Unifying the 3D structure of gluons at small-x

Piet J Mulders
in collaboration(s) with a.o.:
Daniel Boer, Sabrina Cotogno, Tom van Daal, Miguel Echevarria, Jo Gaunt, Tomas Kasemets, Elena Petreska, Andrea Signori, Jian Zhou and Ya-Jin Zhou

p.j.g.mulders@vu.nl

Abstract

Abstract

We link the structure of the expectation value of Wilson loops in unpolarized and polarized hadronic states to gluon distribution functions depending on both fractional (longitudinal) momentum x and transverse momentum pT , referred to as the gluon TMDs. It provides ways to unify various descriptions at small-x including the dipole picture and the notions of pomeron and odderon exchange. We study the structure of gluon TMDs for unpolarized, vector polarized and tensor polarized targets, bounds on these functions and in the limit of small x the relation to diffractive processes.

Hard QCD processes

Hard QCD processes and their evolution

Scales/evolution Quarks \& gluons TMDs: $\mathrm{x}, \mathrm{p}_{\mathrm{T}}$ Spin \& flavor GPDs GTMDs
Hadrons

Some speculative ideas: duality color - space

- QCD is part of the standard model

■ Symmetry of leptons/gauge bosons and Higgs governed by algebra $[P(1,3), S U(2) \times U(1)]$

- Symmetry of fast/collinear (good/1-dim) quarks governed by algebra [P(1,1), SU(3)]
- But $\mathrm{SU}(3)=[\mathrm{SO}(3), \mathrm{SU}(2) \times \mathrm{U}(1)]$ and $\mathrm{P}(1,3)=[\mathrm{P}(1,1), \mathrm{SO}(3)]$?????? Problems and !!!!!! Opportunities

■ But it would naturally link gluons to (collinear \rightarrow TMD) transition

- Central role for Wilson loop linking transverse spatial structure and transverse gluons

$$
F^{\alpha \beta}=\frac{\delta W[C]}{\delta \sigma_{\alpha \beta}}
$$

Matrix elements for TMDs (with gauge links)

■ quark-quark: $u_{i}(k) \bar{u}_{j}(k) \Longrightarrow$

$$
\Phi_{i j}^{[U]}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle\right|_{\xi \cdot n=0}
$$

■ gluon-gluon: $\epsilon^{\alpha}(k) \epsilon^{\beta *}(k) \Longrightarrow$

$\Gamma^{\left[U, U^{\prime}\right] \mu \nu}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| F^{n \mu}(0) U_{[0, \xi]} F^{n \nu}(\xi) U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}$

■ ... and even single Wilson loop correlator: $\delta(0) \Longrightarrow$

$$
\delta(x) \Gamma_{0}^{\left[U, U^{\prime}\right]}\left(p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| U_{[0, \xi]} U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}
$$

Matrix elements for TMDs (omitting gauge links)

■ quark-quark
(Relevant in diagrammatic expansion)

$$
\Phi_{i j}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi \cdot n=0}
$$

(after $\xi . \mathrm{n}$ integration T -ordering irrelevant)

- gluon-gluon

$$
\Gamma^{\mu \nu}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| F^{n \mu}(0) F^{n \nu}(\xi)|P, S\rangle\right|_{\xi \cdot n=0}
$$

■ quark-gluon-quark

$$
\begin{aligned}
& \Phi_{D ; i j}^{\alpha}\left(p-p_{1}, p_{1} \mid p\right)=\int \frac{d^{4} \xi d^{4} \eta}{(2 \pi)^{8}} e^{i\left(p-p_{1}\right) \cdot \xi+p_{1} \cdot \eta}\langle P| \bar{\psi}_{j}(0) D^{\alpha}(\eta) \psi_{i}(\xi)|P\rangle \\
& \Phi_{F ; i j}^{\alpha}\left(p-p_{1}, p_{1} \mid p\right)=\int \frac{d^{4} \xi d^{4} \eta}{(2 \pi)^{8}} e^{i\left(p-p_{1}\right) \cdot \xi+i p_{1} \cdot \eta}\langle P| \bar{\psi}_{j}(0) F^{n \alpha}(\eta) \psi_{i}(\xi)|P\rangle
\end{aligned}
$$

