1

βi+1s
≫

k2
ti

βis
≡ α̃i (2.31)

and as in [6] we can simply use the ordering eq.(2.19) with the α̃i (eq.(2.31)) instead of the αi.

In the final part of this section we have to consider nonladder diagrams as illustrated in
Fig.7. We will call a non-ladder gluon ”soft” if its transverse momentum is smaller than
the momenta of all the partons comprised by the non-ladder gluon. According to Gribov’s
kT -factorization theorem [7] 5 the whole amplitude of the ’soft’ gluon emission can be writ-
ten as the bremsstrahlung from one of the “external“ lines of the block comprized by this
gluon. Therefore the double logarithmic contribution coming from such a ’soft’ gluons can
be summed up with the help of the infrared evolution equation[8], in the same way as it was
done for the non-singlet structure function g1 in[4]. When summing over all possibilities of
attaching the soft gluon to the external legs, we get a total color factor which depends on
both the total t-channel color quantum number and the type of incoming partons. We will
need the color singlet channel. For incoming gluons and fermions the color factors are CA

and CF , resp. In matrix notation we define

G0 =

(

CA 0
0 CF

)

. (2.32)

Finally we note that non-ladder gluons with k′
t larger than the transverse momenta in the

part of the ladder, which is comprised by them (they will be called ’hard’) do not give double
logarithms. For a nonladder gluon that runs across the ladder from one side to the other
(e.g. from the lower left to the upper right leg), the large momentum has to flow through
some internal small kti ladder propagators, and the large momentum k′

t changes the normal
1/k2

ti factor to 1/k′2
t , in this way killing the leading logarithm dk2

ti/k
2
ti (see Fig.7). These hard

nonladder gluons therefore do not contribute to the double logarithmic approximation. Next
we consider vertex correction (Fig. 7b). Then we can say that in the ultraviolet (large k′

t)
region there are no any double logs in the Feynmann gauge for the vertex function. So, one
can anticipate that there are no DL-correction coming from large-kt-region in the Feynmann
gauge for the vertex function. However, we have to be more carefull here. For the unpolar-
ized case there exists an example (BFKL) where a special cutting of the vertex-type diagram
does give rise to a double log contribution. Indeed, let us consider the non-ladder on-shell

gluon k′ added to the amplitude: the loop integration yields d2k′
tdβ′

16π3β′ , two propagators —

5For QCD the Gribov’s theorem was considered in more detail in [8, 7, 9] and [10]

8

which corresponds to the diagrams Fig.5c.

Together with the colour coefficient Nc it means that the insertion of an extra s-channel
gluon into the gluon loop of Fig.3 leads to the double log integration

4Nc
αs

2π

∫ dβ2

β2

∫ dk2
t

k2
t

. (2.26)

Indeed, in order to keep the largest power of 1/x and to save the logarithm in the integrals
over kt we have to choose in (2.25) the transverse components of k1 and k2 and the longitu-
dinal indices in δµ′µ”, δν′ν”, δµ′ν” or δν′µ”. Such a configuration conserves the main structure
of the gluon loop fig. 3, inserting instead of the spin part of the transverse gluon propagator
−eν′yeν”y (in Fig. 3) the expression (eν”k1t)(eν′k2t) = −|k1t ∥ k2t| sin2 ϕ (here ϕ is the angle
between the transverse momenta k1 and k2 and we take into account the fact that eν′ ⊥ k1t

and eν′′ ⊥ k2t). An additonal power of |k1t| and |k2t| comes from the traces of the lower and
upper quark loops (like in the case of eq.(2.15)) and (2.16)). So after the integration over
the azimuthal angle (⟨sin2 ϕ⟩ = 1/2) the vertex eq.(2.25) gives us the result (2.26) From this
we extract the gluon rung ∆Pgg:

∆gg = 4Nc = 4CA (2.27)

Finally, let us collect our results for the four different rungs. We define a matrix M0 as
illustrated in Fig.6, which contains the splitting functions ∆Pij :

M0 =

(

4CA −2Tf

2CF CF

)

(2.28)

(here CA = N , CF = N2−1
2N , and Tf = nf

2 are the usual SU(N) color factors; note that we
have chosen to put the gluons into the first column and row). This matrix will be used in the
following section where we shall derive the infrared evolution equations. For later purposes
it will be convenient to consider also the color octet t-channel. In this case the color matrix
analogous to (2.28) reads:

