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Outline	

•  PDF	from	lattice	QCD	through	LaMET	

•  Quasi	PDF	in	the	RI/MOM	scheme	

•  Match	quasi	PDF(RI/MOM)	to	PDF(MSbar)	

2	



•  PDF	from	lattice	QCD	through	LaMET	
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Parton	distribution	function	

5/22/17	 4	

While	the	phenomenological	PDFs	can	vary,	there	is	only	one	theory——QCD——	
that	has	a	unique	solution	for	PDF.	

HEPDATA databases, http://hepdata.cedar.ac.uk/pdf/pdf3.html

Our	main	knowledge	of	PDFs	comes	from	the	experimental	data:	



Parton	distribution	function:	

	

	

	

	

	

•  Light-cone	coordinates	ξ±=(x0±x3)/√2;	

•  Clear	interpretation	as	parton	number	density	in	the	light-cone	quantization	

(A+=0);	

L  Not	directly	calculable	in	lattice	QCD	due	to	light-cone	dependence.	In	Euclidean	

space,	z2=0 -> z=(0,0,0,0).	
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The quasi parton distribution is as a spatial correlation of quarks or gluons along the z direction
in a moving nucleon which enables direct lattice calculations of parton distribution functions. It
can be defined with a nonperturbative renormalization in a regularization independent momentum
subtraction scheme (RI/MOM), which can then be perturbatively related to the collinear parton dis-
tribution in the MS scheme. Here we carry out a direct matching from the RI/MOM scheme to MS,
determining the non-singlet quark matching coe�cient at next-to-leading order in perturbation the-
ory. This direct approach has the potential to improve the accuracy for converting quasi-distribution
lattice calculations to collinear distributions.

I. INTRODUCTION

One of the great successes of QCD are factorization theorems, such as those that enable us to make predictions
for deep inelastic scattering (DIS) and Drell-Yan processes at hadron colliders [1]. According to the factorization
theorems, the scattering cross section can be factorized as convolution of the partonic cross section and a universal
parton distribution function (PDF). The former can be calculated analytically in perturbative QCD, thus allowing for
a high precision extraction of the latter from cross section data. PDFs are the most basic and important objects for
us to obtain information about hadron structure in modern physics. Since PDFs are intrinsic properties of the hadron
that include low energy degrees of freedom, they can only be calculated with nonperturbative methods such as lattice
QCD. Although their low-order moments have been directly calculated with lattice methods [2–4], our most precise
knowledge about them comes from global fits to experimental data [5–8], see [9] for the LHAPDF comparisons.

In parton physics, PDFs are defined as the nucleon matrix elements of light-cone correlation operators. For example,
in dimensional regularization with d = 4� 2✏, the bare unpolarized quark distribution function is
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where the nucleon momentum Pµ = (P 0, 0, 0, P z), and ⇠± = (t ± z)/
p
2 are the light-cone coordinates.  0, g0, and

A0 are all bare quantities. The renormalized PDFs q
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where the renormalization constant ZMS is a matrix in x, y and the flavor (including gluon) indices i, j, and µ is
the renormalization scale. The above definition of PDF has a clear interpretation as parton number density in the
light-cone gauge A+ = 0, and is the widely used definition for the PDF in factorization theorems. However, the
real-time dependence of light-cone correlations makes it impossible to directly calculate them in lattice QCD which
is defined in the Euclidean space with imaginary time.

Recently, Ji proposed that instead of calculating light-cone correlations, one can start from a spatial correlation—
which is called quasi PDF—on the Euclidean lattice [10]. The bare quasi PDF is defined in momentum and coordinate
space as
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Unlike the PDF in Eq. (1) that is invariant under a boost along the z direction, the quasi PDF changes dynamically
under such a boost, which is encoded by its nontrivial dependence on the nucleon momentum P z. In dimensional
regularization, the renormalized quasi PDF in coordinate space q̃

j

(z, P z, µ̃) is multiplicatively renormalized,

q̃B
i

(z, P z, ✏) =
X

j

Z̃
ij

(z, ✏, µ̃) q̃
j

(z, P z, µ̃) . (4)

Here the position space renormalization factors Z̃
ij

(z, ✏, µ̃) are defined in a particular scheme, such as MS, a
momentum-subtraction scheme etc, and µ̃ is a renormalization scale for the quasi PDF (whose definition also depends
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A	method	in	practice	

•  La#ce	QCD	can	calculate	the	moments	of	PDFs	which	

are	matrix	elements	of	local	gauge-invariant	operators;	

	

•  The	more	moments	we	can	calculate,	the	beAer	we	

know	about	the	PDF;	

😞	Number	of	calculable	moments	is	limited	(<4).	Mixing	

with	operators	of	lower	dimensions.	

6	

equivalent to the use of IMF.] The parton density can be described as the matrix element of
gauge-invariant operators in hadron states, and since the cross section is gauge-invariant by
itself, this means that the on-shell parton scattering cross section is also gauge-invariant and
can be calculated independently in any gauge. This can also be seen from that the parton
cross sections involve only on-shell parton scattering. The gauge-invariance, however, masks
the physical property of the parton density operator. For example, the quark longitudinal-
momentum density distribution

q(x) =
1

2P+

∫
dλ

2π
eiλx⟨PS|Ψ(λn)γ+Ψ(0)|PS⟩ , (18)

where n is a light-like four-vector n2 = 0 and the nucleon momentum is P µ = (P 0, 0, 0, P 3),
with P · n = 1. Ψ(ξ) is a gauge-invariant quark field defined through multiplication of a
light-cone gauge link

Ψ(ξ) = exp

(
−ig

∫ ∞

0

n · A(ξ + λn)dλ

)
ψ(ξ) . (19)

This gauge link ensures that whenever a partial derivative or canonical momentum of colored
quarks appears, the gauge potential Aµ must be present simultaneously to make it a covariant
derivative (kinetic momentum), Dµ = ∂µ + igAµ. Indeed, taking its moments,

∫
xn−1q(x)dx ∼ nµ1 ...nµn⟨P |ψ(0)γµ1iDµ2 ...iDµnψ(0)|P ⟩ , (20)

we see that the parton momentum distribution refers to the gauge-invariant kinetic momen-
tum! The kinetic momentum structure is clearly seen through Feynman diagrams in Fig.
1: Gauge symmetry requires that a parton with kinetic momentum k+ = xP+ includes the
sum of all diagrams with towers of longitudinal gluon A+ insertions.

x y x− y y z x− y − z

A+ A+ A+

FIG. 1: Deep-inelastic scattering process in which the gauge invariance involving the longitudinal
quark kinetic momentum xP+ is achieved through insertions of gluons with longitudinal polariza-
tion A+.

Simple parton physics emerges in the light-cone gauge A+ = 0, where the light-cone
gauge link disappears, all the covariant derivatives in Eq. (20) become partial ones, i.e.,
the canonical momentum and the simple quark field become physical. One can use the
light-cone quantization to write

ψ+(ξ) =

∫
dk+d2k⊥
2k+(2π)3

[
d†(k+, k⊥)v(k

+, k⊥)e
i(k+ξ−−k⃗⊥·ξ⃗⊥) + b(k+, k⊥)u(k

+, k⊥)e
−i(k+ξ−−k⃗⊥·ξ⃗⊥)

]

(21)
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Ji’s	Proposal	
Quasi	Parton	Distribution:	
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ξ− 

ξ3 = z l -l 

√2γl 

−√2γl 

ξ+ 
ξ0 = t •  Spatial	correlation	along	the	z	

direction,	calculable	in	lattice	
QCD;	

•  Approaches	the	collinear	PDF	
under	an	infinite	Lorentz	boost	
along	the	z	direction;	

Ji, 2013, 2014�
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Unlike the PDF in Eq. (1) that is invariant under a boost along the z direction, the quasi PDF changes dynamically
under such a boost, which is encoded by its nontrivial dependence on the nucleon momentum P z. In dimensional
regularization, the renormalized quasi PDF in coordinate space q̃
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momentum-subtraction scheme etc, and µ̃ is a renormalization scale for the quasi PDF (whose definition also depends
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Ji’s	Proposal	

•  Hierarchy	of	scales	
•  Quasi	PDF	

•  (Light-cone)	PDF	

•  Taking	the	infinite	momentum	limit	changes	the	

UV	physics,	but	not	the	IR	physics;	

•  Quasi	PDF	can	be	perturbatively	matched	to	

PDF!	