TMDs and color gauge invariance (gauge links)

■ Gauge invariance in a non-local situation requires a gauge link $\mathrm{U}(0, \xi)$
$\bar{\psi}(0) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \ldots \xi^{\mu_{N}} \bar{\psi}(0) \partial_{\mu_{1}} \ldots \partial_{\mu_{N}} \psi(0)$

$$
U(0, \xi)=\boldsymbol{P} \exp \left(-i g \int_{0}^{\xi} d s^{\mu} A_{\mu}\right)
$$

$\bar{\psi}(0) U(0, \xi) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \ldots \xi^{\mu_{N}} \bar{\psi}(0) D_{\mu_{1}} \ldots D_{\mu_{N}} \psi(0)$

- Introduces path dependence in $\Phi^{[U]}\left(x, p_{T}\right)$

■ 'Dominant' paths: along lightcone connected at lightcone infinity (staples)

- Reduces to 'straight line' for $\Phi(\mathrm{x})$
$\Phi^{[U]}\left(x, p_{T}\right) \Rightarrow \Phi(x)$
(no gluon dynamics)

■ Be aware that one needs all orders in g to obtain full $\mathrm{U}(0, \xi)$

Non-universality because of process dependent gauge links

$$
\Phi_{i j}^{q[C]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]}^{[C]} \psi_{i}(\xi)|P\rangle_{\xi, n=0}
$$

path dependent gauge link

- Gauge links associated with dimension zero (not suppressed!) collinear $\mathrm{A}^{\mathrm{n}}=\mathrm{A}^{+}$ gluons, leading for TMD correlators to process-dependence:

(resummation)

Non-universality because of process dependent gauge links

$$
\Phi_{g}^{\alpha \beta[C, C]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| U_{[\xi, 0]}^{[C]} F^{n a}(0) U_{[0, \xi]}^{[C]} F^{n \beta}(\xi)|P\rangle_{\xi, n=0}
$$

- The TMD gluon correlators contain two links, which can have different paths. Note that standard field displacement involves $\mathrm{C}=\mathrm{C}$ '

$$
F^{\alpha \beta}(\xi) \rightarrow U_{[\eta, \xi]}^{[C]} F^{\alpha \beta}(\xi) U_{[\xi, \eta]}^{[C]}
$$

- Basic (simplest) gauge links for gluon TMD correlators:

- Collinear gluon PDFs: straight line 'octet' link

Simplest color flow classes for quarks (in lower hadron)

Color flow and gauge-link

Color flow classes for gluons (in lower hadron)

Gluon correlators at small x related to Wilson loop correlator

$$
\begin{aligned}
& q(g g) \rightarrow q \\
& \Gamma_{0}^{[+,-]}\left(x, k_{T}\right)
\end{aligned}
$$

$\delta(x) \Gamma_{0}^{\left[U, U^{\prime}\right]}\left(k_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle P, S| U_{[0, \xi]} U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}$
Wilson loop correlator linked to dipole picture and diffraction at small x

Quark correlator (in practice): replacing polarization sums

■ Unpolarized target: leading part $\not p=x \not P$ becomes:

$$
\Phi^{[U]}\left(x, k_{T}\right)=\left\{f_{1}^{[U]}\left(x, k_{T}^{2}\right)+i h_{1}^{\perp[U]}\left(x, k_{T}^{2}\right) \frac{\not k_{T}}{M}\right\} \frac{\not P}{2}
$$