M8 =

(

2CA −Tf

CA −1/2N

)

. (2.29)

From our previous discussion we have also obtained the general pattern of the region of
phase space which gives the double logarithmic contributions.The limits of integrations fol-
low from the ordering condition given in eqs.(2.18),(2.19). In terms of βi and kti it means
that [15, 6]

k2
t,i+1 ≫ k2

t,i

βi+1

βi
(here k2

ti > 0). (2.30)
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the matrix E0 is found to be:

E0 =

(

1 0.42
0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:

R(ω, y) = E0
1

ω − F̂0/8π2

(

Q2

µ2

)F̂0/8π2

E−1
0

(

0
2e2

q

)

. (4.17)

Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:

R(ωs, y) ∼
1

1 − 0.12

(

1 −0.42
0.28 −0.12

)

2

ωs

(

Q2

µ2

)ωs/2 (
0

2e2
q

)

. (4.18)

The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,

gS
1 =

ω3/2
s

8
√

2π

2
ωs

+ ln Q2/µ2

(ln(1/x))3/2
(∆g, ∆Σ)R(ωs, Q

2)(
1

x
)ωs

(

1 + O(
ln2 Q2/µ2

ln 1/x
)

)

(4.19)

where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43

R(ωs, y) ∼
(

1.14 −0.50
0.33 −0.14

)

2

ωs

(

Q2

µ2

)ωs/2 (
0

2e2
q

)

, (4.22)

i.e. the negative sign persists. The result for g1 becomes:

g1(x, Q2) =
ω3/2

s

8
√

2π

2
ωs

+ ln Q2/µ2

(ln(1/x))3/2
(∆g, ∆Σ)R(ωs, y)(

1

x
)ωs

(

1 + O(
ln2 Q2/µ2

ln 1/x
)

)

(4.23)
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the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43

R(ωs, y) ∼
(
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0.33 −0.14

)
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i.e. the negative sign persists. The result for g1 becomes:
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the matrix E0 is found to be:

E0 =

(

1 0.42
0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:
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1
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(
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)F̂0/8π2
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Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:

R(ωs, y) ∼
1

1 − 0.12

(

1 −0.42
0.28 −0.12

)

2

ωs

(

Q2

µ2

)ωs/2 (
0

2e2
q

)

. (4.18)

The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43

R(ωs, y) ∼
(
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)
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i.e. the negative sign persists. The result for g1 becomes:
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pure glue

•All the complexity leads to a small effect for them....

Ladder only:
zs = 3.81

the matrix E0 is found to be:

E0 =

(

1 0.42
0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:

R(ω, y) = E0
1

ω − F̂0/8π2

(

Q2

µ2

)F̂0/8π2

E−1
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(

0
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q

)

. (4.17)

Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:

R(ωs, y) ∼
1
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1 −0.42
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)

2
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The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43

R(ωs, y) ∼
(

1.14 −0.50
0.33 −0.14

)
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i.e. the negative sign persists. The result for g1 becomes:
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(4.23)

13

zs = 4 pure glue

•We agree on the ladder part....

• But	all	the	complexity	actually	
only	leads	to	a	small	effect	
compared	to	the	ladder	
graphs.
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the matrix E0 is found to be:

E0 =

(

1 0.42
0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:
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1
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)F̂0/8π2

E−1
0

(

0
2e2

q

)

. (4.17)

Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:
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The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43

R(ωs, y) ∼
(

1.14 −0.50
0.33 −0.14

)
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i.e. the negative sign persists. The result for g1 becomes:
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the matrix E0 is found to be:

E0 =

(

1 0.42
0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:

R(ω, y) = E0
1

ω − F̂0/8π2

(
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µ2

)F̂0/8π2

E−1
0
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q

)

. (4.17)

Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:

R(ωs, y) ∼
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)
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The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43

R(ωs, y) ∼
(

1.14 −0.50
0.33 −0.14

)
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i.e. the negative sign persists. The result for g1 becomes:
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the matrix E0 is found to be:

E0 =

(

1 0.42
0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:

R(ω, y) = E0
1

ω − F̂0/8π2

(

Q2

µ2

)F̂0/8π2

E−1
0

(

0
2e2

q

)

. (4.17)

Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:

R(ωs, y) ∼
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2
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The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43