8	

Λ >> Pz >>M,ΛQCD

Pz >> Λ >>M,ΛQCD

UV cut-off of the theory

Soft scales, related to IR physics



How	matching	works?	

5/22/17	

IR	

Hard	 Perturbative	QCD	

Non-perturbative	QCD	

Matching	

Õ(Pz/Λ) O(μ)
9	



Large	Momentum	Effective	Theory	
(LaMET)	

•  The	quasi	PDF	is	related	to	the	PDF	through	a	factorization	

formula:	

	

–  They	have	the	same	IR	divergences;	

–  C	factor	matches	the	difference	in	their	UV	divergence,	

and	can	be	calculated	in	perturbative	QCD.	

10	

Ji, 2014�
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on the scheme). Fourier transforming to momentum space as in Eq. (3), the renormalization for the quasi-PDF
involves a convolution in the momentum fraction,

q̃B
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(x, P z, ✏) =
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j

P z

Z +1

�1
dx0 Z̃

ij

(x� x0, ✏, µ̃) q̃
j

(x0, P z, µ̃) . (5)

The structure of the renormalization of the quasi-PDF in Eqs. (4) and (5) is similar to that of the quark beam-
function [11, 12], which is a proton distribution with separations along both the plus and minus light-cone directions.
Ref. [12] gives an all orders proof of the position space multiplicative renormalization of the beam function, and this
proof also implied that there is never parton mixing in this case. Since this lack of mixing has not yet been explored
for the quasi-PDF’s renormalization, we included a

P
j

in our Eqs. (4) and (5), where j sums over quarks and gluons.
For a nucleon moving with finite but large momentum P z � ⇤QCD, the quasi PDF can be matched onto the PDF

through a momentum space factorization formula [10, 13]:
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where C
ij

is the matching coe�cient, and the O(M2/P 2
z

,⇤2
QCD/P

2
z

) terms are higher-twist corrections suppressed
by the nucleon momentum (M is the nucleon mass). Here q

j

(y, µ) for negative y corresponds to the anti-quark
contribution. The power corrections are related to higher-twist contributions in the quasi PDF. Note that it is
important to distinguish between the renormalization of the PDF and quasi-PDF given by the Z

ij

s and the matching
given by the C

ij

s. The renormalization constants occur in a relation between bare and renormalized matrix elements
for the same operators. On the other hand the matching coe�cients occur in a relation between renormalized matrix
elements of di↵erent operators. The q̃ and q have the same collinear and infrared (IR) divergences, so at perturbative
scales µ and µ̃ the C

ij

s can be calculated order by order in ↵
s

.
Based on Ji’s proposal, the procedure of calculating PDF from lattice QCD can be summarized as:

1. Lattice simulation of the quasi PDF;

2. Renormalization of the quasi PDF in a particular scheme on the lattice;

3. Subtraction of higher-twist corrections;

4. Matching quasi PDF in the particular scheme to PDF in the MS scheme.

E↵orts have been made to calculate the iso-vector quark distributions f
u�d

, including unpolarized, polarized, and
transversity distributions, from lattice QCD [14–17]. The one-loop matching coe�cients was first calculated in the
continuum theory [18] and confirmed in Refs. [15, 19]. The nucleon-mass corrections of O(M2/P 2

z

) have already
been included in the lattice calculations [14–17], and the O(⇤2

QCD/P
2
z

) correction was numerically fit in Ref. [16]. (A
direct lattice calculation of the O(⇤2

QCD/P
2
z

) correction is still desired from the theoretical point of view). So far the
renormalization of the lattice matrix element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [14–17]. With
increasing nucleon momentum P z, the latter will be the most important factor that limits the precision of lattice
calculation of PDFs.

One of the standard methods to renormalize operators in lattice QCD is the lattice perturbation theory [20]. In
practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits our
ability to go to higher loop orders. An alternative is nonperturbative methods, such as the regularization-invariant
momentum subtraction (RI/MOM) scheme, that has been widely used to renormalize local operators on the lattice [21].
Work in progress to calculate the lattice quasi-PDFs in the RI/MOM scheme has been reported in [22], and appears
to be the most promising route for future higher precision quasi-PDF determinations.

In this paper we focus on the implementation of Step 4 when the lattice quasi PDF is defined in the RI/MOM
scheme. In particular we carry out a perturbative calculation of the matching coe�cient C that directly enables
this lattice quasi PDF to be directly matched onto the MS PDF. The renormalized matrix elements in the RI/MOM
scheme are independent of the UV regularization, so we carry out this matching perturbatively with dimensional
regularization.

An alternative to the approach we take here would be to convert the lattice quasi PDF defined with nonperturbative
renormalization in the RI/MOM scheme back to the MS scheme perturbatively. This would then allow the MS
matching result for C in Ref. [18] to be used. Our approach is simpler and more direct, with only a single step
involving a perturbative calculation. Nevertheless it would be interesting to compare both approaches. is

(I still need to edit this paragraph: –is) In Section II we elaborate on the procedure of implementing the
RI/MOM scheme for quasi PDF; In Section III we provide result of one-loop matching coe�cient between quasi PDF
in the RI/MOM scheme and PDF in the MS scheme; We conclude in Section V.



Procedure	of	Calculating	PDF	

Lattice	quasi	PDF

Quasi	PDF	in	the	continuum	

PDF	in	the	MSbar	scheme

11	

The continuum limit (renormalization)

Subtracting higher twist corrections; matching from 
quasi PDF in its particular scheme to MSbar PDF.



Current	status	of	calculation	

Lattice	simulation	of	the	
bare	quasi	PDF	

✔:	Iso-vector	quark	distributions	
H. W. Lin et al., 2015; J.-W. Chen et al., 2016; C. 
Alexandrou et al., 2015, 2016

Renormalization	of	the	
quasi	PDF	on	the	lattice	

?	
Ishikawa et al., 2016; J.-W. Chen et al., 2016

Subtraction	of	the	
higher	twist	corrections	

✔:	All	orders	of	mass	correction	M2/Pz
2	exactly	

calculated;	O(Λ2
QCD/Pz

2) correction	fitted.	
H. W. Lin et al., 2015; J.-W. Chen et al., 2016; C. 
Alexandrou et al., 2015, 2016

Matching	the	quasi	PDF	
to	PDF	in	the	MSbar	
scheme.	

✔:	One-loop	matching	coefficient	obtained	in	the	
continuum	theory	
Xiong, Ji, Zhang and Y.Z., 2014; Y. Ma and J. Qiu, 
2014.

12	



•  PDF	from	lattice	QCD	through	LaMET	

•  Quasi	PDF	in	the	RI/MOM	scheme	

•  Match	quasi	PDF(RI/MOM)	to	PDF(MSbar)	
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FIG. 1: One-loop Feynman diagrams for the nonlocal quark bilinear operator. The quark self energy diagram is also
implied.
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The second term in the bracket of Eq. (13) which is proportional z does not contribute to the loop integral as it is
odd under the exchange of pz � kz ! �(pz � kz).

The quark self-energy correction is the tree level matrix element times the renormalization factor defined in the
on-shell scheme,
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However, for our purpose here, it will be expressed in an integral form in Eq. (17) to make sure that vector current
conservation is satisfied.