■ Vector polarized target:

$$
\begin{aligned}
\Phi_{L}^{[U]}\left(x, k_{T}\right)= & \left\{S_{L} g_{1}^{[U]}\left(x, k_{T}^{2}\right) \gamma_{5}+S_{L} h_{1 L}^{\perp[U]}\left(x, k_{T}^{2}\right) \frac{\gamma_{5} k_{T}}{M}\right\} \frac{P}{2} \\
\Phi_{T}^{[U]}\left(x, k_{T}\right)= & \left\{g_{1 T}^{[U]}\left(x, k_{T}^{2}\right) \frac{k_{T} \cdot S_{T}}{M} \gamma_{5} f_{1 T}^{\perp[U]}\left(x, k_{T}^{2}\right) \frac{k_{T} \times S_{T}}{M}\right. \\
& \left.+h_{1}^{[U]}\left(x, k_{T}^{2}\right) \gamma_{5} \phi_{T}+h_{1 T}^{\perp[U]}\left(x, k_{T}^{2}\right) \frac{k_{T}^{\alpha \beta} S_{T \alpha} \gamma_{\beta} \gamma_{5}}{M^{2}}\right\} \frac{P}{2}
\end{aligned}
$$

■ Surviving in collinear correlators $\Phi(\mathrm{x})$ and including flavor index $f_{1}^{q}(x) \equiv q(x) \quad g_{1}^{q}(x)=\Delta q(x) \quad h_{1}^{q}(x)=\delta q(x)$
■ In case of TMDs there are T-odd functions
■ Note: be careful with use of $h_{1 T}$ and non-traceless tensor with $\mathrm{k}_{\mathrm{T}} \cdot \mathrm{S}_{\mathrm{T}}$ since $h_{1 T}$ is not a TMD of definite rank!

Structure of quark (8) TMD PDFs in spin $1 / 2$ target

■ 8 TMDs $\mathrm{F}_{\text {... }}\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}}{ }^{2}\right)$

PARTON SPIN

■ Integrated (collinear) correlator: only circled ones survive
■ Collinear functions are spin-spin correlations
■ TMDs also momentum-spin correlations (spin-orbit) including also T-odd (single-spin) functions (appearing in single-spin asymmetries)
■ Existence of T-odd functions because of gauge link dependence!

Structure of quark TMD PDFs in spin 1 target

Hoodbhoy, Jaffe \& Manohar, NP B312 (1988) 571: introduction of $f_{1 L L}=b_{1}$ Bacchetta \& M, PRD 62 (2000) 114004; $\mathrm{h}_{1 L T}$ first introduced as T-odd PDF X. Ji, PRD 49 (1994) 114; introduction of $H_{1 L T} \equiv \hat{h}_{\overline{1}} \quad$ (PFF)

Definite rank TMDs

- Expansion in constant tensors in transverse momentum space

$$
\left.g_{T}^{\mu \nu}=g^{\mu \nu}-P^{\{\mu} n^{\nu}\right\} \quad \quad \epsilon_{T}^{\mu \nu}=\epsilon^{P n \mu \nu}=\epsilon^{-+\mu \nu}
$$

■ ... or traceless symmetric tensors (of definite rank)
k_{T}^{i}
$k_{T}^{i j}=k_{T}^{i} k_{T}^{j}-\frac{1}{2} k_{T}^{2} g_{T}^{i j}$
$k_{T}^{i j k}=k_{T}^{i} k_{T}^{j} k_{T}^{k}-\frac{1}{4} k_{T}^{2}\left(g_{T}^{i j} k_{T}^{k}+g_{T}^{i k} k_{T}^{j}+g_{T}^{j k} k_{T}^{i}\right)$
■ Simple azimuthal behavior: $k_{T}^{i_{1} \ldots i_{m}} \longleftrightarrow\left|k_{T}\right| e^{ \pm i m \varphi}$ functions showing up in $\cos (m \phi)$ or $\sin (m \phi)$ asymmetries (wrt e.g. ϕ_{T})