R(ωs, y) ∼
(
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)
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i.e. the negative sign persists. The result for g1 becomes:
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the matrix E0 is found to be:

E0 =

(
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0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:

R(ω, y) = E0
1

ω − F̂0/8π2

(
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)F̂0/8π2
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. (4.17)

Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:
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The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43
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i.e. the negative sign persists. The result for g1 becomes:
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the matrix E0 is found to be:

E0 =

(

1 0.42
0.28 1

)

. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:

R(ω, y) = E0
1

ω − F̂0/8π2

(
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)F̂0/8π2
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0
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. (4.17)

Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:
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The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43
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i.e. the negative sign persists. The result for g1 becomes:
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13

pure glue

•All the complexity leads to a small effect for them....

Ladder only:
zs = 3.81

the matrix E0 is found to be:

E0 =

(
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. (4.16)

For the partial wave R(ω, y) in (3.2) we obtain:
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1
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(
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Retaining in F̂0 only the leading upper component, we find for the behavior of R near the
square root branch point at ω = ωs:
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The fact that the matrix elements in the rightmost column are both negative has the impor-
tant consequence that the leading contribution at small x changes the sign relative to the
input distribution. Finally,
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where the vector R is from (4.18), and the (transposed) vector (∆g, ∆Σ) represents the
initial conditions of the gluon and quark polarized distributions. It should be kept in mind
that here we have retained only the leading singularity ωs of (4.14). With ω0 from (4.7) and

αs = 0.18 we find ωs = zs

√

αsNc/2π = 1.12.

Finally, taking into account also F8 we quote the result of a numerical calculation. For
the larger of the two z-values we find (nf = 4):

zs = 3.45 (4.20)

(the pure gluonic case would have given z = 3.66). With ω0 from (4.7) and αs = 0.18 we
find

ωs = zs

√

αsNc/2π = 1.01, (4.21)

and with x+ = 0.29, x− = 0.43
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(
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)
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i.e. the negative sign persists. The result for g1 becomes:
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13

zs = 4 pure glue

•We agree on the ladder part....• We	agree	on	the	ladder	part,	but	we	seem	to	include	
additional	diagrams	which	lead	to	a	larger	effect.

BER’s	Solution
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• They	reproduce	the	DGLAP	anomalous	dimensions	to	NLO	(and	
beyond)…
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•BER reproduce the NLO DGLAP anomalous dimensions

with R from (4.22).

Let us finally compare our result with the fixed order calculations. The region where we
expect our result to coincide with the fixed order calculation is

√
αs ≪ ω ≪ 1. We therefore

expand our anomalous dimension matrix in powers of g2/ω2. To leading order we obtain:
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αs
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1
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. (4.24)

It agrees (as we have already mentioned before) with the singular part of [3, 11]. The
next-to-leading-order matrix has the form:

γ(1)
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αs

4π
)2 1

ω3

(

32C2
A − 16CFTf −16CATf − 8CFTf
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F 4C2
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N

)

. (4.25)

After transformation to xB, it agrees with the leading powers on ln x given in eq.(3.65)-(3.68)
of [12].

5 Discussion

The main result of this paper is the power-like behavior of the flavor singlet part of g1 at small
x (eq.(4.23)). The (leading) power is by a factor 2.6 larger than in the nonsinglet case. This
effect is mainly due to the t-channel gluons states, which have a much larger color charge
(cf.eq.(2.28), (2.29)) than the quarks (comparing the pure gluon and the pure fermionic case

and neglecting the nonladder gluons one finds ωsinglet/ωnonsinglet =
√

4CA/CF = 3). As it can
be seen from a comparison of (4.14) and (4.20), the influence of the bremsstrahlung gluon is
of the order of 10%. Comparing the flavor singlet with the nonsinglet, one notices that the
nonladder bremsstrahlungs gluons act in quite different ways: in the present case, due to
the positive sign of the largest matrixelemnt of M8 (M8 11), the leading ω-plane singularity
moves to the left, i.e. the exponent of 1/x decreases from ωs = 1.12 to ωs = 1.01. For the
flavor nonsinglet, on the other hand, the nonladder gluons lead to an increase of the exponent.

