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INTRODUCTION
Goal: Compute properties of hadrons from first principles 

Parton distribution functions (PDFs) and Generalized Parton distributions (GPDs) 

Transverse Momentum Dependent densities (TMDs) 

Form Factos … 

Lattice QCD is a first principles method  

For many years calculations focused on Mellin moments 

Can be obtained from local matrix elements of the proton in Euclidean space  

Breaking of rotational symmetry —> power divergences  

only first few moments can be computed 

Recently direct calculations of PDFs in Lattice QCD are proposed 

First lattice Calculations already available 
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PDFS: DEFINITION

5

We denote bare light-front PDFs by f

(0)(⇠). Light-front PDFs are frequently represented by

f

(0)
j/N

(⇠), where j denotes the quark flavor and N the nucleon species, but here we will be considering

only non-singlet distributions, for which we can neglect mixing between parton species, and work

with su�cient generality that the nucleon species is not relevant to our discussion. We use light-

front coordinates, (x+, x�,xT) such that x

± = (t ± z)/
p
2, and define ⇠ = k

+
/P

+. We use ⇠

to distinguish this variable from the Bjorken-x parameter that characterizes the kinematics of

scattering experiments and is given in terms of the experimental momentum transfer Q

2 = �q

2

and hadron momentum P by x = Q

2
/(2P · q). The bare PDF is defined as [3]
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Here T is the time-ordering operator,  is a quark field, and the subscript C indicates that the

vacuum expectation value has been subtracted (in other words, only connected contributions are

included). The operator W (!�
, 0) is the Wilson line,

W (!�
, 0) = P exp

"
�ig0

Z
!

�

0
dy�A+

↵

(0, y�,0T)T↵

#
, (2)

with P the path-ordering operator, g0 the QCD bare coupling, and A

µ = A

µ

↵

T

↵

the SU(3) gauge

potential with generator T
↵

(summation over color index ↵ is implicit). The target state, |P i, is a
spin-averaged, exact momentum eigenstate with relativistic normalization

hP 0|P i = (2⇡)32P+
�

�
P

+ � P

0+�
�

(2)
�
PT �P0

T

�
. (3)

We define the moments of bare PDFs as
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h
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where f
(0)

(⇠) is the anti-quark PDF and the second equality follows from the relation of the quark

to anti-quark PDFs

f

(0)(�⇠) = �f

(0)
(⇠), (5)

which holds for the bare distributions if the quark and anti-quarks fields are classical, or quantized

using light-front quantization [33].

We can relate these bare moments, a(n)0 , to matrix elements of twist-two operators via

D
P |O{µ1...µn}

0 |P
E
= 2a(n)0 (Pµ1 · · ·Pµn � traces) . (6)
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Light-cone PDFs:
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Local matrix elements:
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Here the bare twist-two operators are
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2
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In these expressions the braces denote symmetrization, Dµ is the symmetric covariant derivative,

�

a are SU(2) flavor matrices, and the subtraction of the trace terms ensures that the operator

transforms irreducibly under SU(2)L ⌦ SU(2)R.

B. Renormalized PDFs

To this point we have considered the bare light-front PDFs, with the understanding that such

objects are evaluated with some regulator that renders the bare distributions finite. We now intro-

duce renormalized light-front PDFs. We stress that in this section we consider a renormalization

scheme that respects rotational symmetry and, for definiteness, one can have in mind the MS

scheme. Complications will arise if a regulator that breaks rotational invariance, such as the lat-

tice regulator, is used. We do not discuss such complications here, because we will avoid explicit

computations of moments at finite lattice spacing. All correlation functions computed on the lattice

can be renormalized and extrapolated to the continuum limit, provided that no power divergent

mixing exists. In the next section, we propose a smeared correlation function that does not have

power-divergent mixing.
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where µ is some renormalization scale. We do not need to consider mixing between parton species

for non-singlet distributions. In terms of the renormalized light-front PDF, the renormalized Mellin

moments are
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which can be related to matrix elements of renormalized twist-two operators, O{⌫1...⌫n}(µ) =
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0 , via
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This relation holds provided the light-front PDFs and twist-two operators are renormalized in the

same scheme [33].



GPDS: DEFINITION
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Moments of GPD and quark angular momentum of the nucleon Munehisa Ohtani

1. Introduction

The internal structure of nucleons has attracted much attention in the contexts of the nucleon
form factors, proton spin and spin/charge asymmetry in deeply virtual Compton scattering and
so on. For a systematic study of the nucleon internal structure, generalized parton distributions
(GPDs) are introduced through the off-forward matrix elements of quark-bilinear operators:

∫ dη
4π

eiηx⟨P′|q̄(−ηn
2 )γµU q(ηn2 )|P⟩ = N̄(P′)

(

γµH(x,ξ , t)+ iσ
µν∆ν
2M E(x,ξ , t)

)

N(P), (1.1)

with a light cone vector n and the momentum transfer ∆= P′ −P as functions of the quark momen-
tum fraction x, the skewedness ξ = −n ·∆/2 and the virtuality t = ∆2. The axial counterparts are
denoted by H̃ and Ẽ. Since the GPD is defined with the finite momentum transfer in contrast to the
conventional parton distribution functions, partons bring us the informations on hadron structure in
the transverse space.

In this contribution, we report on the first moments of GPD, so called generalized form factors,
for nucleon, as a function of the virtuality calculated on the lattice with unquenched configurations
of QCDSF/UKQCD collaboration.

