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Abstract 
 
We link the structure of the expectation value of Wilson loops in 
unpolarized and polarized hadronic states to gluon distribution functions 
depending on both fractional (longitudinal) momentum x and transverse 
momentum pT, referred to as the gluon TMDs. It provides ways to unify 
various descriptions at small-x including the dipole picture and the notions 
of pomeron and odderon exchange. We study the structure of gluon TMDs 
for unpolarized, vector polarized and tensor polarized targets, bounds on 
these functions and in the limit of small x the relation to diffractive 
processes. 
 



Hard QCD processes 

New physics 

protons 

protons 

PDF’s FF’s (MC) 

( )g x( )q x ( )D z

i i ip x P= i i iK z k= collinear 
treatment 



Hard QCD processes and their evolution .... 

New physics & probe 

protons/ 
leptons 

protons 

PDF’s FF’s (MC) 

g(x, pT )q(x, pT ) D(z,kT )

pi = xiPi + piT i i iK z k=

Scales/evolution 
Quarks & gluons 
TMDs: x, pT  
Spin & flavor 
GPDs 
GTMDs 
Hadrons 



Some speculative ideas: duality color – space 

  QCD is part of the standard model  
  Symmetry of leptons/gauge bosons and Higgs governed by algebra 

[P(1,3), SU(2) x U(1)] 
  Symmetry of fast/collinear (good/1-dim) quarks governed by algebra 

[P(1,1), SU(3)] 
  But SU(3) = [SO(3), SU(2) x U(1)] and P(1,3) = [P(1,1), SO(3)] 

    ?????? Problems and !!!!!! Opportunities 

 
  But it would naturally link gluons to (collinear à TMD) transition 
  Central role for Wilson loop linking transverse spatial structure and 

transverse gluons 
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Matrix elements for TMDs (with gauge links) 

  quark-quark:  

 
 
 
  gluon-gluon: 

 
 
 
  … and even single Wilson loop correlator:  
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�[U ]
ij (x, pT ;n) =

Z
d ⇠·P d

2
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(2⇡)3
e

ip·⇠hP ,S| j(0)U[0,⇠] i(⇠)|P ,Si
��
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Z
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[⇠,0] |P ,Si

��
⇠·n=0

ψi (ξ ) ψ j (0)

Γαβ ( p)

Γ0( pT )

ui(k)uj(k) =)

✏↵(k)✏�⇤(k) =)

�(0) =)



Matrix elements for TMDs (omitting gauge links) 

  quark-quark            (Relevant in diagrammatic expansion) 

 
    (after ξ.n integration T-ordering irrelevant) 

  gluon-gluon 

 
  quark-gluon-quark 
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�ij(x, pT ;n) =

Z
d ⇠·P d

2
⇠T

(2⇡)3
e

ip·⇠hP ,S| j(0) i(⇠)|P ,Si
��
⇠·n=0

�µ⌫(x, pT ;n) =

Z
d ⇠·P d

2
⇠T

(2⇡)3
e

ip·⇠ hP ,S|Fnµ(0)Fn⌫(⇠) |P ,Si
��
⇠·n=0

ψi (ξ ) ψ j (0)

Γαβ ( p)

ΦA(p-p1,p) 

ΦD;ij
α ( p− p1, p1 | p) =

d 4ξ d 4η
(2π )8∫ ei ( p−p1).ξ+ip1.η P ψ j (0)D

α (η)ψi (ξ ) P

ΦF ;ij
α ( p− p1, p1 | p) =

d 4ξ d 4η
(2π )8∫ ei ( p−p1).ξ+ip1.η P ψ j (0)F

nα (η)ψi (ξ ) P



TMDs and color gauge invariance (gauge links) 

  Gauge invariance in a non-local situation requires a gauge link U(0,ξ) 

 
  Introduces path dependence in 

 
 
  ‘Dominant’ paths: along lightcone connected at lightcone infinity (staples) 

 
  Reduces to ‘straight line’ for Φ(x)  