As to the polarization of the t-channel ladder gluons, the following pattern has emerged.
In the unpolarized case, both t-channel gluons are longitudinally polarized (i.e. they are
in the nonsense helicity state), and the resulting behaviour is g(x, Q2) ∼ (1/x)1+O(αs). In
the polarized case, this leading contribution of gluon polarizations cancels, and the next-
to-leading configuration appears: one gluon is still longitudinally polarized, but the other
one has transverse polarization. The small-x behaviour is now of the form g1(x.Q2) ∼
(1/x)O(

√
αs). If both gluons are transversely polarized, the small-x behaviour is further sup-

pressed: ∼ (1/x)−1+O(
√

αs). This contribution has been studied in [13].

Compared to the small-x prediction of the standard GLAP evolution equation, the main
reason for the strong enhancement of our calculation lies in the different regions of phase
space. Whereas in the GLAP case we have strong ordering in transverse momenta of the

14

• ...But we also reproduce the G/G anomalous dimension 
in the large-Nc limit:

�(1)
S,GG(!) =

⇣↵s

2⇡

⌘2
8N2

c
1

!3

•Wherever our disagreement is, it greatly changes the 
intercept without changing the anomalous dimension...

• We	also	reproduce	the	G/G	anomalous	dimension	in	the	large-Nc
limit…
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flavor nonsinglet, on the other hand, the nonladder gluons lead to an increase of the exponent.
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In the unpolarized case, both t-channel gluons are longitudinally polarized (i.e. they are
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to-leading configuration appears: one gluon is still longitudinally polarized, but the other
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pressed: ∼ (1/x)−1+O(
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in the large-Nc limit:
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⇣↵s

2⇡

⌘2
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•Wherever our disagreement is, it greatly changes the 
intercept without changing the anomalous dimension...
• Whatever	diagrams	they	exclude	do	not	miss	any	leading	

logarithms	of	Q2…

• Perhaps	our	disagreement	is	over	higher-twist	corrections?		That	
would	explain	our	35%	smaller	intercept….

Anomalous	Dimensions
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allows us to write the dipole gluon helicity TMD in a more compact form

g

Gdip

1 (x, k2
T

) =
4i S

L

g

2(2⇡)3

Z
d

2
⇠ d

2
⇣ e

�ik·(⇠�⇣)
k

i

?✏
ij

T

(D
tr
h
V

⇠

(V pol †
⇣

)j?

iE
�
D
tr
h
(V pol

⇠

)j? V

†
⇣

iE)
, (30)

where we have also dropped the explicit limits from the unpolarized Wilson lines. (Note: This result di↵ers by an
overall factor of � 1

2 from what was written previously, arising from the minus sign in Eq. (19) and the factor of
2 from Eq. (21).) Swapping ⇣ $ ⇠ in the last term generates a minus sign and makes the two terms in braces
complex conjugates of one another. Relabeling the dummy integration variables ⇣ and ⇠ as x1 and x0, respectively,

and changing variables to d

2
x0 d

2
x1 = d

2
x10 d

2
b10 with b10 ⌘ 1

2 (x1 + x0) the impact parameter, we can write

g

Gdip

1 (x, k2
T

) =
4i S

L

g

2(2⇡)3

Z
d

2
x10 d

2
b10 e

+ik·x10
k

i

?✏
ij

T

(D
tr
h
V0 (V

pol †
1 )j?

iE
+ c.c.

)
. (31)

The dipole gluon helicity TMD is again related to a polarized dipole amplitude, but surprisingly, it is a di↵erent
polarized dipole amplitude

G

i

10(zs) ⌘
1

2N
c

D
tr
h
V0(V

pol †
1 )i?

i
+ c.c.

E
(zs) (32)

in contrast to Eq. (7). In terms of the new polarized dipole amplitude (32), the dipole gluon helicity TMD is given by

g

Gdip

1 (x, k2
T

) =
8iN

c

S

L

g

2(2⇡)3

Z
d

2
x10 e

ik·x10
k

i

?✏
ij

T

Z
d

2
b10 G

j

10(zs =
Q

2

x

)

�
. (33)

After the integration over all impact parameters, the new polarized dipole amplitude is a vector-valued function of
x10 alone, allowing us to write the decomposition

Z
d

2
b10 G

i

10(zs) = (x10)
i

? G1(x
2
10, zs) + ✏

ij

T

(x10)
j

? G2(x
2
10, zs). (34)

By further writing (x10)i? as a derivative �i

@

@k

i

?
on the Fourier factor, we see that the scalar function G1 does not

contribute to the dipole gluon helicity TMD, leaving only

g

Gdip

1 (x, k2
T

) =
�8iN
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L
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2
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=
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S
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T
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x10 e
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2
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Q