In the forward limit these generalized form factors provide the total angular momentum of
quark in the nucleon through Ji’s sum rule [1],

Jq =
1
2

∫ 1

−1
dxx(H(x,ξ ,0)+E(x,ξ ,0)) ≡

1
2
(A20(t = 0)+B20(t = 0)). (1.2)

Combined with the quark spin contributions to the nucleon obtained as the forward value of the
axial form factor,

sq =
1
2

∫ 1

−1
dxH̃(x,ξ ,0) ≡ 1

2
Ã10(t = 0), (1.3)

we compute the orbital angular momentum of quarks as Lq = Jq− sq. Using the results of chiral
perturbation theory (χPT) for chiral extrapolation to the physical point, we discuss the angular
momentum carried by quark in the nucleon.

2. Generalized form factors on the lattice

The Mellin moments of the GPDs are known to be expressed by polynomials in terms of ξ
[2],

∫ 1

−1
dxxn−1

[

H(x,ξ , t)
E(x,ξ , t)

]

=
[(n−1)/2]

∑
k=0

(2ξ )2k
[

An,2k(t)
Bn,2k(t)

]

±δn,even(2ξ )nCn(t). (2.1)

The generalized form factors An,2k,Bn,2k andCn are defined from the coefficients of this expansion.
Since the integration by xmakes the quark operator local, the (n−1)-th moments can be calculated
[3] on the lattice through the matrix element of ⟨P′|q̄γ{µ1Dµ2 · · ·Dµn}q|P⟩ by taking a ratio of the
three- and two-point functions.

To estimate these correlation functions, 400 to 2200 configurations are used for each β ,κ with
two flavor Wilson fermion with the clover improvement. Simulations are performed with various
set of parameters β and κ corresponding to the lattice spacing less than 0.09fm and pion mass cov-
ering from order of 1GeV down to 350MeV with a reference scale r0 = 0.467fm. Nonperturbative
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Mellin moments are local matrix elements

Can be evaluated in Euclidean space

Lattice QCD calculations are possible

Challenges:

Renormalization and power divergent mixing

Lattice breaks O(4) symmetry

Only few moments can be computed
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statistical and systematic uncertainties. Over the last
few years calculations of the disconnected quark contri-
butions have appeared in the literature [3–8] and quite
recently results at the physical point have become avail-
able [9–11] (see also Ref. [12] for a recent review). The
advances in the computation of disconnected diagrams
with closed quark loops have initiated calculations of the
diagram with the gluon loop [13, 14].

N(x)
N(x0)

J (x1)

N(x)
N(x0)

J (x1)

N(x0) N(x)
J (x1)

FIG. 1: Quark and gluon contributions to the nucleon three-

point function. The current insertion (J(x1)) is indicated by an

⇥ symbol. Upper Left: connected, Upper right: disconnected

quark loop, lower: disconnected gluon loop.

For the extraction of the quantities of interest one must
form dimensionless ratios of the two- and three- point
correlation functions, denoted as G

2pt and G

3pt, respec-
tively. The ratio is optimized so that it does not contain
potentially noisy two-point functions at large time sep-
arations and because correlations between its di↵erent
factors reduce the statistical noise.

RO(�, ~q, t, tf )=
G

3pt
O (�, ~q, t)

G

2pt(~0, tf )
⇥

s
G

2pt(�~q, tf�t)G2pt(~0, t)G2pt(~0, tf )

G

2pt(~0, tf�t)G2pt(�~q, t)G2pt(�~q, tf )

!
tf�t!1
t�ti!1

⇧(�, ~q) . (3)

Details on the definition of the above quantities can be
found in Ref. [15]. In the aforementioned ratio, it is im-
portant to keep the time separation of the initial (source)
and final (sink) states of the nucleon large enough to en-
sure suppressed contamination from excited states. The
desired information may be extracted from a plateau with
respect to the current insertion time, t, which is well sep-
arated from the source and the sink in order to avoid
overlap with the excited states.

Lattice data extracted from a non-conserved current
must be renormalized prior a comparison with experi-
mental data and phenomenological analyses. For cases
like the nucleon charges and the quark momentum frac-
tion, the renormalization is multiplicative, while for the
case of the gluon momentum fraction, a more compli-
cated renormalization prescription is required due to mix-
ing with other operators. Finally, the properly renormal-

izes matrix elements may be expressed in terms of gen-
eralized form factors, which provide information on the
nucleon structure.

III. QUARK CONTRIBUTIONS

A. Axial charge

One of the fundamental nucleon observables is the ax-
ial charge, gA, which governs the rate of �-decay and has
been measured precisely. It is essential for lattice QCD to
reproduce its experimental value, or in the case of devia-
tion to understand its origin, so that we have confidence
in predicting quantities that are not easily accessible in
experiments. The axial charge can be determined di-
rectly from lattice data without the need of fitting a mo-
mentum dependence, and thus, it is a benchmark quan-
tity for hadron structure computations.

FIG. 2: Lattice results on gA vs m

2
⇡ for: Nf=2+1 DWF

(RBC/UKQCD [16, 17], RBC/UKQCD [18], �QCD [19]), Nf=2+1
DWF on asqtad sea (LHPC [20]), Nf=2 TMF (ETMC [21]), Nf=2
Clover (QCDSF/UKQCD [22], CLS/MAINZ [23], QCDSF [24],
RQCD [25]), Nf=1+2 Clover (LHPC [26], CSSM [27]), Nf=2+1+1
TMF (ETMC [28]), Nf=2+1+1 HISQ (PNDME [29]), Nf=2 TMF
with Clover (ETMC [30]). The black star shows the experimental
value.