Since there is an exponential of exp(�ikzz) in the integrand of each Feynman diagram, the result will be a compli-
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to express each Feynman diagram as the inverse Fourier transform of the variable x = kz/pz. For example,
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By directly evaluating the loop integrals in Eqs. (11–13), we find that they are all UV finite and regular at ✏ = 0.
The result is summarized as:
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For	an	open	smooth	Wilson	line	W(z,0),	its	self	energy	includes	a	linear	divergence:	

=
αS

2π
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However, for our purpose here, it will be expressed in an integral form in Eq. (17) to make sure that vector current
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+…..	+..... = eδm*|z|,       δm ~ Λ

In	coordinate	space,	it	can	be	multiplicatively	renormalized	as:	

2

3. Subtraction of the power corrections;

4. Matching quasi PDF to PDF in the MS scheme.

E↵orts have been made to calculate the iso-vector quark distributions f
u�d

, including unpolarized, polarized, and
transversity distributions, from lattice QCD [4–7]. The one-loop matching coe�cients was first calculated in the
continuum theory [8], and the nucleon-mass corrections of all orders of M2/P 2

z

have already been included in these
works. The O(⇤2

QCD

/P 2

z

) correction was derived and numerically fitted in Ref. [6]. While a lattice calculation of
O(⇤2

QCD

/P 2

z

) correction is still expected from the theoretical point of view, a renormalization of the lattice matrix
element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [4–7]. With increasing nucleon momentum P z,
the latter will be the most important factor that limits the precision of lattice calculation of PDFs.

One of the standard methods to renormalize operators in lattice QCD is the lattice perturbation theory [9]. In
practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits
our ability to go to higher loop orders. Therefore, in this manuscript we focus on a nonperturbative method, the
regularization-invariant momentum subtraction (RI/MOM) scheme, that has been widely used to renormalize local
operators on the lattice [10]. The renormalized matrix elements in the RI/MOM scheme is independent of the
UV regularization, so we just need to do the perturbative matching in the continuum theory with dimensional
regularization. In Section II we elaborate on the procedure of implementing the RI/MOM scheme for quasi PDF; In
Section III we provide result of one-loop matching coe�cient between quasi PDF in the RI/MOM scheme and PDF
in the MS scheme; We conclude in Section IV.

II. RENORMALIZATION OF QUASI PDF IN THE RI/MOM SCHEME

As has been shown in Ref. [8], the quasi PDF has a linear divergence in theories with an ultraviolet (UV) cut-
o↵. In dimensional regularization, the linear divergence vanishes, and it is demonstrated that the quasi PDF is
multiplicatively renormalizable to two loops [11]. This indicates that the linear divergence can be systematically
subtracted from the quasi PDF to make the latter multiplicatively renormalizable in a UV cut-o↵ regularization
scheme. Indeed, the linear divergence arises from the self energy of the Wilson line W (z, 0) in the quasi PDF, which
can be renormalized as [12–14]

WB(z, 0) = Z
z

e�m|z|WR(z, 0) , (4)

where “B” and “R” stand for the bare and renormalized quantities respectively. The exponential factor e�m|z|

introduces counterterms that cancel the linear divergences in the bare quasi PDF, whereas the renormalization factor
Z
z

depends on the end points of the Wilson line and includes only logarithmic divergences. The subscript “z” in Z
z

denotes the auxiliary field that represents a Wilson line [14].
It is intuitive to generalize this renormalization relation to gauge-invariant nonlocal quark bilinear operators, as

was used in [15, 16]. For the iso-vector (non-singlet) case, we do not have to consider operator mixing, so

 ̄
B

(z)�zWB(z, 0) 
B

(0) = Z
 ,z

e�m|z| ̄
R

(z)�zWR(z, 0) 
R

(0) , (5)

where Z
 ,z

only depends on the end points and include logarithmic divergences. Through power counting of all the
Feynman diagrams, it is argued in Ref. [17] that the exponential factor is su�cient to remove all the linear divergences.
A rigorous proof of the renormalization relation in Eq. (5) is expected from [18] in the future.

In perturbation theory, one can determine �m order by order to remove the linear divergences [17]. On the lattice
with spacing a, the linear divergence is proportional to 1/a and has to be removed at all orders, or, nonperturbatively,
to have a well-defined continuum limit. One strategy is to determine �m from the renormalization of Wilson loop
that corresponds to the static quark-antiquark potential [15, 16]. When the separation of the quark-antiquark is small
compared to 1/⇤

QCD

, the static potential can have a perturbative expression, which is used to demonstrate that �m
defined this way does really cancel the linear divergence of quasi PDF [16]. However, it should be noted that this is
not the only strategy to subtract the linear divergence from quasi PDF. As pointed out in [15], a remaining challenge
within this procedure is to associate a renormalization scale with the renormalization condition for the Wilson loop.
This is an important issue because we have explicitly set the renormalization scale µ

R

for quasi PDF in Eq. (6). For
our purpose, it would be more useful if we can redefine the quasi PDF to make it free of linear divergence [19, 20],
though a practical solution has not been proposed yet.

After the nonperturbative subtraction of linear divergences, we are still left to determine the renormalization factor
Z
 ,z

. To obtain Z
 ,z

perturbatively, we need the perturbative expression of �m which is not applicable for large
separations. Besides, calculating Z

 ,z

in lattice perturbation theory is cumbersome, and numerical techniques are

V. S. Dotsenko and S. N. Vergeles, 1980
N. S. Craigie and H. Dorn, 1981
H. Dorn, 1986

•  eδm*|z|	introduces	counterterms	that	
cancel	the	linear	divergences	in	the	
Wilson	line	self	energy;	

•  Zz	depends	on	the	end	points	and	only	
includes	logarithmic	divergences.	

J.W. Chen et al., 2016



This	relation	should	also	apply	to	gauge-invariant	nonlocal	quark	

bilinears:	

	

	

•  The	separated	quark	fields	do	not	generate	extra	power	

divergences;	

•  The	linear	divergence	in	δm	is	the	same	as	that	for	the	Wilson	line;	

•  Zψ,z	depends	on	the	end	points	and	only	includes	logarithmic	

divergences.		
15	

T. Ishikawa et al., 2016
J.W. Chen et al., 2016

		

(ψ (z)W(z ,0)ψ (0))B = Zψ ,ze
δm*|z|(ψ (z)W(z ,0)ψ (0))R

= Z(z ,Λ,µR )(ψ (z)W(z ,0)ψ (0))R



RI/MOM	scheme	
•  For	a	nonperturbative	renormalization,	we	can	use	the	

so	called	regularization-invariant	momentum	

subtraction	(RI/MOM)	scheme	that	has	been	widely	used	

in	lattice	QCD.	

•  A	momentum	subtraction	scheme:	

16	

		
ZO

−1 p OB p p2=−µR
2 = p OB p tree

ZO = ZO (Λ,µR )

G. Martinelli et al., 1994 �



Regularization	invariance	(RI)	

•  In	dimensional	regularization	(d=4-2ε):	

Bare:	

MSbar:	

MOM:	

•  In	UV-cut	off	regularization:	

Bare:	

MOM:	

17	
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If	–p2, μR
2<<Λ2,	then	the	

renormalized	matrix	element	
should	be	the	same	in	dim	reg	
and	cut-off	regularizations!	

★  RI	applies	to	multiplicatively	
renormalizable	operators	



RI/MOM	Scheme	

•  We	can	impose	the	RI/MOM	condition	on	the	off-

shell	quark	matrix	element:	

	
18	

On	the	lattice,	pE
2=μR

2,	Z	is	a	complex	number!	
		

Z(z ,pz ,a−1 ,µR )−1 p (ψ (z)W(z ,0)ψ (0))B p pE
2=µR

2

= p (ψ (z)W(z ,0)ψ (0))B p
tree

=2pEze− ip
z*z



RI/MOM	Scheme	

The	renormalized	matrix	element	

	

should	be	independent	of	the	UV	cut-off	1/a	for	

arbitrary	pE
2	and	pz,	except	for	lattice	discretization	

effects	of	

Working	region:	
19	

3

not the only strategy to subtract the linear divergence from quasi PDF. As pointed out in [15], a remaining challenge
within this procedure is to associate a renormalization scale with the renormalization condition for the Wilson loop.
This is an important issue because we have explicitly set the renormalization scale µ

R

for quasi PDF in Eq. (8). For
our purpose, it would be more useful if we can redefine the quasi PDF to make it free of linear divergence [19, 20],
though a practical solution has not been proposed yet.

