Twist Three GPDs

Fatma Aslan and Matthias Burkardt

New Mexico State University
May 22, 2017

Outline

- why twist 3 GPDs:
- 'force' distribution
- OAM sum rule
- $\delta(x)$-terms in twist- 3 PDFs
\hookrightarrow get 'smeared out' in GPDs, but contribution discontinuous at $x= \pm \xi$
\hookrightarrow potential issue for twist- 3 factorization

twist two

- twist-2 PDFs \longrightarrow long. momentum distribution
- twist-2 GPDs $\leftrightarrow \perp$ imaging of PDFs

twist two

- twist-3 PDFs \longrightarrow average \perp force due to FSI
\hookrightarrow twist-3 GPDs $\longrightarrow \perp$ force distribution
- twist-3 GPD $\int d x x G_{2}^{q}(x, 0,0)=-L_{q}$ (Polyakov)
potential issues at twist three
- twist-3 PDFs known to contain terms $\propto \delta(x)$
- related to contributions to twist-3 GPDs that
- contribute only in ERBL region $-\xi<x<\xi$
- diverge as $\xi \rightarrow 0$
- factorization?

Deeply Virtual Compton Scattering (DVCS)

form factor

- electron hits nucleon \& nucleon remains intact
\hookrightarrow form factor $F\left(q^{2}\right)$
- position information from Fourier trafo
- no sensitivity to quark momentum
- $F\left(q^{2}\right)=\int d x G P D\left(x, \xi, q^{2}\right)$
\hookrightarrow GPDs provide momentum disected form factors

Compton scattering

- electron hits nucleon, nucleon remains intact \& photon gets emitted
- additional quark propagator
\hookrightarrow additional information about momentum fraction x of active quark
\hookrightarrow generalized parton distributions $G P D\left(x, q^{2}\right)$
- info about both position and momentum of active quark
transverse imaging
- $q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}$
- $F_{1}\left(-\boldsymbol{\Delta}_{\perp}^{2}\right)=\int d x H\left(x, \xi,-\boldsymbol{\Delta}_{\perp}^{2}\right)$
- $x=$ average momentum fraction of active quark
- \mathbf{b}_{\perp} relative to \perp center of momentum
- $E(x, 0, t) \perp$ deformation for \perp pol. target
- $F_{2}\left(-\boldsymbol{\Delta}_{\perp}^{2}\right)=\int d x E\left(x, \xi,-\Delta_{\perp}^{2}\right)$

experimental determination

- $\Im \mathcal{A}_{D V C S} \rightarrow G P D(\xi, \xi, t)$
- $\Re \mathcal{A}_{D V C S} \rightarrow \int d x \frac{G P D(x, \xi, t)}{x \pm \xi}$
\hookrightarrow requires relevant GPDs to be continuous at $x=\xi$
- no issues known for twist two GPDs

momentum fractions

- $x=\frac{x_{i}+x_{f}}{2}$ average long. mom. fraction of active quark
- $\xi=\frac{x_{f}-x_{i}}{2}$ long. mom. transfer on active quark

Digression: Average \perp Force on Quarks in DIS

$d_{2} \leftrightarrow$ average \perp force on quark in DIS from \perp pol target

polarized DIS:

- $\sigma_{L L} \propto g_{1}-\frac{2 M x}{\nu} g_{2} \quad$ - $\sigma_{L T} \propto g_{T} \equiv g_{1}+g_{2}$
\hookrightarrow 'clean' separation between g_{2} and $\frac{1}{Q^{2}}$ corrections to g_{1}
- $g_{2}=g_{2}^{W W}+\bar{g}_{2}$ with $g_{2}^{W W}(x) \equiv-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)$

$$
d_{2} \equiv 3 \int d x x^{2} \bar{g}_{2}(x)=\frac{1}{2 M P^{+} S^{x}}\langle P, S| \bar{q}(0) \gamma^{+} g F^{+y}(0) q(0)|P, S\rangle
$$

color Lorentz Force on ejected quark

$$
\sqrt{2} F^{+y}=F^{0 y}+F^{z y}=-E^{y}+B^{x}=-(\vec{E}+\vec{v} \times \vec{B})^{y} \text { for } \vec{v}=(0,0,-1)
$$

matrix element defining $d_{2} \leftrightarrow 1^{\text {st }}$ integration point in QS-integral $d_{2} \Rightarrow \perp$ force $\quad \leftrightarrow \quad$ QS-integral $\Rightarrow \perp$ impulse