2

x

)

�
. (35)

For some purposes, it is also useful to convert the derivatives back into coordinate space, writing

g

Gdip

1 (x, k2
T

) =
�1

↵

s

8⇡4
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d
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x0 d
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x1 e

ik·x10
✏
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*
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"
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x10 e
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1 + x

2
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@
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2
10

�
G2(x

2
10, zs =

Q

2

x

). (36)

We have thus expressed the dipole gluon helicity TMD in terms of a polarized dipole amplitude; Eqs. (35) and
(36) should be compared with Eq. (6) from the quark helicity TMD. Unexpectedly, however, the polarized dipole
amplitude (32) which determines the dipole gluon helicity TMD is di↵erent from the polarized dipole amplitude (7)
which determines the quark helicity TMD. Comparing the underlying polarized Wilson lines, we see that the quark
case (18) is sensitive to a local derivativer⇥A(x�) reflecting spin-dependent coupling at some point in the propagation
through the target. On the other hand, the gluon case (31) is sensitive to a total derivative k ⇥ V

pol ! r ⇥ V

pol

reflecting an overall circular polarization which remains after the entire interaction with the target. In principle,
it would seem that quark helicity and gluon helicity are very di↵erent things, with the gluon helicity requiring not
only that a spin-dependent scattering take place but also that the circular-polarized structure survive the rest of the
rescattering. Although the two helicities are related, we will need to derive new evolution equations analogous to
Eq. (10) for the new polarized dipole amplitude G2 in order to determine the small-x asymptotics of the dipole gluon
helicity distribution.

Gluon	Helicity	Operators
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Â

+(0+, z�, ⇠)

!
V

⇠

[z�,+1]

⇡ �i

xP

+

+1Z

�1

dz

�
V

⇠

[+1, z

�]

 
ig

@

@⇠

j

?
Â
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where we have expanded the exponent to the first nonvanishing term. Inserting all of these expressions into Eq. (38)
gives
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Swapping ⇣ $ ⇠ and i $ j in the second term makes it the complex conjugate of the first term. Relabeling the
dummy integration variables ⇣ and ⇠ as x1 and x0, respectively, and changing variables to d

2
x0 d

2
x1 = d

2
x10 d

2
b10

with b10 = 1
2 (x1 + x0) the impact parameter, we can write
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It seems that the WW gluon helicity TMD is determined by yet another polarized dipole amplitude
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which is a rank-2 tensor in the transverse plane. After integration over impact parameters, we can correspondingly
define a scalar function
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in terms of which the WW gluon helicity TMD is written
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We have now expressed the Weizsäcker-Williams gluon helicity TMD as well in terms of a polarized dipole amplitude;
Eq. (49) for the WW gluon helicity distribution is directly comparable to Eq. (35) for the dipole gluon helicity
distribution and Eq. (6) for the quark helicity distribution. The polarized dipole amplitude (47) for the WW gluon
helicity distribution is di↵erent still from both the amplitude (32) for the dipole gluon helicity distribution and the
amplitude (7) for the quark helicity distribution. The WW gluon helicity distribution is built from the same polarized
Wilson line (29) as the dipole gluon helicity distribution, but incorporated in a more complicated operator due to the
future-pointing structure of the WW gauge links.
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To go further, we need to specify a gauge; we will work in the A

� = 0 light-cone gauge, which is equivalent to the
covariant gauge in the quasi-classical approximation and including logarithmic small-x evolution. In this gauge, the
transverse segments of the staple-shaped gauge links U [±] at x� = ±1 do not contribute, leaving
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where we have used the cyclicity of the trace. For the unpolarized gluon distribution, it is su�cient to replace the field-
strength tensors by their eikonal approximations, F̂+i ⇡ �@

i

?Â
+, but since the gluon helicity distribution contains a

sub-eikonal contribution, we must expand the product of field-strength tensors to the first nonvanishing order:
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(Should there be an extra minus sign in the transverse derivative factor due to the metric tensor...?) We next convert
the sub-eikonal part of the field-strength tensor F̂+i(⇣) into a total derivative,
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which can then be integrated by parts to act on the Fourier factor and generate a factor of +ixP