- Simple Bessel transform to b-space (relevant for evolution):

$$
\begin{aligned}
& F_{m}\left(x, k_{T}\right)=\int_{0}^{\infty} b d b J_{m}\left(k_{T} b\right) F_{m}(x, b) \\
& F_{m}(x, b)=\int_{0}^{\infty} k_{T} d k_{T} J_{m}\left(k_{T} b\right) F_{m}\left(x, k_{T}\right)
\end{aligned}
$$

Gluon correlators

■ Unpolarized target

$$
\Gamma^{i j[U]}\left(x, k_{T}\right)=\frac{x}{2}\left\{-g_{T}^{i j} f_{1}^{[U]}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\}
$$

■ Vector polarized target

$$
\begin{aligned}
\Gamma_{L}^{i j[U]}\left(x, k_{T}\right)= & \frac{x}{2}\left\{i \epsilon_{T}^{i j} S_{L} g_{1}^{[U]}\left(x, k_{T}^{2}\right)+\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} S_{L} h_{1 L}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\} \\
\Gamma_{T}^{i j[U]}\left(x, k_{T}\right)= & \frac{x}{2}\left\{\frac{g_{T}^{i j} \epsilon_{T}^{k S_{T}}}{M} f_{1 T}^{\perp[U]}\left(x, k_{T}^{2}\right)-\frac{i \epsilon_{T}^{i j} k_{T} \cdot S_{T}}{M} g_{1 T}^{[U]}\left(x, k_{T}^{2}\right)\right. \\
& \left.-\frac{\epsilon_{T}^{k i t} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, k_{T}^{2}\right)-\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right)\right\}
\end{aligned}
$$

Gluon correlators

■ Tensor polarized target

$$
\begin{aligned}
\Gamma_{L L}^{i j[U]]}\left(x, k_{T}\right)= & \frac{x}{2}\left\{-g_{T}^{i j} S_{L L} f_{1 L L}^{[U]}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} S_{L L} h_{1 L L}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\} \\
\Gamma_{L T}^{i j[U]}\left(x, k_{T}\right)= & \frac{x}{2}\left\{-g_{T}^{i j} \frac{k_{T} \cdot S_{L T}}{M} f_{1 L T}^{[U]}\left(x, k_{T}^{2}\right)+i \epsilon_{T}^{i j} \frac{\epsilon_{T}^{S_{L T} k}}{M} g_{1 L T}^{[U]}\left(x, k_{T}^{2}\right)\right. \\
& \left.+\frac{S_{L T}^{\{i} k_{T}^{j\}}}{M} h_{1 L T}^{[U]}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{i j \alpha} S_{L T \alpha}}{M^{3}} h_{1 L T}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\} \\
\Gamma_{T T}^{i j[U]}\left(x, k_{T}\right)= & \frac{x}{2}\left\{-g_{T}^{i j} \frac{k_{T}^{\alpha \beta} S_{T T \alpha \beta}}{M^{2}} f_{1 T T}^{[U]}\left(x, k_{T}^{2}\right)+i \epsilon_{T}^{i j} \frac{\epsilon_{T \gamma}^{\beta} k_{T}^{\gamma \alpha} S_{T T \alpha \beta}}{M^{2}} g_{1 T T}^{[U]}\left(x, k_{T}^{2}\right)\right. \\
& +S_{T T}^{i j} h_{1 T T}^{[U]}\left(x, k_{T}^{2}\right)+\frac{S_{T T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} h_{1 T T}^{\perp[U]}\left(x, k_{T}^{2}\right) \\
& \left.+\frac{k_{T}^{i j \alpha \beta} S_{T T \alpha \beta}}{M^{4}} h_{1 T T}^{\perp \perp[U]}\left(x, k_{T}^{2}\right)\right\}
\end{aligned}
$$

Structure of gluon TMD PDFs in spin 1 target

Jaffe \& Manohar, Nuclear gluonometry, PL B223 (1989) 218
PJM \& Rodrigues, PR D63 (2001) 094021
Meissner, Metz and Goeke, PR D76 (2007) 034002