     (no gluon dynamics)  
 
  Be aware that one needs all orders in g to obtain full U(0,ξ) 
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0

(0, ) exp ig ds AU
ξ

µ
µξ −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫P
ψ(0)ψ(ξ ) = 1

n!
ξ µ1 ...

n
∑ ξ µNψ(0)∂µ1 ...∂µNψ(0)

ψ(0)U (0,ξ )ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)Dµ1

...DµN
ψ(0)

0
ξ.P 

ξΤ ξ

Φ[U ](x, pT ) ⇒ Φ(x)

A+(⌘)
A↵

T (⌘)�A↵
T (1)

Φ[U ](x, pT )
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u  Gauge links associated with dimension zero (not suppressed!) collinear An = A+ 
gluons, leading for TMD correlators to process-dependence: 

Non-universality because of process dependent gauge links 

Φij
q[C ](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ j (0)U[0,ξ ]

[C ] ψi (ξ ) P ξ .n=0

Φ[-] Φ[+] 

Time reversal 

TMD 

… A+ … 
… A+ … 
(resummation) 

   SIDIS  DY 

path dependent gauge link  

Belitsky, Ji, Yuan, 2003; Boer, M, Pijlman, 2003 
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Non-universality because of process dependent gauge links 

Φg
αβ[C ,C '] (x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators contain two links, which can have different paths. 
Note that standard field displacement involves C = C’  

u  Basic (simplest) gauge links for gluon TMD correlators: 

u  Collinear gluon PDFs: straight line ‘octet’ link 

[ ] [ ]
[ , ] [ , ]( ) ( )C CF U F Uαβ αβ
η ξ ξ ηξ ξ→

Φg
[+,+] Φg

[-,-] 

Φg
[+,-] Φg

[-,+] 

   gg è H 

 in gg  è QQ  
Bomhof, M, Pijlman, 2006; Dominguez, Xiao, Yuan, 2011 



Simplest color flow classes for quarks (in lower hadron) 
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�q ! q q̄q ! �

h| (0)U [+]
[0,⇠]  (⇠)|i h| (0)U [�]

[0,⇠]  (⇠)|i

�[+](x, kT ) �[�](x, kT )



Color flow and gauge-link 
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Hadron (+) 

Hadron (-) 

hard COLOR 

qg ! q

h|F (0)U [+]
[0,⇠] F (⇠)U [�]

[⇠,0]|i

qg ! qg

or 

h|F (0)U [+]
[0,⇠] F (⇠)U [+]

[⇠,0]U
(⇤)|i



Color flow classes for gluons (in lower hadron) 
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�g ! g gg ! H qg ! qg

q(gg) ! q

�ij[+,+]](x, kT ) �ij[+,�]](x, kT )�ij[�,�]](x, kT )

�[+,�]
0 (x, kT )

Wilson loop correlator linked to dipole picture and diffraction at small x 

Gluon correlators at small x related to Wilson loop correlator 

�(x)�[U,U 0]
0 (kT ;n) =

Z
d ⇠·P d

2
⇠T

(2⇡)3
e

ik·⇠ hP ,S|U[0,⇠] U
0
[⇠,0] |P ,Si

��
⇠·n=0



Quark correlator (in practice): replacing polarization sums 

Unpolarized target: leading part               becomes: 

 
  Vector polarized target:  

 
  Surviving in collinear correlators Φ(x) and including flavor index  

  In case of TMDs there are T-odd functions 
  Note: be careful with use of h1T and non-traceless tensor with kT.ST  

since h1T is not a TMD of definite rank! 
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�[U ]
L (x, kT ) =

⇢
SLg

[U ]
1 (x, k2T )�5 + SLh

? [U ]
1L (x, k2T )

�5/kT
M

�
/P

2

�[U ](x, kT ) =

⇢
f

[U ]
1 (x, k2T ) + i h

? [U ]
1 (x, k2T )

/kT
M

�
/P

2

f

q
1 (x) ⌘ q(x) g

q
1(x) = �q(x) h

q
1(x) = �q(x)

