

Quasi parton distributions and the gradient flow

Chris Monahan New High Energy Theory Center Rutgers, the State University of New Jersey

With Kostas Orginos

HOW FAST DO PARTONS TRAVEL?

How is the momentum of a fast-moving nucleon distributed amongst its constituents?

EXPERIMENTAL EXTRACTION

PDFs FROM FIRST PRINCIPLES: QUASI DISTRIBUTIONS

→ THE GRADIENT FLOW

SMEARED QUASI DISTRIBUTIONS

PDFS FROM FIRST PRINCIPLES

An unsolved challenge

-0

Decompose cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}E} = \frac{e^4}{16\pi^2 Q^4} \ell^{\mu\nu} W_{\mu\nu}$$

Hadronic contribution

$$W_{\mu\nu}(p,q) = \frac{1}{4\pi} \int \mathrm{d}^x e^{iq \cdot x} \langle p, \lambda' | [j_\mu(x), j_\nu(x)] | p, \lambda \rangle$$

in turn, expressed in terms of structure functions

$$F(x, Q^2) = \int \mathrm{d}y \, C\left(\frac{x}{y}, \frac{Q^2}{\mu^2}\right) f(x, \mu^2)$$

parton distribution functions (PDFs)

Defined as

$$f^{(0)}(\xi) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega^{-}}{4\pi} e^{-i\xi P^{+}\omega^{-}} \left\langle P \left| T \overline{\psi}(0,\omega^{-},\mathbf{0}_{\mathrm{T}}) W(\omega^{-},0) \gamma^{+} \frac{\lambda^{a}}{2} \psi(0) \right| P \right\rangle_{\mathrm{C}}$$

where

$$W(\omega^{-}, 0) = \mathcal{P} \exp\left[-ig_0 \int_0^{\omega^{-}} dy^{-} A_{\alpha}^{+}(0, y^{-}, \mathbf{0}_{\mathrm{T}})T_{\alpha}\right]$$

and

$$\langle P'|P\rangle = (2\pi)^3 2P^+ \delta \left(P^+ - P'^+\right) \delta^{(2)} \left(\mathbf{P}_{\mathrm{T}} - \mathbf{P}_{\mathrm{T}}'\right)$$

Renormalised PDFs

$$f(\xi,\mu) = \int_{x}^{1} \frac{\mathrm{d}\zeta}{\zeta} \mathcal{Z}\left(\frac{\zeta}{\xi},\mu\right) f^{(0)}(\zeta)$$

Mellin moments of PDFs

$$a^{(n)}(\mu) = \int_0^1 \mathrm{d}\xi \,\xi^{n-1} \left[f(\xi,\mu) + (-1)^n \overline{f}(\xi,\mu) \right] = \int_{-1}^1 \mathrm{d}\xi \,\xi^{n-1} f(\xi,\mu)$$

related to matrix elements

$$\langle P|\mathcal{O}^{\{\nu_1\dots\nu_n\}}(\mu)|P\rangle = 2a^{(n)}(\mu)\left(P^{\nu_1}\cdots P^{\nu_n} - \text{traces}\right)$$

of local twist-two operators

$$\mathcal{O}^{\{\nu_1\dots\nu_n\}}(\mu) = Z_{\mathcal{O}}(\mu) \left[i^{n-1} \overline{\psi}(0) \gamma^{\{\mu_1} D^{\mu_2} \cdots D^{\mu_n\}} \frac{\lambda^a}{2} \psi(0) - \text{traces} \right]$$

X. Ji, PRL 110 (2013) 262002 X. Ji, Sci.Ch. PMA 57 (2014) 1407

 \boldsymbol{z}

X. Ji, PRL 110 (2013) 262002 X. Ji, Sci.Ch. PMA 57 (2014) 1407

Defined as

$$q(x,\mu^2,P^z) = \int \frac{\mathrm{d}z}{4\pi} e^{ix\,z\,k^z} \langle P | \overline{\psi}(z) \gamma^z e^{-ig\int_0^z \mathrm{d}z'A^z(z')} \psi(0) | P \rangle_C$$