After the nonperturbative subtraction of linear divergences, we are still left to determine the renormalization factor
Z
 ,z

. To obtain Z
 ,z

perturbatively, we need the perturbative expression of �m which is not applicable for large
separations. Besides, calculating Z

 ,z

in lattice perturbation theory is cumbersome, and numerical techniques are
needed to carry out the loop integrals. If we want to do a one-step matching from the renormalized lattice matrix
elements of quasi PDF to PDF in the MS scheme, we have to numerically fit the logarithm of the IR regulator with
the Altarelli-Parisi kernel in the quasi PDF to be able to extract out the matching coe�cient. Otherwise, we have to
do a two-step matching,

Quasi PDF on the lattice
numerical matching������������! Quasi PDF in the continuum

analytical matching������������! PDF in the MS scheme ,

where no fitting is required in the numerical matching between lattice and continuum theories. In both cases, the
calculation is di�cult and can introduce large uncertainties.

Therefore, we choose to do a nonperturbative renormalization of quasi PDF with the RI/MOM scheme, which
includes all large corrections in the renormalization constant, and then match quasi PDF in the RI/MOM scheme to
PDF in the MS scheme.

To start with, we define the renormalization constant Z
 ,z

by imposing the following condition on the matrix
element of quasi PDF in an o↵-shell quark state,

Z�1

 ,z

⇣
e��m|z| hp| ̄

B

(z)�zWB(z, 0) 
B

(0)|pi
��
p

2
=�µ

2
R

⌘

= hp| ̄
R

(z)�zWR(z, 0) 
R

(0)|pi
��
p

2
=�µ

2
R

= hp| ̄(z)�zW (z, 0) (0)|pi
��
tree

= 2pze�izp

z

, (8)

where pµ = (p0, 0, 0, pz), and µ
R

is the renormalization scale. On the lattice, the momentum p
E

is Euclidean and
we set p2

E

= µ2

R

in the above condition. In this way, Z
 ,z

= Z
 ,z

(pz, µ
R

, a�1). Since Z
 ,z

only has logarithmic
divergences, the renormalized matrix element

Z�1

 ,z

(pz, µ
R

, a�1)
⇣
e��m|z|hp| ̄

B

(z)�zWB(z, 0) 
B

(0)|pi
⌘

should be independent of the cut-o↵ a�1 for arbitrary p2
E

and fixed pz, except for lattice discretization e↵ects of order

O(apz, a
p

p2, aµ
R

). In the region ⇤
QCD

⌧ pz,
p

p2
E

, µ
R

⌧ 1/a, the discretization e↵ect is small and can even be
reduced to O(a2) with improvement methods [10]. The most important feature of the renormalized matrix element
is that it is independent of the regularization scheme, i.e., we should obtain the same result in the continuum theory
with dimensional regularization as long as we define Z

 ,z

with Eq. (8). As a result, we just need to perform the
perturbative matching in the continuum theory with dimensional regularization, which makes the calculation much
easier and enables us to go to higher loop orders.

Before we proceed, it should be pointed out that if �m can be determined independently from elsewhere, then
it is equivalent to absorb e��m|z| into Z�1

 ,z

in Eq. (8). In this way, the renormalization factor includes both the
linear and logarithmic corrections, and thus there is no need to calculate �m at all. The only concern with this
treatment is whether the renormalized matrix element is still regularization invariant, as the logarithmic divergences
are accompanied by linear divergence at higher loop orders. A quick observation is that this is not a regularization
artifact, so regularization-invariance should be maintained as long as the relation in Eq. (7) is correct. On the other
hand, if we choose a di↵erent strategy such as redefining the quasi PDF to be free of linear divergence, then we just
need to calculate Z

 ,z

from Eq. (8).
For each discretized value of z, we obtain di↵erent Z

 ,z

at µ
R

and will use it to renormalize the nucleon matrix
elements of the quark bilinear  

B

(z)�zW (z, 0) 
B

(0) from lattice simulation. Then we Fourier transform the result to
obtain the renormalized quasi PDF in the RI/MOM scheme. The next step is to match quasi PDF in the RI/MOM
scheme to PDF in the MS scheme, which is calculated in the continuum theory with dimensional regularization.
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		Z(z ,p
z ,a−1 ,µR )−1 p (ψ (z)W(z ,0)ψ (0))B p



RI/MOM	Scheme	

★ The	renormalized	matrix	element	is	independent	of	UV	

regulator,	so	it	should	be	the	same	even	in	the	continuum	

with	dimensional	regularization;	

•  To	obtain	PDF	in	the	MSbar	scheme,	one	just	need	to	

match	from	quasi	PDF	in	the	RI/MOM	in	the	continuum	

with	dimensional	regularization!	

•  In	dimensional	regularization,	the	linear	divergence	

vanishes	for	d=4-2ε,	and	the	calculation	becomes	much	

easier!	
20	



We	can	briefly	summarize	the	procedure	as:	

•  For	each	z,	determine	the	nonperturbative	renormalization	factor;	

•  Renormalize	the	lattice	nucleon	matrix	element	of	the	quasi	PDF	

with	the	same	factor,	and	then	Fourier	transform	it	to	momentum	

space	kz=xpz;	

•  Calculate	the	matching	coefficient	between	the	quasi	PDF	in	the	

RI/MOM	and	PDF	in	the	MSbar		in	the	continuum	with	dim-reg;	

21	

See	also	M.	Constantinou	and	Y.	Yang’s	talks.	



•  PDF	from	lattice	QCD	through	LaMET	

•  Quasi	PDF	in	the	RI/MOM	scheme	

•  Match	quasi	PDF(RI/MOM)	to	PDF(MSbar)	

22	



One-loop	diagrams	

•  Dimensional	regularization	d=4-2ε;	Off-shell	quarks	with	p=(p0,0,0,pz)	
and		p2<0.	

•  Fourier	transform	to	the	momentum	space;	

•  Virtual	contribution	expressed	as	the	integration	of	the	real	contribution	

times	δ(x-1);	

23	
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FIG. 1. One-loop Feynman diagrams for the nonlocal quark bilinear operator. The quark self energy diagram is also implied.

Since the external state is o↵-shell, the Feynman diagrams will lead to structures di↵erent from �z, such as pz/p/p2.
Therefore, we project the result onto �z as

Tr(/p��(z))

Tr(/p�z)
=

1

4pz
Tr(/p��(z)) . (7)

This projection should also be used to the define the quark matrix element of quasi PDF in lattice QCD.

Each diagram contributes:

��
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(z) =
1

4pz
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ddk
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��
tadpole

(z) =
1

4pz
Tr


/p

Z
ddk
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(�g2)C

F
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The quark self-energy correction is the tree level matrix element times the renormalization factor defined in the
on-shell scheme,

�Z
 

= � @⌃(p)

@i/p

����
p=0

⌘ �(
g2

4⇡
)C

F

✓
1

✏
+ ln

µ2

�p2
+ 1

◆
+O(g4) . (11)

However, for our purpose here, it will be expressed in an integral form to make sure that current conservation is
satisfied.

Since there is an exponential of exp(�ikzz) in the integrand of each Feynman diagram, the result will be a compli-
cated functional form of z that does not serve to our purpose of matching. Instead, we use the identity

f(z) = pz
Z 1

�1

dx

2⇡
e�ixp

z
z

Z 1

�1
dzeixp

z
z

0
f(z0) (12)

to express each Feynman diagram as the inverse Fourier transform of the variable x = kz/pz.

By directly evaluating the loop integrals in Eqs. (8–10), we find that they are all UV finite and regular at ✏ = 0.