Untangling operator structure in collinear case (reminder)

■ Collinear functions and x -moments

$$
\begin{aligned}
& \Phi^{q}(x)=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \\
& x^{N-1} \Phi^{q}(x)=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0)\left(\partial_{\xi}^{n}\right)^{N-1} U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \\
& \mathrm{x}=\mathrm{p} . \mathrm{n} \quad=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]}\left(D_{\xi}^{n}\right)^{N-1} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0}
\end{aligned}
$$

- Moments correspond to local matrix elements of operators that all have the same twist since $\operatorname{dim}\left(D^{n}\right)=0$

$$
\Phi^{(N)}=\langle P| \bar{\psi}(0)\left(D^{n}\right)^{N-1} \psi(0)|P\rangle
$$

■ Moments are particularly useful because their anomalous dimensions can be rigorously calculated and these can be Mellin transformed into the splitting functions that govern the QCD evolution.

Transverse moments \rightarrow operator structure of TMD PDFs

■ Operator analysis for [U] dependence (e.g. [+] or [-]) TMD functions: in analogy to Mellin moments consider transverse moments \rightarrow role for quark-gluon m.e.

$$
\begin{aligned}
& p_{T}^{\alpha} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \pm \infty]} i D_{T}^{\alpha} U_{[\pm \infty, \xi]} \psi(\xi)|P\rangle_{\xi, n=0} \\
& \iint d p_{T} p_{T}^{\alpha} \Phi^{[U]}\left(x, p_{T} ; n\right)=\tilde{\Phi}_{\partial}^{\alpha}(x)+C_{G}^{[U]} \Phi_{G}^{\alpha}(x) \\
& \text { T-even }
\end{aligned}
$$

$$
\underbrace{\tilde{\Phi}_{\partial}^{\alpha}(x)=\Phi_{D}^{\alpha}(x)-\Phi_{A}^{\alpha}(x)}_{\Phi_{D}^{\alpha}(x)=\int d x_{1} \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)} \begin{aligned}
& \text { T-even (gauge-invariant derivative) } \\
& \Phi_{1}^{\alpha}(x)=P V \int \frac{d x_{1}}{x_{1}} \Phi_{F}^{n \alpha}\left(x-x_{1}, x_{1} \mid x\right)
\end{aligned}
$$

$$
\Phi_{G}^{\alpha}(x)=\pi \Phi_{F}^{n \alpha}(x, 0 \mid x)
$$

T-odd (soft-gluon or gluonic pole, ETQS m.e.)

$$
\Phi_{F}^{n \alpha}(x, 0 \mid x)=-\Phi_{F}^{n \alpha^{*}}(x \mid 0, x)
$$

Gluonic pole factors are calculable

- $\mathrm{C}_{\mathrm{G}}{ }^{[\mathrm{UU]}}$ calculable gluonic pole factors (quarks)

U	$U^{[\pm]}$	$U^{[+]} U^{[\square]}$	$\frac{1}{N_{c}} \operatorname{Tr}_{c}\left(U^{[\square]}\right) U^{[+]}$
$\Phi^{[U]}$	$\Phi^{[\pm]}$	$\Phi^{[+\square]}$	$\Phi^{[(\square)+]}$
$C_{G}^{[J]}$	± 1	3	1
$C_{G G, 1}^{[U]}$	1	9	1
$C_{G G, 2}^{[U]}$	0	0	4

■ Similarly for gluons with many color possibilities
Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221

Operator classification of quark TMDs (polarized nucleon)

factor	QUARK TMD RANK FOR VECTOR POL. (SPIN 1/2) HADRON				
	0		1	2	3
1	f_{1}	g_{1}	h_{1}	$g_{1 T}^{[\partial]}$	$h_{1 L}^{\perp[\partial]}$