In Fig. 2 we plot gA as a function of the pion mass, m⇡,
for simulations with m⇡500MeV. The plotted results
correspond to di↵erent lattice spacings, volume, number
of dynamical quarks and formulations: Clover, Domain
Wall (DWF), HISQ, Staggered and Twisted Mass (TMF)
fermions [16–18, 20–28, 30–32]. We compare only results
obtained from the plateau method without continuum
extrapolation and volume corrections.
Over the last years, simulations at or near the physi-

cal point have become available, which eliminate the un-
controlled systematic on the chiral extrapolation. We
find that to the current statistics, volume and lattice
spacing, the data close to the physical pion mass have
an upward tendancy towards the experimental value:
g

exp

A = 1.2701(25) [33]. However, statistical and system-
atic uncertainties are not well under controlled yet and it
is crucial to increase the statistics and study the volume
dependence before reaching to final conclusions.

Isovector Axial Charge

From M. Constantinou: arXiv:1701.02855

https://arxiv.org/abs/1701.02855
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FIG. 16: Isovector nucleon scalar charge g

u�d
S (upper) and

tensor charge g

u�d
T (lower) versus m2

⇡. Twisted mass fermion
(TMF) results are shown for two ensembles of Nf = 2+1+1
fermions (filled green square for ts ⇠ 1.15 fm and open green
square for ts ⇠ 1.5 fm, and filled blue diamond) and for the
physical ensemble (filled red triangle for ts ⇠ 1.1 fm and open
red triangle for ts ⇠ 1.3 fm). Results are also shown using:
clover fermions on Nf = 2+1+1 staggered sea from Ref. [66,
69] for g

u�d
S and from Ref. [70], for g

u�d
T (filled light blue

downwards triangles); Nf = 2+1 clover (black filled triangles
and crosses), Nf = 2+1 domain wall fermions (open light blue
circles) and hybrid (blue crosses) [71]; Nf = 2 Clover fermions
for three values of the lattice spacing (filled magenta, yellow
and light blue circles crosses) [65]. All results were extracted
using the plateau method except those from Ref. [66, 70],
which used a two-state fit.

out, the consistency among these results indicates small
cut-o↵ and finite volume e↵ects. The N

f

= 2 val-
ues are consistent with the values extracted using two
N

f

= 2+1+1 ensembles with lattice spacing a = 0.082 fm
and a = 0.064 fm, showing that there are no visible
strange and charm sea quark e↵ects on these quantities
at least to the accuracy we now have. This allows a com-
parison with results using di↵erent fermion discretiza-
tion schemes even before the continuum extrapolation is
performed. In Fig. 15 we include results obtained us-
ing clover improved fermions from two collaborations:
In Ref. [65] results were obtained using N

f

= 2 clover

FIG. 17: Isovector nucleon momentum fraction hxiu�d and
helicity hxi�u��d. Twisted mass fermion results are shown
for Nf = 2 ensembles (open green squares), for two Nf =
2 + 1 + 1 ensembles (blue filled square) and for the phys-
ical ensemble with a clover term (open red triangle) taken
from Table VI. Also shown are results from RBC-UKQCD
using Nf = 2+1 DWF (magenta right pointing triangle) [72],
from LHPC using DWF on Nf = 2 + 1 staggered sea (blue
crosses) [67] and QCDSF/UKQCD using Nf = 2 clover
fermions (filled magenta diamond) [73]. For hxiu�d we also
show results from LHPC using Nf = 2+1 clover with 2-HEX
smearing (filled black triangles) [68] and Nf = 2 clover (open
black circle) [74]. All values are extracted using the plateau
method and ts ⇠ (1� 1.2) fm, except our result at the phys-
ical point for which ts ⇠ 1.3 fm was used. The experimental
value for hxiu�d is taken from Ref. [75] and for hxi�u��d from
Ref. [76].

fermions with smallest pion mass of 150 MeV and three
lattice spacings a = 0.08 fm, 0.07 fm and 0.06 fm as well
as several volumes. These results are in agreement with
ours. The LHPC analyzed N

f

= 2 + 1 tree-level clover-
improved Wilson fermions with 2-HEX stout smeared
gauge links provided by the BMW collaboration using
smallest pion mass of 149 MeV at one lattice spacing
a = 0.116 fm [68]. These tend in general to have lower
values. This is particularly severe close to the physical
pion mass. LHPC also computed the axial charge in a
mixed action approach that uses DWF on staggered sea

First iso-vector moments 
momentum fraction 

helicity 
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Nf = 2 + 1 NP clover, stout smeared links, 146 configs ◊ 64 measurements,
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Nf = 2 twisted mass with clover term, tf ≠ ti = 1.1 ≠ 1.7 fm, 6816-69784 measurements.
PNDME: [Jang,Thu,15:00] mfi = 138 MeV, a = 0.09 fm, Lmfi = 3.9, L = 5.6 fm
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PACS:  Nf=2+1 mπ = 145 MeV  8.1 fm box  
ETMC:  Nf=2+1 mπ = 131 MeV  4.5 fm box  

PNDME: mixed action  mπ = 138 MeV  5.6 fm box  
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G(Q2) =
k
maxX

k

akz
k, z =

p
tcut +Q2 �

p
tcutp

tcut +Q2 +
p
tcut

,z-expansion fit:

Fi�ing Q2-dependence

We want to fit GA,P (Q2) with curves to characterize the overall shape of the
form factor and determine the axial radius.
I Common approach: use simple fit forms such as a dipole.
I Be�er: use z-expansion. Conformally map domain where G(Q2) is
analytic in complex Q2 to |z | < 1, then use a Taylor series:

Q
2

z

R. J. Hill and G. Paz, Phys. Rev. D 84 (2011) 073006

z (Q2) =

p
tcut + Q2 � ptcutp
tcut + Q2 +

p
tcut
,

G(Q2) =
X

k

akz (Q2)k ,

with Gaussian priors imposed on the coe�icients ak .
I Leave a0 and a1 unconstrained, so that the intercept and slope are not
directly constrained.