+. In the same way,
the sub-eikonal part of the F̂

+j(⇠) field-strength tensor can be converted into a factor of �ixP

+ and the operator
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We can now similarly convert the eikonal parts of the field-strength tensors into total derivatives,
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which absorbs the d⇣

� integral from the TMD and can be integrated by parts to generate a factor of 1
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where we swapped i $ j in the first term.
We observe that the sub-eikonal gluon vertex enters in a form similar to Eq. (9), but with an explicit transverse

index. Defining the analogous polarized Wilson line
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• Dipole	and	Weizsacker-Williams	Operators:

• Different	Polarized	Wilson	Lines:

Ø For	gluons:

Ø For	quarks:



Gluon	Helicity	Evolution:	Diagrams

“c.c.”

other LLA diagrams

0

1

2

0

1

k1 k2

x−
1 x−

2

i i i

i

=

z

∂
∂Y Gi

10(zs)

0

1
i

+

0

1

z

2
z′

Γ21 , 20(z′s)

0

1

z

2
z′

Γ20 , 21(z′s)

+

0

1

z

2
z′

Γ20 , 21(z′s)

i

i i

+ “c.c.”

+ “c.c.”

+

0

1

z

2

z′

i

G21(z′s)

+

0

1

z

2

z′

i

Gi
12(z

′s)

+

0

1

z

2z′

i

Γi
10 , 21(z

′s)

+ “c.c.”



Gluon	Helicity	Evolution:	Equations
16

in Figs. 5 and 6:

G

i

10(zs) = G

i (0)
10 (zs) +

↵

s

N

c

2⇡2

zZ

⇤2
s

dz

0

z

0

Z
d

2
x2 ✓

✓
x

2
21 �

1

z

0
s

◆
✓

⇣
x

2
10

z

z

0 � x

2
21

⌘

⇥ ln
1

x21⇤

✏

ij

T

(x21)
j

?
x

2
21

h
�20 , 21(z

0
s) +G21(z

0
s)
i

� ↵

s

N

c

2⇡2

zZ

⇤2
s

dz

0

z

0

Z
d

2
x2 ✓

✓
min[x2

21 , x
2
20]�

1

z

0
s

◆
✓

⇣
x

2
10

z

z

0 �max[x2
21 , x

2
20]

⌘

⇥ ln
1

x21⇤

✏

ij

T

(x20)
j

?
x

2
20

h
�20 , 21(z

0
s) + �21 , 20(z

0
s)
i

+
↵

s

N

c

2⇡2

zZ

1
x

2
10s

dz

0

z

0

Z
d

2
x2

x

2
10

x

2
21 x

2
20

✓

⇣
x

2
10 � x

2
21

⌘
✓

⇣
x

2
21 �

1

z

0
s

⌘ h
G

i

12(z
0
s)� �i

10 , 21(z
0
s)
i

(61a)

�i

10 21(z
0
s) = G

i (0)
10 (z0s) +

↵

s

N

c

2⇡2

z

0Z

⇤2
s

dz

00

z

00

Z
d

2
x3 ✓

✓
x

2
31 �

1

z

00
s

◆
✓

✓
x

2
21

z

0

z

00 � x

2
31

◆

⇥ ln
1

x31⇤

✏

ij

T

(x31)
j

?
x

2
31

h
�30 , 31(z

00
s) +G31(z

00
s)
i

� ↵

s

N

c

2⇡2

z

0Z

⇤2
s

dz

00

z

00

Z
d

2
x3 ✓

✓
min[x2

31 , x
2
30]�

1

z

00
s

◆
✓

✓
x

2
21

z

0

z

00 �max[x2
31 , x

2
30]

◆

⇥ ln
1

x31⇤

✏

ij

T

(x30)
j

?
x

2
30

h
�30 , 31(z

00
s) + �31 , 30(z

00
s)
i

+
↵

s

N

c

2⇡2

z

0Z

1
x

2
10s

dz

00

z

00

Z
d

2
x3

x

2
10

x

2
31 x

2
30

✓

⇣
min

h
x

2
10 , x

2
21

z

0

z

00

i
� x

2
31

⌘
✓

⇣
x

2
31 �

1

z

00
s

⌘ h
G

i

13(z
00
s)� �i

10 , 31(z
00
s)
i
.