Recall

$$f^{(0)}(\xi) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega^{-}}{4\pi} e^{-i\xi P^{+}\omega^{-}} \left\langle P \left| T \overline{\psi}(0,\omega^{-},\mathbf{0}_{\mathrm{T}}) W(\omega^{-},0) \gamma^{+} \frac{\lambda^{a}}{2} \psi(0) \right| P \right\rangle_{\mathrm{C}}$$

Related to light-front PDFs via

$$q(x,\mu^2,P^z) = \int_x^1 \frac{\mathrm{d}y}{y} Z\left(\frac{x}{y},\frac{\mu}{P^z}\right) f(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^2}{(P^z)^2},\frac{M^2}{(P^z)^2}\right)$$

See also: H.-W. Lin et al, PRD 91 (2015) 054510 C. Alexandrou et al., PRD 92 (2015) 014502 J.-H. Zhang et al., arXiv:1702.00008

See also: H.-W. Lin et al, PRD 91 (2015) 054510 C. Alexandrou et al., PRD 92 (2015) 014502 J.-H. Zhang et al., arXiv:1702.00008

X

A MORE GENERAL FRAMEWORK

Define lattice "cross-sections"

Y.-Q. Ma & J.-W. Qiu, arXiv:1404.6860

$$\lim_{a \to 0} \sigma \left(x, a, P^z \right) = \widetilde{\sigma} \left(x, \widetilde{\mu}, P^z \right)$$

Quasi distributions - lattice "cross-section" from which one can extract PDFs

$$\widetilde{\sigma}(x,\widetilde{\mu},P^z) = \sum_{\alpha} H_{\alpha}\left(x,\frac{\widetilde{\mu}}{P^z},\frac{\widetilde{\mu}}{\mu}\right) \otimes f_{\alpha}(x,\mu^2) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{\widetilde{\mu}^2}\right)$$

See also:

K.-F. Liu, PRD 62 (2000) 074501W. Detmold & C.J.D. Lin, PRD 73 (2006) 014501A. Radyushkin, PLB (2017) 02 019

GENERAL PROCEDURE

Bare lattice matrix element (z-space, power-divergent): $h_{\rm E}^{\rm latt}(aP_z, z/a; W_z)$

THE GRADIENT FLOW

-0

A continuum hammer for lattice nails

Narayanan & Neuberger, JHEP 0603 (2006) 064 Lüscher, Commun. Math. Phys. 293 (2010) 899

GRADIENT FLOW

Deterministic evolution in new parameter - flow time

Drives fields to minimise action - removes UV fluctuations

Correlation functions of "bulk" fields provide probe of underlying field theory

FINITE CORRELATION FUNCTIONS

Renormalised correlation functions remain finite at non-zero flow time.

Lüscher & Weisz, JHEP 1102 (2011) 51 Luscher, JHEP 04 (2013) 123

GRADIENT FLOW

Gradient flow is a smearing (smoothing) tool that:

- generates more continuum-like operators
- provides a method to fix smearing length scale

Flow time serves as a nonperturbative, rotationally-invariant cutoff

Matrix elements of operators at fixed flow time are finite

Fixing the flow time (physical units) allows a continuum limit

Roughly speaking: exchange lattice for gradient flow regulator

SMEARED QUASI DISTRIBUTIONS

Provides continuum limit

SMEARED QUASI DISTRIBUTIONS

CJM & K. Orginos, JHEP 03 (2017) 116

Defined as

$$q(x,\sqrt{\tau}P^{z},\sqrt{\tau}\Lambda_{\rm QCD},\sqrt{\tau}M_{N}) = \int \frac{\mathrm{d}z}{4\pi} e^{ixz\,k^{z}} \langle P|\overline{\chi}(z,\tau)\gamma^{z}e^{-ig\int_{0}^{z}\mathrm{d}z'B^{z}(z',\tau)}\chi(0,\tau)|P\rangle_{C}$$