sign of d_{2}

- \perp deformation of $q\left(x, \mathbf{b}_{\perp}\right)$
$\hookrightarrow \operatorname{sign}$ of d_{2}^{q} : opposite Sivers
magnitude of d_{2}

$$
\begin{aligned}
& \text { - }\left\langle F^{y}\right\rangle=-2 M^{2} d_{2}=-10 \frac{G e V}{f m} d_{2} \\
& \text { - }\left|\left\langle F^{y}\right\rangle\right| \ll \sigma \approx 1 \frac{G e V}{f m} \Rightarrow d_{2}=\mathcal{O}(0.01)
\end{aligned}
$$

Digression: Average \perp Force on Quarks in DIS

$d_{2} \leftrightarrow$ average \perp force on quark in DIS from \perp pol target

polarized DIS:

- $\sigma_{L L} \propto g_{1}-\frac{2 M x}{\nu} g_{2} \quad$ - $\sigma_{L T} \propto g_{T} \equiv g_{1}+g_{2}$
\hookrightarrow 'clean' separation between g_{2} and $\frac{1}{Q^{2}}$ corrections to g_{1}
- $g_{2}=g_{2}^{W W}+\bar{g}_{2}$ with $g_{2}^{W W}(x) \equiv-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)$

$$
d_{2} \equiv 3 \int d x x^{2} \bar{g}_{2}(x)=\frac{1}{2 M P^{+} S^{x}}\langle P, S| \bar{q}(0) \gamma^{+} g F^{+y}(0) q(0)|P, S\rangle
$$

color Lorentz Force on ejected quark
$\sqrt{2} F^{+y}=F^{0 y}+F^{z y}=-E^{y}+B^{x}=-(\vec{E}+\vec{v} \times \vec{B})^{y}$ for $\vec{v}=(0,0,-1)$

sign of d_{2}

- \perp deformation of $q\left(x, \mathbf{b}_{\perp}\right)$
\hookrightarrow sign of d_{2}^{q} : opposite Sivers
magnitude of d_{2}

$$
\begin{aligned}
& \text { - }\left\langle F^{y}\right\rangle=-2 M^{2} d_{2}=-10 \frac{G e V}{f m} d_{2} \\
& \text { - }\left|\left\langle F^{y}\right\rangle\right| \ll \sigma \approx 1 \frac{G e V}{f m} \Rightarrow d_{2}=\mathcal{O}(0.01)
\end{aligned}
$$

consitent with experiment (JLab,SLAC), model calculations (Weiss), and lattice QCD calculations (Göckeler et al., 2005)

Digression: Average \perp Force on Quarks in DIS

$g_{2}(x)$

- $\int d x x^{2} g_{2}(x) \Rightarrow \perp$ force on unpolarized quark in \perp polarized target \hookrightarrow 'Sivers force'
- $\int d x x^{2} e(x) \Rightarrow \perp$ force on \perp polarized quark in unpolarized target \hookrightarrow 'Boer-Mulders force'
- $\int d x x^{2} h_{2}(x)=0$
$\hookrightarrow \perp$ force on \perp pol. quark in long. pol. target vanishes due to parity
- $\int d x x^{3} h_{2}(x) \Rightarrow$ long. gradient of \perp force on \perp polarized quark in \perp polarized target
\hookrightarrow 'Boer-Mulders force'
force distributions
- use FT of twist-3 GPDs to map these forces in the \perp plane

example: $h_{L}(x)$

- Dirac structure σ^{+-}
- relevant for LT double-spin asymmetry in DY
- $h_{L}(x)=h_{L}^{W W}(x)+h_{L}^{m}(x)+h_{L}^{3}(x)$
- $h_{L}^{W W}(x)=2 x \int_{x}^{1} d y \frac{h_{1}(y)}{y^{2}}$
- $h_{L}^{m}(x)_{r e g}=\frac{m_{q}}{M}\left[\frac{g_{1}(x)}{x}-2 x \int_{x}^{1} d y \frac{g_{1}(y)}{y^{3}}\right] \quad(x>0)$
- $h_{L}^{3}(x)$ involves quark-gluon correlations