�[U ]
T (x, kT ) =

⇢
g

[U ]
1T (x, k2T )

kT ·ST

M

�5 + f

?[U ]
1T (x, k2T )

kT ⇥ ST

M

+ h

[U ]
1 (x, k2T )�5/ST + h

? [U ]
1T (x, k2T )

k

↵�
T ST↵���5

M

2

�
/P

2

/p = x /P



Structure of quark (8) TMD PDFs in spin ½ target 

  8 TMDs F…(x,kT
2) 

  Integrated (collinear) correlator: only circled ones survive 
  Collinear functions are spin-spin correlations 
  TMDs also momentum-spin correlations (spin-orbit) including also       

T-odd (single-spin) functions (appearing in single-spin asymmetries) 
  Existence of T-odd functions because of gauge link dependence!  
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QUARKS 

U 

L 

T f1T
⊥

h1L
⊥

h1   h1T
⊥

f1

g1

h1
⊥

g1T

γ +γαγ5γ +γ5γ +
PARTON SPIN 

TA
RG

ET
 S

PI
N

 



Structure of quark TMD PDFs in spin 1 target 

16 

QUARKS 

U 

L 

T f1T
⊥

h1L
⊥

h1   h1T
⊥

f1

g1 

h1
⊥

g1T

LL 

LT 

TT f1TT

h1LT   h1LT
⊥

f1LL h1LL
⊥

g1TT

g1LT

γ +γαγ5γ +γ5γ +

f1LT

h1TT   h1TT
⊥

X. Ji, PRD 49 (1994) 114; introduction of                    (PFF)  

Bacchetta & M, PRD 62 (2000) 114004; h1LT first introduced as T-odd PDF  

Hoodbhoy, Jaffe & Manohar, NP B312 (1988) 571: introduction of f1LL = b1 

H1LT ⌘ ĥ1̄

PARTON SPIN 
TA

RG
ET

 S
PI

N
 

Bacchetta 
function 



Definite rank TMDs 

  Expansion in constant tensors in transverse momentum space    
     

  … or traceless symmetric tensors (of definite rank)  

  Simple azimuthal behavior: 
    functions showing up in cos(mφ) or sin(mφ) asymmetries (wrt e.g. φT) 
 
  Simple Bessel transform to b-space (relevant for evolution):  
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gµ⌫T = gµ⌫ � P {µn⌫} ✏µ⌫T = ✏Pnµ⌫ = ✏�+µ⌫

kiT

kijT = kiT k
j
T � 1

2k
2
T gijT

kijkT = kiT k
j
T k

k
T � 1

4k
2
T

⇣
gijT kkT + gikT kjT + gjkT kiT

⌘

ki1...imT  ! |kT | e±im'

Fm(x, kT ) =

Z 1

0
bdb Jm(kT b)Fm(x, b)

Fm(x, b) =

Z 1

0
kT dkT Jm(kT b)Fm(x, kT )



Gluon correlators 

Unpolarized target 

  Vector polarized target 
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�ij[U ](x, kT ) =
x

2

⇢
�g

ij
T f

[U ]
1 (x, k2T ) +

k

ij
T

M

2
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? [U ]
1 (x, k2T )
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�ij[U ]
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⇢
i✏
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T SLg
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✏
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SLh
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x

2

⇢
g
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T ✏

kST
T

M

f

?[U ]
1T (x, k2T )�

i✏

ij
T kT ·ST

M

g

[U ]
1T (x, k2T )

� ✏

k{i
T S

j}
T + ✏

ST {i
T k

j}
T

4M
h1(x, k

2
T )�

✏
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j}↵ST

T

2M3
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?
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2
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Gluon correlators 

  Tensor polarized target 
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�ij[U ]]
LL (x, kT ) =

x

2

⇢
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ij
T SLL f

[U ]
1LL(x, k
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k

ij
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SLLh
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�

�ij[U ]
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x

2

⇢
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ij
T

k
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T STT↵�

M

2
f

[U ]
1TT (x, k

2
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T

✏

�
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T STT↵�

M

2
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1TT (x, k

2
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+ S

ij
TT h

[U ]
1TT (x, k

2
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S
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T
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2
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M

4
h
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�
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x

2

⇢
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✏
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D Boer, S Cotogno, T van Daal, PJM, Y Zhou, JHEP 1610 (2016) 013, ArXiv 1607.01654 



Structure of gluon TMD PDFs in spin 1 target 
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f1T
⊥

f1

g1L

g1T

GLUONS 

U 

L 

T f1T
⊥g

h1L
⊥g

h1 
g   h1T

⊥g

−gT
αβ

f1
g h1

⊥g

g1T
g

εT
αβ

g1 
g

LL 

LT 

TT f1TT
 g

h1LT
 g   h1LT

⊥g

f1LL
 g h1LL

⊥g

g1TT
 g

g1LT
 gf1LT

 g

h1TT
 g  h1TT

⊥g  h1TT
⊥⊥g

pT
αβ , ...

Jaffe & Manohar, Nuclear gluonometry, PL B223 (1989) 218 

PARTON SPIN 
TA

RG
ET

 S
PI

N
 

Meissner, Metz and Goeke, PR D76 (2007) 034002 

PJM & Rodrigues, PR D63 (2001) 094021  

D Boer, S Cotogno, T van Daal, PJM, Y Zhou, JHEP 1610 (2016) 013, ArXiv 1607.01654 



Untangling operator structure in collinear case (reminder) 

  Collinear functions and x-moments 

  Moments correspond to local matrix elements of operators that all have the 
same twist since dim(Dn) = 0 

  Moments are particularly useful because their anomalous dimensions can be 
rigorously calculated and these can be Mellin transformed into the splitting 
functions that govern the QCD evolution. 
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Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

xN−1Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)(∂ξ

n )N−1U[0,ξ ]
[n] ψ(ξ ) P

ξ .n=ξT =0

=
d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] (Dξ
n )N−1ψ(ξ ) P

ξ .n=ξT =0

Φ(N ) = P ψ(0)(Dn )N−1ψ(0) P

x = p.n  



Transverse moments à operator structure of TMD PDFs 

  Operator analysis for [U] dependence (e.g. [+] or [-]) TMD functions: in analogy 
to Mellin moments consider transverse moments à role for quark-gluon m.e. 
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,±∞]iDT

αU[±∞,ξ ]ψ(ξ ) P ξ .n=0

dpT∫ pT
αΦ[U ](x, pT ;n) = !Φ∂

α (x)+CG
[U ]ΦG

α (x)

T-even  T-odd  

calculable  

T-even (gauge-invariant derivative)  

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-odd (soft-gluon or gluonic pole, ETQS m.e.)  

Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

ΦA
α (x) = PV

dx1
x1

ΦF
nα (x − x1,x1 | x)∫

ΦG
α (x) = πΦF

nα (x,0 | x)

Efremov, Teryaev; Qiu, Sterman; 
Brodsky, Hwang, Schmidt; Boer, Teryaev; Bomhof, Pijlman, M 

ΦF
nα (x,0 | x) = −ΦF

nα*(x | 0,x)



  CG
[U] calculable gluonic pole factors (quarks) 

  Similarly for gluons with many color possibilities 
 

 
 
 
 
 

5

U U [±] U [+] U [!] 1
Nc

Trc(U
[!])U [+]

Φ[U ] Φ[±] Φ[+!] Φ[(!)+]

C
[U ]
G ±1 3 1

C
[U ]
GG,1 1 9 1

C
[U ]
GG,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.
Note that the value of C[U ]

G is the same for single and double transverse weighting.

link. In fact there is a universal transverse moment relating all link dependent ones

f⊥(1)[U ]
1T (x) = C [U ]

G f⊥(1)
1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+1 or −1, we will show in the next section that for the double weighted case the situation becomes more complicated
and one actually gains a lot by this different notation. But even for single weighting there is a clear advantage using
Eq. 15, because it states that there is a universal function with calculable process (link) dependent numbers rather
than an infinite number of somehow related functions. For some gauge links, these numbers are shown in Table I.
Here U [!] is the Wilson loop U [−]†U [+].