Related to light-front PDFs via

$$q(x,\mu^2,P^z) = \int_x^1 \frac{\mathrm{d}y}{y} Z\left(\frac{x}{y},\frac{\mu}{P^z}\right) f(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^2}{(P^z)^2},\frac{M^2}{(P^z)^2}\right)$$

Here "ringed" fermions remove need for wavefunction renormalisation

H. Makino and H. Suzuki, PTEP (2014) 063B02 K. Hieda and H. Suzuki, MPLA 31 (2016) 1650214

$$\chi(x,\tau) = \sqrt{\frac{-2\dim(R)N_f}{(4\pi)^2\tau^2 \left\langle \overline{\psi}(x,\tau)\overleftarrow{D}\psi(x,\tau) \right\rangle}}\psi(x,\tau)$$

SMEARED QUASI DISTRIBUTIONS

CJM & K. Orginos, JHEP 03 (2017) 116

Defined as

$$q(x,\sqrt{\tau}P^{z},\sqrt{\tau}\Lambda_{\rm QCD},\sqrt{\tau}M_{N}) = \int \frac{\mathrm{d}z}{4\pi} e^{ixz\,k^{z}} \langle P|\overline{\chi}(z,\tau)\gamma^{z}e^{-ig\int_{0}^{z}\mathrm{d}z'B^{z}(z',\tau)}\chi(0,\tau)|P\rangle_{C}$$

If we write

$$q^{(s)}\left(\xi,\sqrt{\tau}P_z,\sqrt{\tau}\Lambda_{\rm QCD},\sqrt{\tau}M_{\rm N}\right) = \int_{-\infty}^{\infty} \frac{\mathrm{d}z}{2\pi} e^{i\xi z P_z} P_z h^{(s)}(\sqrt{\tau}z,\sqrt{\tau}P_z,\sqrt{\tau}\Lambda_{\rm QCD},\sqrt{\tau}M_{\rm N})$$

then, in practice,

$$h^{(s)}\left(\frac{z}{\sqrt{\tau}},\sqrt{\tau}P_z,\sqrt{\tau}\Lambda_{\rm QCD},\sqrt{\tau}M_{\rm N}\right) = \lim_{a\to 0}h\left(\frac{z}{a},\frac{\sqrt{\tau}}{a},aP_z,a\Lambda_{\rm QCD},aM_{\rm N}\right)$$
 where

$$\begin{split} h\left(\frac{z}{a},\frac{\sqrt{\tau}}{a},aP_{z},a\Lambda_{\rm QCD},aM_{\rm N}\right) = \\ \frac{1}{2aP_{z}}\left\langle aP_{z}\left|\overline{\chi}\left(\frac{z}{a};\frac{\sqrt{\tau}}{a}\right)W\left(0,\frac{z}{a};\frac{\sqrt{\tau}}{a}\right)\gamma_{z}\frac{\lambda^{a}}{2}\chi\left(0;\frac{\sqrt{\tau}}{a}\right)\right|aP_{z}\right\rangle_{\rm C} \end{split}$$

RELATION TO PDFs

CJM & K. Orginos, JHEP 03 (2017) 116

Introduce Mellin moments

$$b_n\left(\sqrt{\tau}P^z, \frac{\Lambda_{\rm QCD}}{P^z}, \frac{M_N}{P^z}\right) = \int_{-\infty}^{\infty} \mathrm{d}x \, x^{n-1} q(x, \sqrt{\tau}P^z, \sqrt{\tau}\Lambda_{\rm QCD}, \sqrt{\tau}M_N)$$