δ-function piece

- $h_{L}^{m}(x)=h_{L}^{m}(x)_{r e g}-\frac{m_{q}}{2 M}\left[g_{1}(0+)-g_{1}(0-)\right] \delta(x)$
- confirmed for quark target model (1-loop QCD)

$$
\hookrightarrow h_{L}^{m(1)}(x)=\frac{m_{q}}{M}\left[\frac{2}{(1-x)_{+}}-4 x \ln \frac{1-x}{x}-3+3 x-\frac{1}{2} \delta(x)\right]
$$

connection to twist three GPDs

for corresponding GPDs, δ-function gets 'smeared out' to interval $-\xi<x<\xi$

- $\delta(x)$ crucial for Lorentz invariance relations
- $\int d x h_{L}(x)=\int d x h_{1}(x)$
- $\int d x g_{T}(x)=\int d x g_{1}(x)$
- origin: $\int d k^{-} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}=\int d k^{-} \frac{1}{\left(2 k^{+} k^{-}-k_{\perp}^{2}-m^{2}+i \varepsilon\right)^{2}} \propto \delta\left(k^{+}\right)$
- $\int d k^{-} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}=0$ for $k^{+} \neq 0$
- $\int d^{2} k \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}=\frac{\text { const }}{k_{\perp}^{2}+m^{2}} \neq 0$
- $\xi \neq 0: \frac{1}{\left(2 k^{+} k^{-}-k_{\perp}^{2}-m^{2}+i \varepsilon\right)^{2}} \longrightarrow \frac{1}{\left(k-\frac{\Delta}{2}\right)^{2}-m^{2}+i \varepsilon} \frac{1}{\left(k+\frac{\Delta}{2}\right)^{2}-m^{2}+i \varepsilon}$
\hookrightarrow nonzero for $-\frac{\Delta^{+}}{2}<k^{+}<\frac{\Delta^{+}}{2}$ only
- integral becomes representation of δ function as $\Delta^{+} \longrightarrow 0$

OAM from twist 3 GPDs

twist-3 GPDs (Polyakov \& Kitpily)

$$
\begin{aligned}
& \int d z^{-} e^{i x z^{-} \bar{p}^{+}}\left\langle p^{\prime}\right| \bar{q}\left(z^{-} / 2\right) \gamma^{x} q\left(-z^{-} / 2\right)|p\rangle \\
& =\frac{1}{2 \bar{p}^{+}} \bar{u}\left(p^{\prime}\right)\left[\frac{\Delta^{x}}{2 M} G_{1}+\gamma^{x}\left(H+E+G_{2}\right)+\frac{\Delta^{x} \gamma^{+}}{\bar{p}^{+}} G_{3}+\frac{i \Delta^{y} \gamma^{+} \gamma_{5}}{\bar{p}^{+}}\right] u(p)
\end{aligned}
$$

Lorentz invariance relations

- $\int d x G_{1}^{q}(x, \xi, t)=0$
- $\int d x G_{2}^{q}(x, \xi, t)=0$
- $\int d x G_{3}^{q}(x, \xi, t)=0$
- $\int d x G_{4}^{q}(x, \xi, t)=0$

Tests

- test above relations in scalar diquark model \& QED
- compare $\mathcal{L}(x)$ with $-x G_{2}(x)$

QCD Eqs. of motion

$$
\cdot \int d x x G_{2}^{q}(x, 0,0)=-L^{q}
$$

results

- $-x G_{2}(x, 0,0) \propto 2 x(1-x) \ln \Lambda^{2}$
- $\mathcal{L}_{J M}(x) \propto(1-x)^{2} \ln \Lambda^{2}$
- ' $L_{J i}(x)^{\prime} \equiv \frac{1}{2}[H+E-\tilde{H}]$ $\propto \frac{1}{2}\left[1-x^{2}\right] \ln \Lambda^{2}$
- integrals equal
- x-dependence not same
- how about $\int d x G_{2}(x) \stackrel{?}{=} 0 ? ? ?$

OAM from twist 3 GPDs

Lorentz invariance relations

- $\int d x G_{2}^{q}(x, \xi, t)=0$
- $-x G_{2}(x, 0,0) \propto 2 x(1-x) \ln \Lambda^{2}$

$\delta(x)$ in $G_{2}(x, 0, t)(\mathrm{QED} / \mathrm{QCD})$

- $G_{2}(x, \xi, t)$ has term $\propto \frac{\Theta(-\xi<x<\xi)}{\xi}$
\hookrightarrow rep. of $\delta(x)$ for $\xi \rightarrow 0$
- without $\delta(x): \int d x G_{2}(x, 0, t) \neq 0$
- with $\delta(x): \int d x G_{2}(x, 0, t)=0$