C. Double transverse weighting

In order to evaluate the double transverse weighting we need to consider matrix elements like

Φαβ
FF (x− x1 − x2, x1, x2|x) =

∫
d ξ·P

2π

d η·P

2π

d η′·P

2π
eix2(η

′·P ) eix1(η·P ) ei(x−x1−x2)(ξ·P )

×⟨P, S|ψ(0)U [n]
[0,η′]F

nα
T

(η′)U [n]
[η′,η]F

nβ
T

(η)U [n]
[η,ξ] ψ(ξ)|P, S⟩

∣∣∣∣∣
LC

, (16)

among others, where LC indicates that all transverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦDF , ΦFD and ΦDD as well as bilocal matrix elements, obtained by direct
or principal value integrations over these matrix elements (as in the case of single transverse momentum weighting)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicitly, the matrix elements are discussed in
Appendix A.
The actual weighting of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ{αβ} [U ]
∂∂ (x) ≡

∫
d2pT p{αT pβ}

T Φ[U ](x, p2
T
)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+
∑

c

π2C [U ]
GG,cΦ

{αβ}
GG,c(x)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+ π2C [U ]

GG,1 Φ
{αβ}
GG,1(x) + π2C [U ]

GG,2 Φ
{αβ}
GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must distinguish the different
color structures for the correlator, hence a summation over the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures related to the appearance of the color traced Wilson loop
1
Nc

Trc(U [!]). The differences between the two different correlators Φ{αβ}
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ̃... with one or more partial derivatives denote differences

between correlators with a covariant derivative minus a correlator with a principal value integration, e.g. Φ̃{αβ}
∂G (x) =

Φ{αβ}
DG (x)−Φ{αβ}

AG (x). For completeness, they are given in Appendix A. Since the weighting is done with the symmetric
combination, we have symmetrized in the indices, which should not influence the result. We also omitted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.

Gluonic pole factors are calculable 
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Buffing, Mukherjee, M, PRD88 (2013) 054027, ArXiv 1306.5897 

Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221 

Buffing, M, PRL 112 (2014), 092002 



Operator classification of quark TMDs (polarized nucleon) 

24 

[∂∂] :  ψ∂∂ψ =Trc ∂∂ψψ"# $%

[GG  1] : Trc GGψψ"# $%

[GG  2] : Trc GG"# $%Trc ψψ"# $%

Three pretzelocities: 

Process dependence also for (T-even) pretzelocity,  

h1T
⊥[U ] = h1T

⊥[∂∂] +CGG ,1
[U ] h1T

⊥[GG1] +CGG ,2
[U ] h1T

⊥[GG2]

Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221 

factor QUARK TMD RANK FOR VECTOR POL. (SPIN ½) HADRON 
0 1 2 3 

1 h1T
⊥[∂∂]g1T

[∂]   h1L
⊥[∂]

h1T
⊥[GG1]   h1T

⊥[GG2]

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

h1
⊥[G ]   f1T

⊥[G ]

f1   g1   h1



Operator classification of quark TMDs (including trace terms) 
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Process dependence in pT dependence of TMDs due to gluonic pole operators 
(e.g. affecting <pT

2>) 
 
 
                                                 with δf1[GG c](x) = 0 f1

[U ](x, pT
2 ) = f1 + CGG ,c

[U ] δ f1
[GGc]
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  GLs complicate life for ‘double pT’ situation such as Sivers-Sivers or BM-BM in DY 
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Color structure for double T-odd 
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For DY, factorization holds up to leading power in � ⌘ |q|/Q, where Q represents the

hard scale of the process and q is the transverse momentum of the photon. [tk: do we NOTE

need a max(⇤, qT )?]