I For higher coe�icients, impose |ak>1 | < 5max{|a0 |, |a1 |}, and vary the
bound to estimate systematic uncertainty.

For GP , perform the fit to (Q2 +m2)GP (Q2) to remove the pseudoscalar pole.
Jeremy Green (Mainz) Light and strange axial form factors La�ice 2016 7 / 25
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Q

2 = 0. Another important observation from FIG. 5 is that the light disconnected-sea quarks

contribution to the Glight-sea

E

(Q2) is almost 6-10 times larger than the strange quark contribution

G

s

E

(Q2).

(a) (b)

(c)

FIG. 5. Light and strange disconnected-sea quarks contributions to the nucleon electric FF

Glight-sea/strange

E

(Q2) for two di↵erent quark masses of the 32I (FIG. 5a) and 48I (FIGs. 5b, 5c) en-

sembles. The �2/d.o.f. for the two fits are in the range of 0.49� 0.81. Charge factors are not included

in the form factors. Note the Q2 ranges are di↵erent in the 32I and 48I cases.
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(a) (b)

(c)

FIG. 4. Light and strange disconnected-sea quarks magnetic moment Glight-sea, strange

M

(0) extrapolation

for three di↵erent quark masses of the 32I (FIG. 4a) and 48I (FIGs. 4b, 4c) ensembles using z-expansion

from the lattice Glight-sea, strange

M

(Q2). The �2/d.o.f. for the extrapolations are in the range of 0.52�0.88.

Charge factors are not included in the form factors. Note the Q2 ranges are di↵erent in the 32I and 48I

cases.

the magnetic moment and such an e↵ect of adding the a

3

term for the charge radius calculation

is 12 � 20%. Therefore a 20% uncertainty has been added to the systematics in the global

fit of charge radius as a part of our conservative assessment. One important observation from

FIG. 5 is that although the data of light quark electric FF are not very precise, nevertheless the

uncertainty band of the z-expansion is narrower compared to the magnetic FF extrapolation.

The reason is due to charge conservation as the disconnected G

q

E

(Q2) is constrained to be 0 at
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Abstract

We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution

to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The

lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with

one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the

nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infi-
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see talk by R. Suffian [R. Suffian et al. arXiv:1705.05849 ]

https://arxiv.org/abs/1705.05849
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Axial  nucleon form factors

J. Green et al. arXiv 1703.06703

Fi�ing Q2-dependence

We want to fit GA,P (Q2) with curves to characterize the overall shape of the
form factor and determine the axial radius.
I Common approach: use simple fit forms such as a dipole.
I Be�er: use z-expansion. Conformally map domain where G(Q2) is
analytic in complex Q2 to |z | < 1, then use a Taylor series:

Q
2

z

R. J. Hill and G. Paz, Phys. Rev. D 84 (2011) 073006

z (Q2) =

p
tcut + Q2 � ptcutp
tcut + Q2 +

p
tcut
,

G(Q2) =
X

k

akz (Q2)k ,

with Gaussian priors imposed on the coe�icients ak .
I Leave a0 and a1 unconstrained, so that the intercept and slope are not
directly constrained.

I For higher coe�icients, impose |ak>1 | < 5max{|a0 |, |a1 |}, and vary the
bound to estimate systematic uncertainty.

For GP , perform the fit to (Q2 +m2)GP (Q2) to remove the pseudoscalar pole.
Jeremy Green (Mainz) Light and strange axial form factors La�ice 2016 7 / 25

z-expansion fit: G(Q2) =
k
maxX

k

akz
k, z =

p
tcut +Q2 �

p
tcutp

tcut +Q2 +
p
tcut

,
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FIG. 8: Unpolarized (vector) generalized n = 2 form factors for the flavor combinations u − d (left) and u + d (right).
Disconnected contributions are not included.

That is,

ZO =
ZO,pert

Zpert
A

· Znonpert
A . (18)

In the continuum, because of Lorentz invariance, the totally symmetric operator q̄[γ5]γ{µDνDρ}q cannot mix with
the mixed symmetry operator q̄[γ5]γ[µD{ν]Dρ}q, where the square brackets denote antisymmetrization. In contrast,

on the lattice, both operators appear in the same representation, τ (8)
1 , so that they can and do mix. However, the

mixing coefficient[39, 40], ZO
ij = 2.88 × 10−3, is very small, so that we have ignored the contribution of the mixed

symmetry operator in this present work.
All results below have been transformed to a scale of µ2 = 4 GeV2.

Moments of GPDs
LHPC:  arXiv:0705.4295

Phys.Rev.D77:094502,2008

https://arxiv.org/abs/0705.4295


GLUONIC CONTENT

Gluon momentum fraction  

ETMC arXiv:1611.06901  

Gluon spin 

χQCD arXiv:1609.05937 

Gluon structure for spin 1 particles 

Detmold et al. arXiv:1703.08220 (and talk by P. Shanahan)

https://arxiv.org/abs/1611.06901
https://arxiv.org/abs/1609.05937
https://arxiv.org/abs/1703.08220


Can Lattice QCD go beyond moments?