One-loop	diagrams	

•  Where																																		and	D(ρ)	stands	for	integration	
of	the	second	line	over	x.	

•  The	real	part	is	UV	finite,	but	its	integration	over	x	is	
not,	which	is	cancelled	by	the	virtual	part.	
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FIG. 1: One-loop Feynman diagrams for the nonlocal quark bilinear operator. The quark self energy diagram is also
implied.
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The second term in the bracket of Eq. (13) which is proportional z does not contribute to the loop integral as it is
odd under the exchange of pz � kz ! �(pz � kz).

The quark self-energy correction is the tree level matrix element times the renormalization factor defined in the
on-shell scheme,
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However, for our purpose here, it will be expressed in an integral form in Eq. (17) to make sure that vector current
conservation is satisfied.

Since there is an exponential of exp(�ikzz) in the integrand of each Feynman diagram, the result will be a compli-
cated functional form of z that does not serve to our purpose of matching. Instead, we use the identity
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e�ixp

z
z

Z 1

�1
dzeixp

z
z

0
f(z0) (15)

to express each Feynman diagram as the inverse Fourier transform of the variable x = kz/pz. For example,

��vertex(z) =
1

4

Z 1

�1

dx

2⇡
e�ixp

z
zTr


/p

Z
ddk

(2⇡)d
(�ig⌧a�µ)

i

/k
�z

i

/k
(�i⌧a�⌫)

�ig
µ⌫

(p� k)2

�
(2⇡)�(kz � xpz) . (16)

By directly evaluating the loop integrals in Eqs. (11–13), we find that they are all UV finite and regular at ✏ = 0.
The result is summarized as:
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where ⇢ = �p2/p2
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< 1, and
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The above integral is logarithmically divergent, but we keep it in the integral form so that the axial singularities in
Eq. (17) at x = 1 cancel between the “real” and “virtual” parts and ��(z) vanishes at z = 0. Here the “real” and
“virtual” parts refer to the distribution part with support in �1 < x < 1 and the part proportional to �(x � 1).
They are slightly di↵erent from the real and virtual contributions in PDF as the latter have clear physical meaning.
The +i" prescription allows us to analytically continue ⇢ from ⇢ < 1 to ⇢ > 1.

By imposing the condition in Eq. (9), we obtain the counterterm
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(z, ⇢(µ
R

)) = � ��(z)|
p
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2
R

, (19)

where ⇢(µ
R

) = µ
R

2/p2
z

. In Euclidean space, p2
E

= p24 + p2
z

 p2
z

, so the renormalization scale µ
R

we can reach on the
lattice by setting p2

E

= µ2
R

always satisfies µ2
R

� p2
z

. Therefore, we must analytically continue ��
CT

(z, ⇢(µ
R

)) to the
region ⇢(µ

R

) > 1.

To match quasi PDF to PDF, we must keep our physical scale �p2 small, i.e., ⇢ ⌧ 1, to identify the collinear and
IR divergences by a Taylor expansion of ��(z) in ⇢. The leading order term should be logarithmically dependent on
⇢. After this expansion, the renormalized matrix element in the RI/MOM scheme is
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=
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where the collinear divergence characterized by ln ⇢ only exists in the region 0 < x < 1. Although D(⇢) and D(⇢(µ
R

))
are logarithmically divergent integrals, their di↵erence is convergent. If we Fourier transform ��(z, ⇢, ⇢(µ

R

)) into
momentum space to obtain the quasi PDF, there are still axial singularities at x = 1+ and x = 1�, and we can
eliminate these singularities by defining the following plus functions as
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, (21)

where h(x) and g(x) are arbitrary functions. As a result, we can rewrite the one-loop matrix element of the quasi
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Since	on	the	la#ce,		
	
If	we	do	renormalizaNon	in	la#ce	QCD,	
	
We	need	to	keep	ρ(μR)	finite,	and	analyNcally	conNnue	it	to	ρ(μR)≥1.	

µR
2 = pE

2 ≥ pz
2

ρ(µR ) =
µR
2

pz
2 ≥1

6

where ⇢ = �p2/p2
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The above integral is logarithmically divergent, but we keep it in the integral form so that the axial singularities in
Eq. (17) at x = 1 cancel between the “real” and “virtual” parts and ��(z) vanishes at z = 0. Here the “real” and
“virtual” parts refer to the distribution part with support in �1 < x < 1 and the part proportional to �(x � 1).
They are slightly di↵erent from the real and virtual contributions in PDF as the latter have clear physical meaning.
The +i" prescription allows us to analytically continue ⇢ from ⇢ < 1 to ⇢ > 1.

By imposing the condition in Eq. (9), we obtain the counterterm
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(z, ⇢(µ
R

)) = � ��(z)|
p

2=�µ

2
R

, (19)

where ⇢(µ
R

) = µ
R

2/p2
z

. In Euclidean space, p2
E

= p24 + p2
z

 p2
z

, so the renormalization scale µ
R

we can reach on the
lattice by setting p2

E

= µ2
R

always satisfies µ2
R

� p2
z

. Therefore, we must analytically continue ��
CT

(z, ⇢(µ
R

)) to the
region ⇢(µ

R

) > 1.

To match quasi PDF to PDF, we must keep our physical scale �p2 small, i.e., ⇢ ⌧ 1, to identify the collinear and
IR divergences by a Taylor expansion of ��(z) in ⇢. The leading order term should be logarithmically dependent on
⇢. After this expansion, the renormalized matrix element in the RI/MOM scheme is
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R
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=
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F
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
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where the collinear divergence characterized by ln ⇢ only exists in the region 0 < x < 1. Although D(⇢) and D(⇢(µ
R

))
are logarithmically divergent integrals, their di↵erence is convergent. If we Fourier transform ��(z, ⇢, ⇢(µ

R

)) into
momentum space to obtain the quasi PDF, there are still axial singularities at x = 1+ and x = 1�, and we can
eliminate these singularities by defining the following plus functions as

Z 1

1

dx
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h(x)
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�
g(x) =

Z 1

1

dx
h(x)
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[g(x)� g(1)] ,
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(1� x)+
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Z 1

0
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g(x)� g(1)
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, (21)

where h(x) and g(x) are arbitrary functions. As a result, we can rewrite the one-loop matrix element of the quasi



•  For	the	unrenormalized	matrix	element,	the	

physical	scale	-p2	serves	as	the	collinear	

divergence	regulator	ln(-p2)	here;	

•  To	compare	to	the	collinear	divergence	of	PDF,	

we	need	to	do	an	expansion	for	the	onshell	limit	

ρ<<1 (–p2<<pz
2)	to	separate	out	the	collinear	

divergence:	
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Renormalized	quasi	PDF	

Compared	to	normal	PDF	renormalized	in	the	MSbar	scheme	
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where ⇢ = �p2/p2
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The above integral is logarithmically divergent, but we keep it in the integral form so that the axial singularities in
Eq. (17) at x = 1 cancel between the “real” and “virtual” parts and ��(z) vanishes at z = 0. Here the “real” and
“virtual” parts refer to the distribution part with support in �1 < x < 1 and the part proportional to �(x � 1).
They are slightly di↵erent from the real and virtual contributions in PDF as the latter have clear physical meaning.
The +i" prescription allows us to analytically continue ⇢ from ⇢ < 1 to ⇢ > 1.

By imposing the condition in Eq. (9), we obtain the counterterm
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)) = � ��(z)|
p

2=�µ

2
R
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where ⇢(µ
R

) = µ
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. In Euclidean space, p2
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, so the renormalization scale µ
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we can reach on the
lattice by setting p2

E

= µ2
R
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. Therefore, we must analytically continue ��
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)) to the
region ⇢(µ

R

) > 1.