$\delta(x)$ and twist 3

- $\delta(x)$ terms possible in twist 3 PDFs
\hookrightarrow twist 3 GPDs allow studying those contributions in detail
- cannot use Lorentz invariance relation to constrain $G_{2}(x, 0,0)$

twist-3 PDFs (MB\&Y.Koike ‘02)

Lorentz invariance relations:

- $\int d x g_{1}(x)=\int d x g_{T}(x)$ (probably satisfied in QCD)
- $\int d x h_{1}(x)=\int d x h_{L}(x)$ (violated in QCD)
$\hookrightarrow h_{L}$ contains term $\propto \delta(x)$
\hookrightarrow missed in $\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} d x h_{L}(x)$
- similar for $e(x)$ (scalar twist 3)
relevant DVCS amplitudes involve $G_{2}(x, \xi, t) \pm \tilde{G}_{2}(x, \xi, t)$

\tilde{G}_{2}

$$
\begin{aligned}
& \int d z^{-} e^{i x z^{-} \bar{p}^{+}}\left\langle p^{\prime}\right| \bar{q}\left(z^{-} / 2\right) \gamma^{x} \gamma_{5} q\left(-z^{-} / 2\right)|p\rangle \\
& =\frac{1}{2 \bar{p}^{+}} \bar{u}\left(p^{\prime}\right)\left[\gamma^{x} \gamma_{5} \tilde{G}_{2}+\ldots\right] u(p)
\end{aligned}
$$

forward limit

- $\tilde{G}_{2}(x, 0,0)=g_{2}(x)$
- $g_{2}(x)$ no δ function in QCD
\hookrightarrow expect no cancellation of singularities between G_{2} and \tilde{G}_{2}

G_{2} vs. \tilde{G}_{2} for Quark Target (1 Loop)

$$
\begin{aligned}
& G_{2}(x, \xi, t) \\
& \quad G_{2}= \begin{cases}0 & x<-\xi \\
\frac{(1+x)}{\xi(1-x)} & -\xi<x<\xi \\
2 \frac{1+x}{1-\xi^{2}} & \xi<x<1\end{cases}
\end{aligned}
$$

$\delta(x)$ contribution as $\xi \rightarrow 0$

$\tilde{G}_{2}(x, \xi, t)$

$$
\tilde{G}_{2}=\left\{\begin{array}{lc}
0 & x<-\xi \\
\frac{4 x}{\left(1-\xi^{2}\right)} & -\xi<x<\xi \\
-\frac{2 x}{\xi(1+\xi)} & \xi<x<1
\end{array}\right.
$$

no $\delta(x)$ contribution as $\xi \rightarrow 0$
$G_{2}(x, \xi, t)$ (full) vs. $\tilde{G}_{2}(x, \xi, t)$ (dashed)

G_{2} (full) vs. \tilde{G}_{2} (dashed)

- relevant DVCS amplitudes involve $G_{2} \pm \tilde{G}_{2}$
- both $G_{2} \& \tilde{G}_{2}$ discontinuous at $x \pm \xi$
- but discontinuity does NOT cancel in $G_{2} \pm \tilde{G}_{2}$
$\hookrightarrow ~ . . . ~ t w i s t ~ t h r e e ~ f a c t o r i z a t i o n . . . ? ~ ? ~$
- verfied OAM sum rule for twist-3 GPD G_{2} (scalar diquark as well as QED/QCD)
- $G_{2}(x, \xi, t)$ discontinuous at $x \pm \xi$
\hookrightarrow arises from contribution to $G_{2}(x, \xi, t)$ that only exists between $-\xi<x<\xi$
- that contribution diverges as $\xi \rightarrow 0$
$\hookrightarrow G_{2}(x, 0, t)$ contains $\delta(x)$
- QCD eqs. of motion: $\frac{m_{q}}{M}$ effect
- very common for twist-3 PDFs/GPDs!
- crucial for Lorentz invariance condition)
- $\tilde{G}_{2}(x, \xi, t)$ also discontinuous at $x \pm \xi$, but no cancellation in $G_{2} \pm \tilde{G}_{2}$

\hookrightarrow implications for twist 3 factorization?