Lattice QCD can only compute time local matrix elements

Euclidean space



QPDFS: MAIN IDEA

X. Ji, Phys.Rev.Lett. 110, (2013)  

-2 -1 0 1 2
-2

-1

0

1

2
lim

Pz!1
q

(0) (x, Pz) = f(x)

z

t

Euclidean space time local matrix element  
is equal to the same  matrix element in 
Minkowski space 



QPDFS: DEFINITION

h0 (z, Pz) =
1

2Pz

⌧
Pz

���� (z)W(0, z; ⌧)�z
�a

2
 (0)

����Pz

�

C

W(z, 0) = P exp


�ig0

Z z

0
dz0 A3

↵(z
0v)T↵

�
, v = (0, 0, 1, 0)

q(0) (⇠, Pz) =
1

2⇡

Z 1

�1
dz ei⇠zPzh(0) (z, Pz)



PSEUDO-PDFS
A. Radyushkin 2017 (see talk)

M4
�
zPz, z

2
�
=

⌧
Pz

���� (z)W(0, z)�4
�a

2
 (0)

����Pz

�

C

M is related to the coordinate space PDFs (Fourier 
transform of the PDFs) in the limit of z2 =0

Radyushkin arXiv:1705.01488

https://arxiv.org/abs/1705.01488


Related ideas see (hadronic tensor): 

A more general point of view: Y.-Q. Ma J.-W. Qiu (2014) 1404.6860

because the PDFs are boost invariant. While the quasi distributions do not contain “real-
time” any more, there is a trade-off: an infinite hadron momentum, which cannot be realized
in the actual lattice QCD simulations. To make this accessible, Ji introduced the large
momentum effective theory and the quasi distribution with finite P

z

, which is calculable on
the lattice, is matched to the one with infinite P

z

, therefore normal distributions, as:

eq(x, ⇤, P
z

) = Z

✓

x,
⇤

P
z

,
µ

P
z

◆

⌦ q(x, µ) + O
 

⇤

2

QCD

P 2

z

,
M2

P 2

z

!

, (1.4)

where ⌦ represents a convolution with respect to x and M is a nucleon mass. As P
z

!
1, the matching factor Z goes to one and O(1/P 2

z

) corrections are dropped off. It is
claimed [7] that since the difference between quasi and normal distributions is just whether
the longitudinal momentum is finite or infinite, they could have the common IR structure,
which should not be changed by moving from one frame to the other. The matching factor
Z, therefore, could be IR divergence free and perturbatively calculable.

The fact that the matching factor in Ji’s approach is IR-safe reminds us of the QCD
collinear factorization. As mentioned earlier, in the high-energy scattering process with
large momentum scale Q, the scattering cross section can be factorized into hard parts and
nonperturbative functions such as PDFs and fragmentation functions up to an uncertainty
of O(⇤

2

QCD

/Q2

). All collinear divergences are absorbed into the nonperturbative functions,
the remaining hard part is, therefore, IR-safe and perturbatively calculable. Inspired by
Ji’s idea and extending it to more familiar picture based on the collinear factorization, two
of authors of the present paper introduced a concept of the collinear factorization into the
lattice calculable parton distribution functions [8, 9]. In this approach, we start with finding
“lattice cross sections” which can be factorized into hard parts and targeted nonperturbative
functions, along with the analogy of the collinear factorization in the high-energy scattering
process. This factorization is schematically expressed as

e�(x, eµ2, P
z

) =

X

↵={q,q,g}

H
↵

✓

x,
eµ

P
z

,
eµ

µ

◆

⌦ f
↵

(x, µ2

) + O
 

⇤

2

QCD

eµ2

!

, (1.5)

where the left-hand side is lattice calculable cross sections and it is factorizable into hard
parts H

↵

and nonperturbative functions f
↵

in the right-hand side. Depending on the
cross section in the left-hand side, quark (q), anti-quark (q) and gluon (g) distributions
could be involved. In the analogy with usual scatterings, eµ and P

z

correspond to the
momentum transfer (resolution) and the collision energy (parameter), respectively. As
several kinds of high-energy scattering cross section give common distribution functions
(universality), we could design bunch of types of lattice calculable cross sections to give
desired nonperturbative functions. From this view, the quasi distribution (1.2), introduced
by Ji, is a special case of the lattice cross section and the quasi quark distributions are
factorized into hard parts and normal distributions.

Several exploratory studies of the lattice computation for the quasi distributions have
been carried out since Ji’s original proposal of the method [10–12]. When the quasi
distributions or lattice calculable cross sections are computed on the lattice, the matching

– 3 –

Minkowski space factorization:

computable in perturbation theory  

Detmold and Lin Phys.Rev.D73:014501,2006K-F Liu Phys.Rev. D62 (2000) 074501
QCDSF 2017       Hansen et al. 2017



Practical calculations require a regulator (Lattice) 

Continuum limit has to be taken 

renormalization (see talks M. Constantinou, C. Monahan, Y. Zhao, Y. Yang) 

Momentum has to be large compared to hadronic scales to suppress higher twist effects 

Practical issue with LQCD calculations at large momentum … signal to noise ratio

q (x, Pz) =

Z 1

�1

d⇠

⇠

e
Z

✓
x

⇠

,

µ

Pz

◆
f(⇠, µ) +O(⇤QCD/Pz,MN/Pz)

X. Xiong, X. Ji, J. H. Zhang, Y. Zhao, Phys. Rev. D 90, no. 1, 014051 (2014) 
T. Ishikawa et al. arXiv:1609.02018 (2016)

The matching kernel can be computed in perturbation theory 



GRADIENT FLOW QUASI-PDFS

[24], which can be removed by introducing ringed fermion fields [25, 26]. Third, the lat-

tice matrix elements of smeared fields remain finite in the continuum limit, provided the

flow time is fixed in physical units [24, 38]. In essence, the gradient flow allows one to

replace the lattice regulator with a new smearing-scale regulator. This last fact allows

one to determine the continuum limit of lattice matrix elements of, for example, twist-two

operators, without power-divergent mixing. In the continuum, because the gradient flow

respects rotational symmetry, the mixing between twist-two operators is then reduced to

ordinary mixing with coe�cients that depend on the smearing scale and not powers of the

inverse lattice spacing [38].