To match quasi PDF to PDF, we must keep our physical scale �p2 small, i.e., ⇢ ⌧ 1, to identify the collinear and
IR divergences by a Taylor expansion of ��(z) in ⇢. The leading order term should be logarithmically dependent on
⇢. After this expansion, the renormalized matrix element in the RI/MOM scheme is
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where the collinear divergence characterized by ln ⇢ only exists in the region 0 < x < 1. Although D(⇢) and D(⇢(µ
R

))
are logarithmically divergent integrals, their di↵erence is convergent. If we Fourier transform ��(z, ⇢, ⇢(µ

R

)) into
momentum space to obtain the quasi PDF, there are still axial singularities at x = 1+ and x = 1�, and we can
eliminate these singularities by defining the following plus functions as
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where h(x) and g(x) are arbitrary functions. As a result, we can rewrite the one-loop matrix element of the quasi

7

PDF in the RI/MOM scheme as
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The renormalized one-loop matrix element of PDF in the MS scheme is
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Considering the factorization formula in Eq. (6), the matching coe�cient C between the renormalized quasi-PDF
and normal PDF is
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As expected, C is independent of the IR regulator �p2 as ln ⇢ terms cancel between the quasi PDF and PDF.

The above equation summarizes our result of the matching between quasi PDF in the RI/MOM scheme and PDF
in the MS scheme for the non-singlet case.
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2

on the scheme). Fourier transforming to momentum space as in Eq. (3), the renormalization for the quasi-PDF
involves a convolution in the momentum fraction,

q̃B
i

(x, P z, ✏) =
X

j

P z

Z +1

�1
dx0 Z̃

ij

(x� x0, ✏, µ̃) q̃
j

(x0, P z, µ̃) . (5)

The structure of the renormalization of the quasi-PDF in Eqs. (4) and (5) is similar to that of the quark beam-
function [11, 12], which is a proton distribution with separations along both the plus and minus light-cone directions.
Ref. [12] gives an all orders proof of the position space multiplicative renormalization of the beam function, and this
proof also implied that there is never parton mixing in this case. Since this lack of mixing has not yet been explored
for the quasi-PDF’s renormalization, we included a

P
j

in our Eqs. (4) and (5), where j sums over quarks and gluons.
For a nucleon moving with finite but large momentum P z � ⇤QCD, the quasi PDF can be matched onto the PDF

through a momentum space factorization formula [10, 13]:
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◆
, (6)

where C
ij

is the matching coe�cient, and the O(M2/P 2
z

,⇤2
QCD/P

2
z

) terms are higher-twist corrections suppressed
by the nucleon momentum (M is the nucleon mass). Here q

j

(y, µ) for negative y corresponds to the anti-quark
contribution. The power corrections are related to higher-twist contributions in the quasi PDF. Note that it is
important to distinguish between the renormalization of the PDF and quasi-PDF given by the Z

ij

s and the matching
given by the C

ij

s. The renormalization constants occur in a relation between bare and renormalized matrix elements
for the same operators. On the other hand the matching coe�cients occur in a relation between renormalized matrix
elements of di↵erent operators. The q̃ and q have the same collinear and infrared (IR) divergences, so at perturbative
scales µ and µ̃ the C

ij

s can be calculated order by order in ↵
s

.
Based on Ji’s proposal, the procedure of calculating PDF from lattice QCD can be summarized as:

1. Lattice simulation of the quasi PDF;

2. Renormalization of the quasi PDF in a particular scheme on the lattice;

3. Subtraction of higher-twist corrections;

4. Matching quasi PDF in the particular scheme to PDF in the MS scheme.

E↵orts have been made to calculate the iso-vector quark distributions f
u�d

, including unpolarized, polarized, and
transversity distributions, from lattice QCD [14–17]. The one-loop matching coe�cients was first calculated in the
continuum theory [18] and confirmed in Refs. [15, 19]. The nucleon-mass corrections of O(M2/P 2

z

) have already
been included in the lattice calculations [14–17], and the O(⇤2

QCD/P
2
z

) correction was numerically fit in Ref. [16]. (A
direct lattice calculation of the O(⇤2

QCD/P
2
z

) correction is still desired from the theoretical point of view). So far the
renormalization of the lattice matrix element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [14–17]. With
increasing nucleon momentum P z, the latter will be the most important factor that limits the precision of lattice
calculation of PDFs.

One of the standard methods to renormalize operators in lattice QCD is the lattice perturbation theory [20]. In
practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits our
ability to go to higher loop orders. An alternative is nonperturbative methods, such as the regularization-invariant
momentum subtraction (RI/MOM) scheme, that has been widely used to renormalize local operators on the lattice [21].
Work in progress to calculate the lattice quasi-PDFs in the RI/MOM scheme has been reported in [22], and appears
to be the most promising route for future higher precision quasi-PDF determinations.

In this paper we focus on the implementation of Step 4 when the lattice quasi PDF is defined in the RI/MOM
scheme. In particular we carry out a perturbative calculation of the matching coe�cient C that directly enables
this lattice quasi PDF to be directly matched onto the MS PDF. The renormalized matrix elements in the RI/MOM
scheme are independent of the UV regularization, so we carry out this matching perturbatively with dimensional
regularization.

An alternative to the approach we take here would be to convert the lattice quasi PDF defined with nonperturbative
renormalization in the RI/MOM scheme back to the MS scheme perturbatively. This would then allow the MS
matching result for C in Ref. [18] to be used. Our approach is simpler and more direct, with only a single step
involving a perturbative calculation. Nevertheless it would be interesting to compare both approaches. is

(I still need to edit this paragraph: –is) In Section II we elaborate on the procedure of implementing the
RI/MOM scheme for quasi PDF; In Section III we provide result of one-loop matching coe�cient between quasi PDF
in the RI/MOM scheme and PDF in the MS scheme; We conclude in Section V.
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PDF in the RI/MOM scheme as

q̃(1)(x, pz, µ
R

)

=
↵
s

C
F

2⇡

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:
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)
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, x > 1
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(1� x)+
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4

⇢
� 2p

⇢(µ
R
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(1� x)+
� ⇢(µ

R

)

2(1� x)+

�
arctan

p
⇢(µ

R

)� 1 , 0 < x < 1

1 + x2

1� x
ln
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x
+

2p
⇢(µ

R
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
1 + x2

1� x
� ⇢(µ

R

)

2(1� x)

�
arctan

p
⇢(µ

R

)� 1

2x� 1

� ⇢(µ
R

)

4x(x� 1) + ⇢(µ
R

)
, x < 0

�↵
s

C
F

2⇡
D2(⇢, ⇢(µR

))�(x� 1) , (22)

where

D2(⇢, ⇢(µR

)) = �3

2
ln

⇢(µ
R

)

⇢
+

⇡2

3

� ⇢(µ
R

)� 4p
⇢(µ

R

)� 1
Im

"
Li2(

2

1 + i
p
⇢(µ

R

)� 1
)

#
+

⇢(µ
R

)� 4

2
p

⇢(µ
R

)� 1
(arctan

p
⇢(µ

R

)� 1) ln
4

⇢(µ
R

)
.

(23)

The renormalized one-loop matrix element of PDF in the MS scheme is

q(1)(x, µ) =
↵
s

C
F

2⇡

8
>><

>>:

0 , x > 1
1 + x2

(1� x)+
ln

⇢(µ)

⇢
� 1 + x2

(1� x)+
lnx(1� x)� 2(1� x) +

✓
3

2
ln

⇢(µ)

⇢
+ 4

◆
�(x� 1) , 0 < x < 1

0 , x < 0

(24)

Considering the factorization formula in Eq. (6), the matching coe�cient C between the renormalized quasi-PDF
and normal PDF is

CRI/MOM(⇠,
µ
R

pz
,
µ

pz
)

= q̃(⇠,
µ
R

pz
,�p2)� q(⇠,

µ

pz
,�p2)

=
↵
s

C
F

2⇡

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:
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)
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+
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�2 arctan
p
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R

)� 1p
⇢(µ
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(1� ⇠)+
� ⇢(µ

R

)

2(1� ⇠)+

�
, 0 < ⇠ < 1

1 + ⇠2
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⇠
+

2p
⇢(µ
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)� 1


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� ⇢(µ

R

)

2(1� ⇠)

�
arctan

p
⇢(µ

R

)� 1

2⇠ � 1

� ⇢(µ
R

)

4⇠(⇠ � 1) + ⇢(µ
R

)
, ⇠ < 0

�↵
s

C
F

2⇡


D2(⇢, ⇢(µR

)) +
3

2
ln

⇢(µ)

⇢
+ 4

�
�(⇠ � 1) . (25)

As expected, C is independent of the IR regulator �p2 as ln ⇢ terms cancel between the quasi PDF and PDF.