The TMD factorization theorem for DY takes the following form for unpolarized

hadrons [1, 2]:

d�

d⌦ dx1dx2 d2q
=

↵2

N
c

q2

X

q

e2
q

Z

d2k1

Z

d2k2 �
(2)(k1 + k2 � q)

h

Af1,q(x1,k
2
1) f̄1,q̄(x2,k

2
2)

+B cos(2�)h?1,q(x1,k
2
1) h̄

?
1,q̄(x2,k

2
2)
i

+O(�), (2.1)

where the sum runs over the di↵erent quark flavors labeled by q.1 The electrical charge e
q

is

given in units of the elementary charge, and ↵ denotes the fine-structure constant. Further-

more, we use bold face to refer to two-dimensional transverse vectors. The functions f1 and

h?1 denote the unpolarized and Boer-Mulders quark TMDs respectively [3]. A bar on these

functions refers to antiquarks. The hard scattering factors �̂U and �̂BM appear in the dou-

ble unpolarized and double Boer-Mulders terms respectively. The Boer-Mulders function

comes with an azimuthal-angular dependence, induced by the transverse polarization of

the quark inside the unpolarized proton. The double unpolarized contribution to eq. (2.1),

i.e. the first term, comes with the “standard” color factor of 1/N
c

. The factor c in the

second term is an additional color factor that is associated with the double Boer-Mulders

contribution. The case c 6= 1 would imply color entanglement for azimuthal asymmetries.

In ref. [4] it was found that c = �1/(N2
c

�1), based on the graph in figure 2. The main goal

of this paper is to determine the value of c, by an explicit calculation following closely the

derivation of the DY factorization theorem. The main goal of this paper is to determine

the color factor of the double Boer-Mulders contribution by an explicit model calculation,

following closely the derivation of the DY factorization theorem.

p2 p2

p1 p1

k2

k1
k1 � `1

q q

k2 � `2

`1

`2

h?1

h̄?1

Figure 2: An example of a lowest-order graph that gives a nonzero contribution to the

double Boer-Mulders term in the DY factorization theorem.

The angular dependent term gives a nonzero single spin asymmetry

A = insert definition of typical asymmetry / h?1 h̄
?
1 (2.2)

1
For convenience, flavor labels will be suppressed throughout most of this paper.
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. We can therefore restrict our analysis to a skeleton where we have one gluon attaching to

each spectator scalar. At leading power, the gluons can be either soft (including Glauber)

or collinear to the spectator they attach to.

These gluons, can have their opposite end either at the active quarks or at the other

gluon. As the purpose of the paper is to investigate if there is color entanglement, we

can directly exclude all diagrams which does not lead to entangled color factors. This

leaves us with the four diagrams in figure 3, their Hermition conjugates and diagrams ob-

tain by a horizontal flip. [tk: correct that cut through gluons when these are NOTE

collinear are power suppressed?]

p2 p2

p1 p1

k2

k1
k1 � `1

q q

k2 � `2

`1

`2

(a)

p2 p2

p1 p1

k2

k1k1 � `1

q q

k2 � `2

`1

`2

(b)
p2 p2

p1 p1

k2

k1k1 � `1

q q

k2 � `2

`1

`2

(c)

p2 p2

p1 p1

k2

k1k1 � `1

q q

k2 � `2

`1

`2

(d)

Figure 3: The four relevant DY double-gluon exchange graphs (a), (b), (c), and (d). The

dotted line in the middle represents the final-state cut.

The gluons attaching to the spectators can be either Glauber gluons or collinear. In

diagram 3a the both gluons attach to the active quark or anti-quark from the other proton,

while in diagram 3b and 3c the two gluons interact before attaching to one of the active

quarks.