We denote the ringed fermion fields at flow time ⌧ by �(x; ⌧) and �(x; ⌧), and the

corresponding Wilson line at the same flow time, constructed from the smeared gauge

fields B
µ

(x; ⌧), by W(0, z; ⌧). We start with the matrix element

h

(s)

✓
zp
⌧

,

p
⌧P

z

,

p
⌧⇤QCD,

p
⌧MN

◆
=

1

2P
z

⌧
P

z

�����(z; ⌧)W(0, z; ⌧)�
z

�

a

2
�(0; ⌧)

����Pz

�

C

,

(2.11)

which, being dimensionless, depends only on dimensionless combinations of scales. We note

that the flow time has units of length-squared. The subscript C indicates that disconnected

contributions to this matrix element have been removed. The ringed fermion fields require

no wave function renormalization and this smeared matrix element is finite provided the

flow time, ⌧ , is non-zero and fixed in physical units, because correlation functions con-

structed from smeared fields are finite [23, 24]. Note that divergences will appear in the

limit of vanishing flow time and the matrix element will then require renormalization.

We then define the quasi PDF [13, 14] as

q

(s)
�
⇠,

p
⌧P

z

,

p
⌧⇤QCD,

p
⌧MN

�
=

Z 1

�1
dz

2⇡
e

i⇠zPz
P

z

h

(s)(
p
⌧z,

p
⌧P

z

,

p
⌧⇤QCD,

p
⌧MN),

(2.12)

where ⇠ is a dimensionless parameter that can be naively interpreted as the longitudinal

momentum fraction of the parton in the nucleon N . This interpretation is not correct in

Euclidean space, however, and instead ⇠ should be viewed as a dimensionless momentum

variable in a Fourier transformation.

In practice, the smeared matrix element h is determined from lattice computations at

finite lattice spacing, a, as

h

(s)

✓
zp
⌧

,

p
⌧P

z

,

p
⌧⇤QCD,

p
⌧MN

◆
= lim

a!0
h

✓
z

a

,

p
⌧

a

, aP

z

, a⇤QCD, aMN

◆
, (2.13)

where
p
⌧/a is held fixed and

h

⇣
z

a

,

p
⌧

a

, aP

z

, a⇤QCD, aMN

⌘
=

1

2aP
z

⌧
aP

z

�����
✓
z

a

;

p
⌧

a

◆
W

✓
0,

z

a

;

p
⌧

a

◆
�

z

�

a

2
�

✓
0;

p
⌧

a

◆���� aPz

�

C

.

(2.14)
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τ is the a regulator scale
χ quark field

W is the regulated gauge link 
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At fixed flow time the quasi-PDF is finite in the continuum limit

Monahan and KO: arXiv:1612.01584talk by C. Monahan



We introduce the inverse kernel through

C

(0)
n

(
p
⌧µ,

p
⌧P

z

) =

Z 1

�1
dx x

n�1 e
Z(x,

p
⌧µ,

p
⌧P

z

), (3.16)

which leads to

q

(s)
�
x,

p
⌧⇤QCD,

p
⌧P

z

�
=

Z 1

�1

d⇠

⇠

e
Z

✓
x

⇠

,

p
⌧µ,

p
⌧P

z

◆
f(⇠, µ) +O(

p
⌧⇤QCD) (3.17)

Note that all of these relations are only valid if

⇤
QCD

,M

N

⌧ P

z

⌧ ⌧

�1/2
. (3.18)

Furthermore, the kernel functions can be computed in continuum perturbation theory,

following the methods introduced in [23] and the examples in [17, 20, 27, 28].

We stress that, in contrast to the original work by Ji, in which factorization occurs

in the limit of large nucleon momentum, P
z

, here we only require the momentum to be

much larger than the hadronic scales involved. In Ji’s approach, in the limit of infinitely

large nucleon momentum, the relation between the bare quasi PDFs and the light-front

PDFs is simple, as we demonstrate in Appendix A. Here the large nucleon momentum

serves only to suppress higher twist contributions. In addition, we have introduced a new

scale, the (inverse) flow time, ⌧�1, that needs to be large but finite. These requirements

on the hierarchy of scales, expressed in Equation (3.18), are no di↵erent in nature than the

requirements used to factor physical cross-sections into PDFs and Wilson coe�cients and

are similar in spirit to the factorization approach proposed in [20, 28]. In this approach,

the renormalization scale and the factorization scale are distinct and separate from the

large momentum, which suppresses higher twist e↵ects.

4 DGLAP-like equation for the matching kernel

Ignoring mixing between quark flavors and gluons (i.e. looking at the non-singlet distribu-

tions) the renormalized PDFs satisfy a DGLAP equation [46–48] that describes their scale

dependence

µ

d f(x, µ)

dµ
=

↵

s

(µ)

⇡

Z 1

x

dy

y

f(y, µ)P

✓
x

y

◆
. (4.1)

Here P (z) is a function whose moments are the anomalous dimensions �(n) of the moments

of the PDFs, Z 1

0
dxxn�1

P (x) = �

(n)
, (4.2)

where 
µ

d

dµ
� ↵

s

(µ)

⇡

�

(n)

�
a

(n)(µ) = 0, (4.3)

and ↵

s

(µ) is the (renormalized) strong coupling constant.