The above equation summarizes our result of the matching between quasi PDF in the RI/MOM scheme and PDF
in the MS scheme for the non-singlet case.

ξ =
x
y
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transverse momentum cut-o↵ ⇤, and the matching coe�cient is

Ccut-o↵(⇠,
µ

pz
) =

↵
s

C
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2⇡

8
>>>>>><
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⇠
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, ⇠ < 0

�↵
s

C
F
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Dcut-o↵(⇢(µ))�(⇠ � 1) , (31)

where

Dcut-o↵(⇢(µ)) =

Z 1

1

d⇠
1 + ⇠2

1� ⇠
ln

⇠

⇠ � 1
+

Z 1

0

d⇠


1 + ⇠2

1� ⇠
ln

4

⇢(µ)
+

1 + ⇠2

1� ⇠
ln ⇠(1� ⇠)� 2⇠

1� ⇠

�

+

Z 0

�1
d⇠

1 + ⇠2

1� ⇠
ln

⇠ � 1

⇠
+

Z 1

�1
d⇠

1

(1� ⇠)2
⇤

P z

. (32)

Note that the linear divergence is not subtracted in the quasi PDF in this scheme, so there is no renormalization scale
µ
R

associated with it. Besides, Dcut-o↵(⇢(µ)) is actually ill defined as the integrals are UV divergent.
In the recent report [22], the quasi PDF is renormalized in the RI/MOM scheme and matched to the quasi PDF in

the MS scheme. Eventually, the quasi PDF in the MS scheme needs to be matched to PDF in the MS scheme. In this
case, the matching coe�cient is very similar to that in Ref. [18] except for the vanishing of the linear divergent term:

CMS(⇠,
µ

pz
) =

↵
s

C
F

2⇡

8
>>>>>><

>>>>>>:

1 + ⇠2

1� ⇠
ln

⇠

⇠ � 1
+ 1 , ⇠ > 1

1 + ⇠2

1� ⇠
ln

4

⇢(µ)
+

1 + ⇠2

1� ⇠
ln ⇠(1� ⇠) + 2(1� ⇠)� 2⇠

1� ⇠
, 0 < ⇠ < 1

1 + ⇠2

1� ⇠
ln

⇠ � 1

⇠
� 1 , ⇠ < 0

�↵
s

C
F

2⇡
DMS(⇢(µ))�(⇠ � 1) , (33)

where

DMS(⇢(µ)) = Dcut-o↵(⇢(µ))�
Z 1

�1
d⇠

1

(1� ⇠)2
⇤

P z

. (34)

At P z = 2
p
2 GeV, µ = µ

R

= 4 GeV, and ⇤ = 4P z, we calculate Ccut-o↵⌦ f
u�d

and CMS⌦ f
u�d

with di↵erent UV
cut-o↵s xcut = 103, 104, 105 and plot the results with comparison to f

u�d

in Fig. 4. Unlike the CRI/MOM⌦ f
u�d

, both

Ccut-o↵ ⌦ f
u�d

and CMS ⌦ f
u�d

su↵er from UV divergences, and they di↵er significantly from f
u�d

. This means that
when one reverse the factorization formula in Eq. (6), there must be a large cancellation of UV divergences between
the renormalized quasi PDF from lattice QCD and the matching coe�cient in the convolution integral. Since the UV
region of a matching factor C(x/y) is near y = 0, it is necessary to test the sensitivity of the convolution integral to
the smallest momentum fraction of the quasi PDF from lattice calculations in Ref. [14–17, 22].

The reason why CRI/MOM⌦f
u�d

has better UV convergence than the other two schemes is that only the RI/MOM
scheme introduces a counterterm to the quasi PDF which will cancel out the UV divergences in convolution integral.
This counterterm might also be accountable for the small e↵ect of perturbative matching. Therefore, to reduce the
theoretical uncertainties, it is reasonable to favor RI/MOM over the other two schemes according to the above results.

V. CONCLUSION

We have described the procedure of nonperturbative renormalization of quasi PDF in the RI/MOM scheme. The z-
dependent renormalization constant is obtained by imposing Eq. (9) on the o↵-shell quark matrix element of the spatial
correlation operator in lattice QCD. Then the renormalization constant is applied to the nucleon matrix element of the
same correlation operator whose Fourier transform gives the quasi PDF on the lattice. The renormalized quasi PDF
is regularization invariant and can be related to PDF in the MS scheme through a perturbative matching condition,
which is calculable in the continuum theory with dimensional regularization. Since all the large corrections in lattice

MSbar	scheme	(	M. Constantinou, 2016)	
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transverse momentum cut-o↵ ⇤, and the matching coe�cient is
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where
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Note that the linear divergence is not subtracted in the quasi PDF in this scheme, so there is no renormalization scale
µ
R

associated with it. Besides, Dcut-o↵(⇢(µ)) is actually ill defined as the integrals are UV divergent.
In the recent report [22], the quasi PDF is renormalized in the RI/MOM scheme and matched to the quasi PDF in

the MS scheme. Eventually, the quasi PDF in the MS scheme needs to be matched to PDF in the MS scheme. In this
case, the matching coe�cient is very similar to that in Ref. [18] except for the vanishing of the linear divergent term:
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where

DMS(⇢(µ)) = Dcut-o↵(⇢(µ))�
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(1� ⇠)2
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At P z = 2
p
2 GeV, µ = µ

R

= 4 GeV, and ⇤ = 4P z, we calculate Ccut-o↵⌦ f
u�d

and CMS⌦ f
u�d

with di↵erent UV
cut-o↵s xcut = 103, 104, 105 and plot the results with comparison to f

u�d

in Fig. 4. Unlike the CRI/MOM⌦ f
u�d

, both

Ccut-o↵ ⌦ f
u�d

and CMS ⌦ f
u�d

su↵er from UV divergences, and they di↵er significantly from f
u�d

. This means that
when one reverse the factorization formula in Eq. (6), there must be a large cancellation of UV divergences between
the renormalized quasi PDF from lattice QCD and the matching coe�cient in the convolution integral. Since the UV
region of a matching factor C(x/y) is near y = 0, it is necessary to test the sensitivity of the convolution integral to
the smallest momentum fraction of the quasi PDF from lattice calculations in Ref. [14–17, 22].

The reason why CRI/MOM⌦f
u�d

has better UV convergence than the other two schemes is that only the RI/MOM
scheme introduces a counterterm to the quasi PDF which will cancel out the UV divergences in convolution integral.
This counterterm might also be accountable for the small e↵ect of perturbative matching. Therefore, to reduce the
theoretical uncertainties, it is reasonable to favor RI/MOM over the other two schemes according to the above results.

V. CONCLUSION

We have described the procedure of nonperturbative renormalization of quasi PDF in the RI/MOM scheme. The z-
dependent renormalization constant is obtained by imposing Eq. (9) on the o↵-shell quark matrix element of the spatial
correlation operator in lattice QCD. Then the renormalization constant is applied to the nucleon matrix element of the
same correlation operator whose Fourier transform gives the quasi PDF on the lattice. The renormalized quasi PDF
is regularization invariant and can be related to PDF in the MS scheme through a perturbative matching condition,
which is calculable in the continuum theory with dimensional regularization. Since all the large corrections in lattice

No	μR	dependence	in	either	schemes!	