Three pretzelocities:
Process dependence also for (T-even) pretzelocity,

$$
h_{1 T}^{\perp[U]}=h_{1 T}^{\perp[\partial \partial]}+C_{G G, 1}^{[U]} h_{1 T}^{\llcorner[G G 1]}+C_{G G, 2}^{[U]} h_{1 T}^{\llcorner[G G 2]}
$$

$$
\begin{aligned}
& {[\partial \partial]: \bar{\psi} \partial \partial \psi=\operatorname{Tr}_{c}[\partial \partial \psi \bar{\psi}]} \\
& {[G G 1]: \operatorname{Tr}_{c}[G G \psi \bar{\psi}]} \\
& {\left[\begin{array}{ll}
G G & 2]: \operatorname{Tr}_{c}[G G] \operatorname{Tr}_{c}[\psi \bar{\psi}]
\end{array}\right.}
\end{aligned}
$$

Operator classification of quark TMDs (including trace terms)

factor	QUARK TMD RANK FOR VECTOR POL. (SPIN 1/2) HADRON			
	0	1	2	3
1	f_{1}	g_{1}	h_{1}	$g_{1 T}^{[\partial]}$

Process dependence in p_{T} dependence of TMDs due to gluonic pole operators (e.g. affecting $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{2}\right\rangle$)
$f_{1}^{[U]}\left(x, p_{T}^{2}\right)=f_{1}+C_{G G, c}^{[U]} \delta f_{1}^{[G G c]}$ with $\delta \mathrm{f}_{1}{ }^{[\mathrm{GG} \mathrm{c}]}(\mathrm{x})=0$

Color structure for double T-odd

■ GLs complicate life for 'double p_{T} ' situation such as Sivers-Sivers or BM-BM in DY

■ $(a) \Longrightarrow-\frac{1}{N_{c}^{2}-1} \frac{1}{N_{c}}$
$\square(a)+(c)+(d) \Longrightarrow \frac{1}{N_{c}}$

- Which one is applicable to B -term in
$\sigma_{U U}\left(x_{1}, x_{2}, q_{T}\right)=A f_{1}\left(x_{1}\right) \bar{f}_{1}\left(x_{2}\right) \hat{\sigma}_{U U}+B \cos (2 \phi) h_{1}^{\perp}\left(x_{1}\right) \bar{h}_{1}^{\perp}\left(x_{2}\right) \hat{\sigma}_{T T}$

Classifying Polarized Quark TMDs (including tensor pol)

factor	QUARK TMD RANK FOR VECTOR POL. (SPIN 1/2) HADRON			
	0	1	2	3
1	$f_{1} g_{1} h_{1}$	$g_{1 T}^{[\partial]}$	$h_{1 L}^{\perp[\partial]}$	$h_{1 T}^{\perp[\partial]]}$

factor	QUARK TMD RANK FOR TENSOR POL. (SPIN 1) HADRON			
	0	1	2	3
1	$f_{1 L L}$	$f_{1 L T}^{[\partial]}$	$f_{1 T T}^{[\partial \partial]}$	
$C_{G}^{[U]}$	$\delta h_{1 L T}^{[\partial . G]}$	$h_{1 L L}^{\perp[G]}$	$g_{1 L T}^{[G]}$	$h_{1 T T}^{[G]}$
$C_{G G, c}^{[U]}$	\cdots	\cdots	$h_{1 L T}^{\perp[\partial G]} g_{1 T T}^{[\partial G]}$	$h_{1 T T}^{\perp[\partial \partial G]}$
$C_{G G G, c}^{[U]}$	\cdots	\ldots	$f_{1 T T}^{[G G c]}$	

$$
h_{1 L T}^{[U]}\left(x, p_{T}^{2}\right)=C_{G}^{[U]} \delta h_{1 L T}^{[\partial . G]}\left(x, p_{T}^{2}\right) \quad \text { with } \delta h_{1 L T}^{[\partial . G]}(x)=0
$$