In limit of vanishing separation z

$$b_n\left(\sqrt{\tau}P^z, \frac{\Lambda_{\rm QCD}}{P^z}, \frac{M_N}{P^z}\right) = \frac{c_n(\sqrt{\tau}P^z)}{2P^z} \left\langle P^z \Big| \chi(z,\tau)\gamma_z(iD_z)^{n-1} \frac{\lambda^a}{2} \chi(0,\tau) \Big| P^z \right\rangle_C$$

Unlike PDFs these matrix elements are not twist-2, but related via

$$b_n\left(\sqrt{\tau}P^z, \frac{\Lambda_{\rm QCD}}{P^z}, \frac{M_N}{P^z}\right) = C(\sqrt{\tau}\mu, \sqrt{\tau}P^z)a_n(\mu) + \mathcal{O}\left(\sqrt{\tau}\Lambda_{\rm QCD}, \frac{\Lambda_{\rm QCD}^2}{(P^z)^2}\right)$$

RELATION TO PDFs

CJM & K. Orginos, JHEP 03 (2017) 116

Introduce a kernel with Mellin moments

$$\left[C_n^{(0)}(\sqrt{\tau}\mu,\sqrt{\tau}P_z)\right]^{-1} = \int_{-\infty}^{\infty} dx \, x^{n-1} Z(x,\sqrt{\tau}\mu,\sqrt{\tau}P_z)$$

Then, assuming one corrects for target mass effects and that

$$\Lambda_{\rm QCD}, M_N \ll P_z \ll \tau^{-1/2}$$

This leads to

$$q(x,\sqrt{\tau}\Lambda_{\rm QCD},\sqrt{\tau}P^z) = \int_{-1}^1 \frac{\mathrm{d}y}{y} Z\left(\frac{x}{y},\sqrt{\tau}\mu,\sqrt{\tau}P^z\right) f(y,\mu^2) + \mathcal{O}\left(\sqrt{\tau}\Lambda_{\rm QCD},\frac{\Lambda_{\rm QCD}^2}{(P^z)^2}\right)$$

CJM & K. Orginos, JHEP 03 (2017) 116

PDFs obey

$$\mu \frac{\mathrm{d} f(x,\mu)}{\mathrm{d} \mu} = \frac{\alpha_s(\mu)}{\pi} \int_x^1 \frac{\mathrm{d} y}{y} f(y,\mu) P\left(\frac{x}{y}\right)$$

and (renormalised) moments obey

$$\left[\mu \frac{\mathrm{d}}{\mathrm{d}\mu} - \frac{\alpha_s(\mu)}{\pi} \gamma^{(n)}\right] a^{(n)}(\mu) = 0$$

with

$$\int_0^1 \mathrm{d}x \, x^{n-1} P(x) = \gamma^{(n)}$$

DGLAP EQUATION

CJM & K. Orginos, JHEP 03 (2017) 116

Introducing a small-flow time expansion

$$b_n^{(s)}\left(\sqrt{\tau}\Lambda_{\rm QCD}\right) = C_n^{(0)}\left(\sqrt{\tau}\mu, \sqrt{\tau}P_z\right)a^{(n)}(\mu) + \mathcal{O}\left(\sqrt{\tau}\Lambda_{\rm QCD}, \frac{\Lambda_{\rm QCD}^2}{P_z^2}\right)$$

such that

$$\left[\mu \frac{\mathrm{d}}{\mathrm{d}\mu} + \frac{\alpha_s(\mu)}{\pi} \gamma^{(n)}\right] C_n^{(0)}(\sqrt{\tau}\mu, \sqrt{\tau}P_z) = 0 + \mathcal{O}(\sqrt{\tau}\Lambda_{\mathrm{QCD}})$$

The matching kernel satisfies

$$\mu \frac{d}{d\mu} Z\left(x, \sqrt{\tau}\mu, \sqrt{\tau}P_z\right) = \frac{\alpha_s(\mu)}{\pi} \int_x^\infty \frac{dy}{y} Z\left(y, \sqrt{\tau}\mu, \sqrt{\tau}P_z\right) P\left(\frac{x}{y}\right)$$

MATCHING IN PERTURBATION THEORY

-0

MATCHING IN PERTURBATION THEORY

Axial gauge simplest. But gradient flow requires generalised Feynman gauge.