(61b)

Note that the neighbor dipole �20 , 21(z0s) depends in general on the direction of x20 but only on the magnitude
of the neighbor dipole size x

2
21: �(x20, x

2
21, z

0
s) such that �20 , 21(z0s) = �20 , 12(z0s). After integrating over impact

parameters
R
d

2
b10 =

R
d

2
b20 =

R
d

2
b21 and using the decomposition (34), we reduce the dipole amplitudes down to

functions of the distances squared.

The last terms of Eq. (61a) correspond to unpolarized BFKL-like evolution, and they are only DLA in the regime

x

2
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10 , 21 term, this leads to a DLA contribution with the replacement x
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2
21 x
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20

! 1
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. For the G

i

12

term, after the replacement Eq. (34), the G1 contribution vanishes exactly, while the G2 contribution is only LLA.
As a result, in these terms, we keep only the �i

10 , 21 contribution.

The first evolution terms of Eq. (61a) correspond to the radiation of polarized ladder gluons. After integrating
over impact parameters, the G21 term appears to vanish due to the angular integral. However, the associated radial
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to scale out the sub-eikonal suppression of the emission vertex in the target and equivalently write the polarized
Wilson line as
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where all of the energy scaling is contained in the prefactor 1/s which is then scaled out in the definition of the
polarized dipole amplitude in Eq. (7).

III. THE GLUON HELICITY TMDS AND NEW POLARIZED DIPOLE AMPLITUDE(S)

The gluon helicity TMD is defined similarly to (5) as

g

G

1 (x, k
2
T

) =
�2i S

L

xP

+

Z
d⇠

�
d

2
⇠

(2⇡)3
e

ixP

+
⇠

��ik·⇠ hP, S
L

| ✏ij
T

tr
h
F̂

+i(0) U [0, ⇠] F̂+j(⇠) U 0[⇠, 0]
i
|P, S

L

i
⇠

+=0 . (19)

(Note: I have modified the definition to swap 0 $ ⇠ in the operator, which corresponds to an overall di↵erence of
a minus sign from what was in the notes before. It also switches which gauge link is future/past pointing.) 1 For
gluon TMD distributions, the operators are connected by two fundamental gauge links U , U 0 which may separately
be either future-pointing ([+]) or past-pointing ([�]). Of particular interest are the “dipole distribution” g

Gdip

1 for
which one is future pointing and the other is past pointing, U = U [+]

, U 0 = U [�], and the “Weizsäcker-Williams
distribution” g

GWW

1 for which both are future pointing, U = U [+]
, U 0 = U [+].

A. Dipole Gluon Helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Starting with Eq. (19) with
the appropriate gauge links, we multiply and divide by a volume factor V

� =
R
d

2
x dx

� and shift the operators in
the matrix element to write
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We next convert from the matrix element of a momentum-space eigenstate to a wave packet which is localized in both
impact parameter and momentum space:
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(Note: This rescaling is di↵erent by a factor of 2 from what was in the notes previously, where Yuri’s rescaling
introduced a factor of 4P+ rather than 2P+.) This procedure is standard in the color-glass-condensate framework
and is used to match the “unintegrated gluon distribution” and the gluon TMD f

g

1 in the unpolarized sector [40, 46];
it is also similar to the calculation of the TMDs of a heavy nucleus in the quasi-classical approximation [10]. Applying
this to the dipole gluon helicity TMD gives
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1
We note that various di↵ering conventions for the gluon helicity distribution exist in the literature. The definition arising from Eqs. (1),

(12), and (14) of [43] di↵ers from Eq. (19) by a factor of � 1
2 , but when applied to a target composed of a single gluon counts the

total helicity as � 1
2 rather than +1. The factor of

1
2 discrepancy in the definition of [43] also applies to the unpolarized gluon sector;

that factor of 2 has been corrected in the definition of, for example, [40]. Some references, like [40], prefer to write the operator like in

Eq. (19) with the coordinates 0 and ⇠ interchanged. Because the operators are all evaluated at ⇠+ = 0, they commute if the trace is

cycled; such an exchange then corresponds to i $ j, which is equivalent when the indices are contracted with �ij in the unpolarized

gluon distribution, but leads to a sign di↵erence when contracted with ✏ij
T

in the gluon helicity distribution. Still other references like

[44] and [45] prefer write the operators with 0 $ ⇠, but also a relative sign change in the Fourier factor. While many of these di↵erences

are irrelevant for the unpolarized gluon distribution, great care must be taken in the conventions for the gluon helicity distribution.
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