Operator classification of gluon TMDs

factor	GLUON TMD PDF RANK FOR SPIN 1/2 HADRON				
	0		1	$\mathbf{2}$	3
1	$f_{1} g_{1}$	$g_{1 T}^{[\partial]}$	$h_{1}^{\perp[\partial]}$		
$C_{G, c}^{[U]}$		$f_{1 T}^{\perp[G c]} h_{1}^{[G c]}$	$h_{1 L}^{\perp[\partial G c]}$	$h_{1 T}^{\perp[\partial \partial G c]}$	
$C_{G G, c}^{[U]}$	$\delta f_{1}^{[G G c]} \cdots$	\cdots	$h_{1}^{\perp[G G c]}$		
$C_{G G G, c}^{[U]}$		\cdots	\cdots	$h_{1 T}^{\perp[G G G c]}$	

factor	ADDITIONAL PDFs FOR TENSOR POL. SPIN 1 HADRON				
	0	1	2	3	4
1	$f_{1 L L}$	$h_{1 T T}$	$f_{1 L T}^{[\partial]}$	$h_{1 L T}^{[\partial]}$	$f_{1 T T}^{[\partial \partial]} h_{1 L L}^{\perp[\partial \partial]} h_{1 T T}^{\perp[\partial \partial]}$
$C_{G, c}^{[U]}$		$g_{1 L T}^{[G c]}$	$h_{1 L T}^{\perp[\partial \partial \partial]}$	$h_{1 T T}^{\perp \perp[\partial \partial \partial \partial]}$	
$C_{G G, c}^{[U T G c]}$	\ldots	\ldots	$f_{1 T T}^{\perp[G G c]} h_{1 L L}^{\perp[G G c]} h_{1 T T}^{\perp[G G c}$	$h_{1 L T}^{\perp[\partial G G]}$	$h_{1 T T}^{\perp\lfloor\partial \partial G G c]}$
$C_{G G G, c}^{[U]}$		\ldots	\ldots		
$C^{[U]}$	\ldots	\ldots	\ldots	\ldots	$h_{1 T T}^{\perp \perp[G G G G c]}$

Small x physics in terms of TMDs

■ The single Wilson-loop correlator Γ_{0}

$$
\Gamma_{0}\left(k_{T}\right)=\frac{1}{2 M^{2}}\left\{e\left(k_{T}^{2}\right)-\frac{\epsilon^{k S_{T}}}{M} e_{T}\left(k_{T}^{2}\right)\right\}
$$

factor	GLUON TMD PDF RANK FOR UNPOL. AND SPIN 1/2 HADRON			
	0	1	2	3
1	e			
$C_{G, c}^{[U]}$		$e_{T}^{[G c]}$		
$C_{G G, c}^{[U]}$	$\delta e^{[G G c]}$			
$C_{G G G, c}^{[U]}$		$\delta e_{T}^{[G . G G c]}$		

■ Note limit $\mathrm{x} \rightarrow 0$ for gluon TMDs linked to gluonic pole m.e. of Γ_{0}

$$
(2 \pi)^{2} \Gamma^{i j\left[U, U^{\prime}\right]}\left(0, k_{T}\right) \sim C_{G G}^{\left[U, U^{\prime}\right]} M^{2} \Gamma_{0 G G}^{i j\left[U, U^{\prime}\right]}\left(k_{T}\right) \sim C_{G G}^{\left[U, U^{\prime}\right]} \frac{k_{T}^{i} k_{T}^{j}}{M^{2}} \Gamma_{0}^{\left[U, U^{\prime}\right]}\left(k_{T}\right)
$$

■ RHS depends on t , which for $\mathrm{x}=0$ becomes $\mathrm{p}_{\mathrm{T}}{ }^{2} \rightarrow$ off-forward studies