There is an intimate connection between the i✏’s in the propagator denominators, the

time-reversal odd nature of the BM function and the Glauber momentum region. The BM

function changes sign when the Wilson line changes from past to future pointing. The

amounts to a sign change of the i✏ term in the denominator of the Wilson line. This

becomes relevant only in the region where the corresponding gluon momenta have a very

small plus (or minus) component, which is the region of Glauber scaling.
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(a) =) � 1

N2
c � 1

1

Nc

(a) + (c) + (d) =) 1

Nc

�UU (x1, x2, qT ) = Af1(x1)f1(x2)�̂UU +B cos(2�)h

?
1 (x1)h

?
1 (x2)�̂TT



Classifying Polarized Quark TMDs (including tensor pol) 

factor QUARK TMD RANK FOR VECTOR POL. (SPIN ½) HADRON 
0 1 2 3 
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… 
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2 ) =CG
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[∂.G ](x, pT
2 )  with  δh1LT
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...
δ f1
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Operator classification of gluon TMDs 

factor ADDITIONAL PDFs FOR TENSOR POL. SPIN 1 HADRON 
0 1 2 3 4 
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… … 

… … 

… … … … 
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D Boer, S Cotogno, T van Daal, PJM, Y Zhou, ArXiv 1607.01654 D Boer, S Cotogno, T van Daal, PJM, Y Zhou, JHEP 1610 (2016) 013, ArXiv 1607.01654 



Small x physics in terms of TMDs 

  The single Wilson-loop correlator Γ0  

  Note limit x à 0 for gluon TMDs linked to gluonic pole m.e. of Γ0  

  RHS depends on t, which for x = 0 becomes pT
2 à off-forward studies  
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factor GLUON TMD PDF RANK FOR UNPOL. AND SPIN ½ HADRON 
0 1 2 3 
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Petreska, M, under study 



Small x physics in terms of TMDs 

  Note limit x à 0 for gluon TMDs linked to gluonic pole m.e. of Γ0  

 
  Dipole correlators: at small x only two structures for unpolarized and 

transversely polarized nucleons: pomeron & odderon structure 
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⇡2 �↵� [U,U 0](0, pT ) = C [U,U 0]
GG �↵�

0GG(pT )

D Boer, MG Echevarria, PJM, J Zhou, PRL 116 (2016) 122001, ArXiv 1511.03485 
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Conclusions and outlook 

  (Generalized) universality of TMDs studied via operator product 
expansion, extending the well-known collinear distributions (including 
polarization 3 for quarks and 2 for gluons) to TMD PDF and PFF 
functions, ordered into functions of definite rank with rich 
momentum-spin structure (available results include spin 1) 

  Nonlocal operator structure allows derivations of positivity bounds. 
  Multiple operator possibilities for pretzelocity/transversity 
  Non-universality for pT-widths of TMDs 
  Color entanglement for double T-odd functions (?) 
  Wilson loops simplify gluonic TMD-structure at small x 
  Wilson loops offer applications in diffractive processes (pomeron/

odderon structure) 
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A TMD picture for diffractive scattering 

32 
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k2 

q’ 

P P’ 
p1 

p2 

GAP 

ξ1T         01T

ψ(ξ2 )    ψ(02 )

GAP 

  Momentum flow in case of diffraction 
     x1 à MX

2/W2 à 0 and t à p1T
2 

  Picture in terms of TMD and inclusion of gauge links 
    (including gauge links/collinear gluons in M ~ S – 1) 
 
  (Another way of looking at diffraction, cf Dominguez, Xiao, Yuan 2011 or older 

work of Gieseke, Qiao, Bartels 2000) 

ξ1T         01T

1[ ,0 ]−∞1[ , ]ξ −∞

ψ(ξ2 )    ψ(02 )

1 2[ , ][ , ]ξ ξ+∞ +∞ 1 2[0 , ][0 , ]+∞ +∞
GAP 



A TMD picture for diffractive scattering 
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  Cross section  

  involving correlators for proton and photon 

Φq/γ [+](x2 , p2T ;q) =
d(ξ .q)d 2ξT
(2π )3∫ ei p2 .ξ2 γ *(q) ψ(0)U[0,ξ ]

[+] ψ(ξ ) γ *(q)
ξ .n=0
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d 2ξT
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