Similarly, we can derive a DGLAP-like equation for the matching kernel that relates

smeared quasi PDFs and light-front PDFs. We start from the small distance expansion
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One can show that:

Therefore regulated quasi-PDFs are related to PDFs if

In summary, we assume that: first, we can correct exactly for target mass corrections;

and second, we can take the momentum P

z

su�ciently large that higher twist e↵ects are

negligible. Then, under these assumptions, the moments of the smeared quasi PDFs are

dimensionless products of perturbative coe�cients and pure twist-two matrix elements,

which are only functions of the dimensionless quantity
p
⌧⇤QCD, that contain information

about the structure of the hadron.

3.1 Short distance expansion

We can now relate the moments of the smeared quasi PDF b

(s,twist�2)
n

�p
⌧⇤QCD

�
, which

are local matrix elements of smeared fields, to the renormalized moments of the light-front

PDFs, by using the properties of the gradient flow that arise from a short distance expansion

[23, 25, 26, 44, 45]. The exponentially local nature of the smearing procedure allows for a

short distance expansion of the smeared local operators in terms of renormalized operators

in some renormalization scheme, such as the MS scheme. It is straightforward to show

that this short distance expansion leads to

b

(s,twist�2)
n

�p
⌧⇤QCD

�
= e

C

(0)
n

(
p
⌧µ)a(n)(µ) +O(

p
⌧⇤QCD), (3.11)

where µ is a renormalization scale. The leading order term in this expansion, a(n)(µ), is

the matrix element of a renormalized twist-two operator with the same gamma matrix and

derivative structure as the smeared operator that appears in the matrix element on the left

hand side. The higher order terms arise from higher dimension operators that enter the

short distance expansion of the smeared matrix element.

We now combine this short-distance expansion with Equation (3.10) to write

b

(s)
n

�p
⌧⇤QCD

�
= C

(0)
n

(
p
⌧µ,

p
⌧P

z

)a(n)(µ) +O
 
p
⌧⇤QCD,

⇤2
QCD

P

2
z

!
, (3.12)

Both the leading short distance coe�cient function, C(0)
n

(
p
⌧µ,

p
⌧P

z

), and the higher order

corrections can be computed in perturbation theory, so that this approximation can be

systematically improved.

For the rest of this discussion, we will assume that we work in a regime in which there

is a hierarchy of scales given by

⇤QCD,MN

⌧ P

z

⌧ ⌧

�1/2
, (3.13)

so that power corrections and higher-twist e↵ects can be ignored. We also assume that

target mass corrections have been applied.

To relate the smeared quasi PDF with the light-front PDF, we introduce a kernel

function, Z(x,
p
⌧µ), whose Mellin moments are given by
h
C

(0)
n

(
p
⌧µ,

p
⌧P

z

)
i�1

=

Z 1

�1
dx x

n�1
Z(x,

p
⌧µ,

p
⌧P

z

). (3.14)

With this definition, and using the properties of multiplicative convolution, we find

f(x, µ) =

Z 1

�1
d⇠

⇠

Z

✓
x

⇠

,

p
⌧µ,

p
⌧P

z

◆
q

(s)
�
⇠,

p
⌧⇤QCD

�
+O(

p
⌧⇤QCD). (3.15)
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The matching kernel can be computed in continuum 
perturbation theory [C. Monahan].



PROCEDURE OUTLINE

Compute equal time matrix elements in Euclidean space 
using Lattice QCD at sufficiently large momentum in 
order to suppress higher twist effects 

Take the continuum limit (renormalization) 

Equal time: Minkowski — Euclidean equivalence 

Perform the matching Kernel calculation  in the 
continuum 
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FIG. 3: The nucleon isovector quasi-PDFs of Eq. 50 for the quark density (left), helicity (middle) and transversity (right) as
functions of x. The di↵erent colors from Pz (in units of 2⇡/L) 1 (red), 2 (green), 3 (cyan). We see the data converging at large
Pz.

the helicity and transversity. The normalization of each distribution is then set by multiplying in the corresponding
vector, axial or tensor charge, as obtained on the same lattices by Ref. [34] using standard techniques.

The isovector nucleon quark, helicity and transversity quasi-distributions are shown in Fig. 3, using in the same
color scheme to indicate di↵erent boosted momenta. We see that our lattice-QCD result has nonzero values for q(x),
�q(x) and �q(x) at x � 1 and that it does not vanish until x ⇡ 1.5. In all three cases, the smallest momentum
has the widest distribution, spreading out to large positive and negative x, beyond |x| = 1. As we discussed after
Eq. 13, when P

z

is finite, the range of |x| is not bounded by unity. But as the boosted momentum increases, the
distribution sharpens and narrows, decreasing the contribution coming from the |x| > 1 regions, just what we would
expect in the lightcone distribution. This is not hard to understand (as we discussed in our earlier work [24]): in the
infinite-momentum frame, no constituents of the nucleon can carry more momentum than the nucleon as a whole.
However, since the momentum in our calculation is finite, the PDF does not have to vanish at x = 1. The peak
location for the density and helicity distributions remains roughly the same for P

z

= 2 and 3, but in the case of
the transversity, the peak shifts toward x = 0 for P

z

= 3. Note that there is a substantial di↵erence in magnitude
between P

z

= 2 and 3, and an even more severe di↵erence in shape between P
z

= 1 and the others. We note that
since x is defined as k/P

z

and k is arbitrary, we can make k as small as desired to obtain small-x physics. However,
the small-x region corresponds to long-distance physics, which requires longer physical links to probe. This is similar
to the finite-volume e↵ect commonly seen in LQCD calculations, except the large-z links are essential to obtain a
reasonable description of the physics in this region.