Small x physics in terms of TMDs

- Note limit $\mathrm{x} \rightarrow 0$ for gluon TMDs linked to gluonic pole m.e. of Γ_{0} $\pi^{2} \Gamma^{\alpha \beta\left[U, U^{\prime}\right]}\left(0, p_{T}\right)=C_{G G}^{\left[U, U^{\prime}\right]} \Gamma_{0 G G}^{\alpha \beta}\left(p_{T}\right)$
- Dipole correlators: at small x only two structures for unpolarized and transversely polarized nucleons: pomeron \& odderon structure

$$
\begin{aligned}
& x f_{1}^{[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow \frac{k_{T}^{2}}{2 M^{2}} e^{[+,-]}\left(k_{T}^{2}\right) \\
& x h_{1}^{\perp[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow e^{[+,-]}\left(k_{T}^{2}\right) \\
& x f_{1 T}^{\perp[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow \frac{k_{T}^{2}}{2 M^{2}} e_{T}^{[+,-]}\left(k_{T}^{2}\right) \\
& x h_{1}^{[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow \frac{k_{T}^{2}}{2 M^{2}} e_{T}^{[+,-]}\left(k_{T}^{2}\right) \\
& x h_{1 T}^{\perp[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow e_{T}^{[+,-]}\left(k_{T}^{2}\right)
\end{aligned}
$$

Conclusions and outlook

■ (Generalized) universality of TMDs studied via operator product expansion, extending the well-known collinear distributions (including polarization 3 for quarks and 2 for gluons) to TMD PDF and PFF functions, ordered into functions of definite rank with rich momentum-spin structure (available results include spin 1)
■ Nonlocal operator structure allows derivations of positivity bounds.
■ Multiple operator possibilities for pretzelocity/transversity
■ Non-universality for p_{T}-widths of TMDs
■ Color entanglement for double T-odd functions (?)
■ Wilson loops simplify gluonic TMD-structure at small x
■ Wilson loops offer applications in diffractive processes (pomeron/ odderon structure)

A TMD picture for diffractive scattering

- Momentum flow in case of diffraction $\mathrm{x}_{1} \rightarrow \mathrm{M}_{\mathrm{x}}{ }^{2} / \mathrm{W}^{2} \rightarrow 0$ and $\mathrm{t} \rightarrow \mathrm{p}_{1 T^{2}}$
- Picture in terms of TMD and inclusion of gauge links (including gauge links/collinear gluons in $\mathrm{M} \sim \mathrm{S}-1$)

■ (Another way of looking at diffraction, cf Dominguez, Xiao, Yuan 2011 or older work of Gieseke, Qiao, Bartels 2000)

A TMD picture for diffractive scattering

$$
d \sigma=\Phi\left(p_{1 T} ; P\right) \operatorname{Tr}_{c}\left[U_{-}^{\dagger}\left[p_{1}\right] U_{+}\left[p_{1}, p_{2}\right] U_{+}^{\dagger}\left[p_{1}, p_{2}\right] U_{-}\left[p_{1}\right] \Phi\left(x_{2}, p_{2 T} ; q\right)\right]
$$

- involving correlators for proton and photon

$$
\begin{aligned}
& \Phi^{q / \gamma[+]}\left(x_{2}, p_{2 T} ; q\right)=\int \frac{d(\xi \cdot q) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p_{2} \cdot \xi_{2}}\langle\gamma *(q)| \bar{\psi}(0) U_{[0, \xi]}^{[+]} \psi(\xi)|\gamma *(q)\rangle_{\xi \cdot n=0} \\
& \Phi_{D I F}^{[l o o p]}\left(x_{1}, p_{1 T} ; P\right)=\delta\left(x_{1}\right) \int \frac{d^{2} \xi_{T}}{(2 \pi)^{2}} e^{i p_{1 r} \cdot \xi}\langle P| U^{[l o o p]}-1|P\rangle_{\xi \cdot n=0}
\end{aligned}
$$