X. Xiong *et al.*, PRD 90 (2014) 014051 Ji et al., PRD 92 (2015) 014039 Smeared quasi distribution

MATCHING IN PERTURBATION THEORY

In principle, one can calculate these diagrams directly.

In practice, integrals not solvable analytically

• usual techniques (or at least, all the ones I can think of) fail

Matching procedure considerably simplified in coordinate space:

- infrared behaviour identical
- set external mass and momentum to zero
- reduces number of diagrams and simplifies remaining integrals

One-loop calculation complete - but not checked

GRADIENT FLOW PROCEDURE

---0

PDFs FROM FIRST PRINCIPLES: QUASI DISTRIBUTIONS

Quasi distributions

Current issues - the continuum limit

THE GRADIENT FLOW

Matrix elements finite at fixed flow time

SMEARED QUASI DISTRIBUTIONS

Finite continuum distributions Matching in perturbation theory ~ complete Nonperturbative study of systematics underway

THANK YOU

chris.monahan@rutgers.edu

QCD

$$\frac{\partial}{\partial \tau} B_{\mu}(\tau, x) = D_{\nu} \left(\partial_{\nu} B_{\mu} - \partial_{\mu} B_{\nu} + [B_{\nu}, B_{\mu}] \right) \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$$
$$\frac{\partial}{\partial \tau} \chi(\tau, x) = D_{\mu}^{F} D_{\mu}^{F} \chi(\tau, x) \qquad D_{\mu}^{F} = \partial_{\mu} + B_{\mu}$$

Exact solution not possible (even with Dirichlet boundary conditions)

$$B_{\mu}(\tau, x) = \int d^{4}y \Big\{ K_{\tau}(x-y)_{\mu\nu} A_{\nu}(y) + \int_{0}^{\tau} d\sigma K_{\tau-\sigma}(x-y)_{\mu\nu} R_{\nu}(\sigma, y) \Big\}$$
$$K_{\tau}(x)_{\mu\nu} = \int \frac{d^{4}p}{(2\pi)^{4}} \frac{e^{ipx}}{p^{2}} \Big\{ (\delta_{\mu\nu}p^{2} - p_{\mu}p_{\nu})e^{-\tau p^{2}} + p_{\mu}p_{\nu} \Big\}$$
$$R_{\mu}(\tau, x) = 2[B_{\nu}, \partial_{\nu}B_{\mu}] - [B_{\nu}, \partial_{\mu}B_{\nu}] - [B_{\mu}, \partial_{\nu}B_{\nu}] + [B_{\nu}, [B_{\nu}, B_{\mu}]]$$

Smearing radius $s_{\rm rms} = \sqrt{8\tau}$

Interactions occur at non-zero flow time: generalised BRST symmetry guarantees renormalised correlation functions remain finite.