To improve the quasi-distribution closer to the infinite-momentum frame (IMF) proton distribution functions, we
follow the recipes described in Sec. III for the one-loop and mass corrections. The e↵ects of the one-loop (with ↵

s

set
to 0.2) and the final quark distribution (one-loop first, followed by mass correction) and original quasi-distribution
are shown in Fig. 4 for P

z

= 2 and P
z

= 3. We found that corrections for P
z

= 1 distributions are poorly behaved
due to the smallness of the boosted momentum; the results are ignored here. First, we compare the quasi- (green
band) and one-loop–corrected (red band) distributions. For quark density, helicity and transversity distributions, we
find a significant dip caused by the one-loop correction near x = 0. The depth of this dip increases as we increase
the resolution in x, dx, used in the integral; this artifact may disappear with proper one-loop renormalization in the
future calculations. We also observe a clear evidence of higher values of the peak in the positive-x area and pushing
outward of the peak location of the distribution. In the large-x region, the distribution is pulling back, making it
rarer for quarks to carry a large fraction of momentum as one approaches the IMF, which is what we expect. For
the P

z

= 3 distribution, the magnitude of the changes due to the one-loop correction decrease, as expected. As we
expand the reach of the lattice calculation to larger values of P

z

, the corrections will be even smaller. The pushing
outward in the large-x region may be caused by the validity of the one-loop correction requiring larger momentum.
Future calculations should be designed to study this further with larger momentum and higher statistics.

We then apply the mass-correction formula to the one-loop–corrected distribution, shown as blue bands in Fig. 4
for all distributions and both P

z

2 {2, 3}. The peaks are shifted toward x = 0, the distribution sharpens, and the
large-x region distribution is suppressed further, as expected. In both the quark density and transversity distributions,
the mass correction also reduces the depth of the dip caused by the one-loop correction formula, and the e↵ect of
the mass correction also diminishes for the P

z

= 3 case. However, for the helicity, the mass-correction causes a
significant unphysical spike rising near x = 0 due to the singularity in the double-integral terms. We note that the
peak significantly decreases between P

z

= 2 and P
z

= 3, and this should be reduced with larger P
z

data in the future.
The height of the peak depends on the resolution of the integral, but has very small e↵ect on the zeroth moment. In
addition, the mass-correction formulae used in this paper di↵er from what we used in our earlier publication, Ref. [24].
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FIG. 4: The nucleon isovector quasi-PDF (green), with one-loop correction (red), and with after one-loop and mass correction
(i.e. qII). (blue) for the quark density (left), helicity (middle) and transversity (right) as functions of x for the higher two
boosted momenta Pz = 2 (top row) and 3 (bottom row) in units of 2⇡/L.
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FIG. 5: The momentum-dependence of the nucleon isovector distributions after one-loop and mass correction (i.e. qII) for quark
density (left), helicity (middle) and transversity (right) as functions of x. The orange band shows the momentum extrapolation
using the higher two momenta.

This change shifts the central value of the unpolarized and longitudinally polarized up-down quark asymmetry and
increases the estimated errors. However, the results remain consistent within the given errors.

To further reduce the remaining O(⇤2

QCD

/P 2

z

) correction due to higher-twist operators, we extrapolate to infinite
momentum using the form a + b/P 2

z

at each x point. The resulting distribution, shown in Fig. 5, has |x| > 1 region
within 2 sigma of zero; thus, we recover the correct support for the physical distribution within error. Note that the
smallest reliable region of x is related to the largest momentum on available on the lattice O(1/a), which is roughly
the inverse of length of the lattice volume in the link direction; therefore, we expect large systematic uncertainty in
the region x 2 [�0.08, 0.08]. In the case of quark density, there are also indications of momentum convergence within
2 sigma from P

z

= 2 and 3 data. In addition, the final extrapolated distribution (orange band) is consistent with the
largest momentum distribution. However, for the polarized distributions, even larger P

z

calculations are needed to
improve the convergence rate and reduce the uncertainty due to extrapolation, especially for the helicity.

There are many aspects that need to be improved to get the systematics under control, as indicated at various
points in the earlier sections. The operator renormalization also needs to be determined to one-loop level or better
in the future calculations. We intend in this work mainly to demonstrate that one can achieve light-cone quantities
with reasonable accuracy using currently available computational resources, and it opens the door for many more
lattice-QCD calculations on parton physics.

Plots taken from: Chen et al. arXiv:1603.06664

Convergence with momentum extrapolation

Including the 1-loop matching kernel

First Lattice results (Chen et. al)

Similar results have been achieved by Alexandrou et. al (ETMC)

http://arxiv.org/abs/arXiv:1603.06664


Along these lines one can compute: 

TMDs (see Engelhardt et. al.) 

GPDs  

Distribution amplitudes  

Gluonic PDFs  

…..



CONCLUSIONS

Lattice QCD calculations have made a lot of progress and in some cases 
precision results are being obtained 

Physical quark masses, large volumes,  large scale calculations 

Quasi-PDFs provide a novel way to study hadron structure in Lattice QCD 

Lattice calculations from several groups are on the way 

Several ideas for dealing with the continuum limit are now developing 

Promising new ideas: Stay tuned!



NUCLEON FORM FACTOR

Connected
Disconnected

Strange quark : disconnected only