Lüscher & Weisz, JHEP 1102 (2011) 51 Luscher, JHEP 04 (2013) 123

EXPERIMENTAL EXTRACTION

0

Process	Subprocess	Partons	x range
$ \frac{\ell^{\pm} \{p,n\} \to \ell^{\pm} X}{\ell^{\pm} n/p \to \ell^{\pm} X} \\ \frac{\ell^{\pm} n/p \to \ell^{\pm} X}{pp \to \mu^{+} \mu^{-} X} \\ \frac{pn/pp \to \mu^{+} \mu^{-} X}{\nu(\bar{\nu}) N \to \mu^{-}(\mu^{+}) X} \\ \frac{\nu N \to \mu^{-} \mu^{+} X}{\bar{\nu} N \to \mu^{+} \mu^{-} X} $	$\begin{aligned} \gamma^* q &\to q \\ \gamma^* d/u &\to d/u \\ u \bar{u}, d \bar{d} &\to \gamma^* \\ (u \bar{d})/(u \bar{u}) &\to \gamma^* \\ W^* q &\to q' \\ W^* s &\to c \\ W^* \bar{s} &\to \bar{c} \end{aligned}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} x \gtrsim 0.01 \\ x \gtrsim 0.01 \\ 0.015 \lesssim x \lesssim 0.35 \\ 0.015 \lesssim x \lesssim 0.35 \\ 0.01 \lesssim x \lesssim 0.35 \\ 0.01 \lesssim x \lesssim 0.5 \\ 0.01 \lesssim x \lesssim 0.2 \\ 0.01 \lesssim x \lesssim 0.2 \end{array}$
$ \frac{e^{\pm} p \to e^{\pm} X}{e^{\pm} p \to \bar{\nu} X} \\ e^{\pm} p \to e^{\pm} c\bar{c}X, e^{\pm} b\bar{b}X \\ e^{\pm} p \to jet + X $	$\begin{aligned} \gamma^* q &\to q \\ W^+ \left\{ d, s \right\} &\to \left\{ u, c \right\} \\ \gamma^* c &\to c, \ \gamma^* g \to c \bar{c} \\ \gamma^* g &\to q \bar{q} \end{aligned}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$10^{-4} \lesssim x \lesssim 0.1$ $x \gtrsim 0.01$ $10^{-4} \lesssim x \lesssim 0.01$ $0.01 \lesssim x \lesssim 0.1$
$ \frac{p\bar{p}, pp \rightarrow \text{jet} + X}{p\bar{p} \rightarrow (W^{\pm} \rightarrow \ell^{\pm}\nu) X} \\ pp \rightarrow (W^{\pm} \rightarrow \ell^{\pm}\nu) X \\ p\bar{p}(pp) \rightarrow (Z \rightarrow \ell^{+}\ell^{-})X \\ pp \rightarrow W^{-}c, W^{+}\bar{c} \\ pp \rightarrow (\gamma^{*} \rightarrow \ell^{+}\ell^{-})X \\ pp \rightarrow b\bar{b} X, t\bar{t}X \\ pp \rightarrow \text{exclusive } J/\psi, \Upsilon \\ pp \rightarrow \gamma X $	$\begin{array}{c} gg, qg, qq \rightarrow 2j \\ ud \rightarrow W^+, \bar{u}\bar{d} \rightarrow W^- \\ u\bar{d} \rightarrow W^+, d\bar{u} \rightarrow W^- \\ uu, dd,(u\bar{u},) \rightarrow Z \\ gs \rightarrow W^-c \\ u\bar{u}, d\bar{d}, \rightarrow \gamma^* \\ gg \rightarrow b\bar{b}, t\bar{t} \\ \gamma^*(gg) \rightarrow J/\psi, \Upsilon \\ gq \rightarrow \gamma q, g\bar{q} \rightarrow \gamma \bar{q} \end{array}$	$egin{array}{c} g, q \ u, d, ar{u}, ar{d} \ u, d, ar{u}, ar{d} \ u, d, ar{u}, ar{d}, g \ u, d, (g) \ s, ar{s} \ ar{q}, g \ g \ g \ g \ g \ g \ g \end{array}$	$\begin{array}{l} 0.00005 \lesssim x \lesssim 0.5 \\ x \gtrsim 0.05 \\ x \gtrsim 0.001 \\ x \gtrsim 0.001 \\ x \gtrsim 0.001 \\ x \approx 10^{-5} \\ x \gtrsim 10^{-5}, 10^{-2} \\ x \gtrsim 10^{-5}, 10^{-4} \\ x \gtrsim 0.005 \end{array}$