Linear	divergence	
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IV. DISCUSSION

A. Numerical Results of the Convolution between Matching Coe�cient and PDF

In this section we study how the matching procedure as depicted in Eq. (6) changes the PDF from its original
values. We take the unpolarized iso-vector parton distribution as an example,

f
u�d

(x, µ) = f
u

(x, µ)� f
d

(x, µ)� f
ū

(�x, µ) + f
d̄

(�x, µ) , (26)

where we have also included the anti-parton distributions

f
ū

(�x, µ) = �f
ū

(x, µ) , f
d̄

(�x, µ) = �f
d̄

(x, µ) . (27)

Now let us calculate the convolution between the matching coe�cient CRI/MOM(⇠) and f
u�d

(x). To numerically
calculate the integrals we should be careful with the singularities at ⇠ = 1 in the “real” part of CRI/MOM(⇠). The
plus functions in Eq. (25) will help us avoid such singularities, but in practice we find it more convenient to use
CRI/MOM(⇠) in the form without plus functions. Specifically, we rewrite CRI/MOM(⇠) as

CRI/MOM(⇠) = CRI/MOM
r

(⇠)� �(1� ⇠)

Z
d⇠0CRI/MOM

r

(⇠0) , (28)

where “r” denotes the “real” part. As a result,
Z 1
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✓
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◆
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y
)

Z
d⇠ CRI/MOM

r

⇣
⇠,
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P z
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⌘�
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=

Z 1

�1
dy


1

|y|C
RI/MOM
r

✓
x

y
,
µ

P z

,
µ
R

P z

◆
f
u�d

(y, µ)� 1

|x|C
RI/MOM
r

⇣y
x
,
µ

P z

,
µ
R

P z

⌘
f
u�d

(x, µ)

�
. (29)

Our inputs are the iso-vector PDF f
u�d

from “MSTW 2008” [7], and the next-to-next-to-leading order strong
coupling ↵

s

(µ). For numerical calculation we impose a UV cut-o↵ xcut = 10n on both |x/y| and |y/x| for fixed x, and
a soft cut-o↵ 10�✏ on y when x/y ! 1. By varying ✏ = 4, 5, 6 and n = 4, 5, 6, 7, we find the integrals insensitive to
these two cut-o↵s, so we choose ✏ = 5 and n = 4 for our display of the results.

At P z = 2
p
2 GeV, we fix the renormalization scale µ

R

= 4 GeV in the quasi PDF and vary the factorization scale µ.
The result is compared to f

u�d

(x, µ) in Fig. 2a. The red and blue solid curves are f
u�d

(x, µ) and the convoluted result
CRI/MOM ⌦ f

u�d

at µ = 4 GeV respectively, while the yellow and green uncertainty bands cover µ 2 [2 GeV, 8 GeV].
A first glance at Fig. 2a tells us that the convoluted result only di↵ers from the original PDF slightly, which is
appealing for the convergence of perturbation theory. To take a closer look, we subtract f

u�d

(x, µ = 4 GeV) from
both f

u�d

(x, µ) and the CRI/MOM ⌦ f
u�d

, and plot their di↵erences in Fig. 2b. In addition, we plot the ratios

CRI/MOM ⌦ f
u�d

� f
u�d

(x, 4 GeV)

|CRI/MOM ⌦ f
u�d

|+ |f
u�d

(x, 4 GeV)| V.S.
f
u�d

(x, µ)� f
u�d

(x, 4 GeV)

|f
u�d

(x, µ)|+ |f
u�d

(x, 4 GeV)| (30)

in Fig. 2c. As shown in Fig. 2b, the CRI/MOM ⌦ f
u�d

has small non-zero values outside the region �1 < x < 1. It
is also evident from both Fig. 2b and Fig. 2c that in the approximate regions �0.4 < x < �0.1 and 0 < x < 0.6
CRI/MOM⌦f

u�d

lies within the uncertainty band of f
u�d

. The di↵erence between CRI/MOM⌦f
u�d

and f
u�d

becomes
significant for large |x|, i.e., �1.0 < x < �0.5 and 0.7 < x < 1.0, but these are also regions where f

u�d

is close to
zero.
Our next step is to fix the factorization scale at µ = 8 GeV and vary the renormalization scale µ

R

in the quasi
PDF. According to Eq. (22), the quasi PDF defined in the RI/MOM scheme does not satisfy a renormalization group
equation, so di↵erent renormalization (or subtraction) scale µ

R

’s lead to di↵erent definitions of quasi PDF’s. For
µ
R

= 4, 8, 16 GeV, we plot comparisons between CRI/MOM ⌦ f
u�d

and f
u�d

(x, µ
R

), as shown in Fig. 3. As one can
see, the quasi PDF in the RI/MOM scheme is quite sensitive to the scale µ

R

that we use to define it.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi PDF and PDF has already been calculated in Ref. [18], which
was used in the lattice calculations of f

u�d

in Refs. [14–17]. In Ref. [18] the UV divergence is regularized by a
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ū

(�x, µ) + f
d̄

(�x, µ) , (26)

where we have also included the anti-parton distributions

f
ū
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Now let us calculate the convolution between the matching coe�cient CRI/MOM(⇠) and f
u�d

(x). To numerically
calculate the integrals we should be careful with the singularities at ⇠ = 1 in the “real” part of CRI/MOM(⇠). The
plus functions in Eq. (25) will help us avoid such singularities, but in practice we find it more convenient to use
CRI/MOM(⇠) in the form without plus functions. Specifically, we rewrite CRI/MOM(⇠) as

CRI/MOM(⇠) = CRI/MOM
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where “r” denotes the “real” part. As a result,
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Our inputs are the iso-vector PDF f
u�d

from “MSTW 2008” [7], and the next-to-next-to-leading order strong
coupling ↵

s

(µ). For numerical calculation we impose a UV cut-o↵ xcut = 10n on both |x/y| and |y/x| for fixed x, and
a soft cut-o↵ 10�✏ on y when x/y ! 1. By varying ✏ = 4, 5, 6 and n = 4, 5, 6, 7, we find the integrals insensitive to
these two cut-o↵s, so we choose ✏ = 5 and n = 4 for our display of the results.

At P z = 2
p
2 GeV, we fix the renormalization scale µ

R

= 4 GeV in the quasi PDF and vary the factorization scale µ.
The result is compared to f

u�d

(x, µ) in Fig. 2a. The red and blue solid curves are f
u�d

(x, µ) and the convoluted result
CRI/MOM ⌦ f

u�d

at µ = 4 GeV respectively, while the yellow and green uncertainty bands cover µ 2 [2 GeV, 8 GeV].
A first glance at Fig. 2a tells us that the convoluted result only di↵ers from the original PDF slightly, which is
appealing for the convergence of perturbation theory. To take a closer look, we subtract f

u�d

(x, µ = 4 GeV) from
both f

u�d

(x, µ) and the CRI/MOM ⌦ f
u�d

, and plot their di↵erences in Fig. 2b. In addition, we plot the ratios
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in Fig. 2c. As shown in Fig. 2b, the CRI/MOM ⌦ f
u�d

has small non-zero values outside the region �1 < x < 1. It
is also evident from both Fig. 2b and Fig. 2c that in the approximate regions �0.4 < x < �0.1 and 0 < x < 0.6
CRI/MOM⌦f

u�d

lies within the uncertainty band of f
u�d

. The di↵erence between CRI/MOM⌦f
u�d

and f
u�d

becomes
significant for large |x|, i.e., �1.0 < x < �0.5 and 0.7 < x < 1.0, but these are also regions where f

u�d

is close to
zero.
Our next step is to fix the factorization scale at µ = 8 GeV and vary the renormalization scale µ

R

in the quasi
PDF. According to Eq. (22), the quasi PDF defined in the RI/MOM scheme does not satisfy a renormalization group
equation, so di↵erent renormalization (or subtraction) scale µ

R

’s lead to di↵erent definitions of quasi PDF’s. For
µ
R

= 4, 8, 16 GeV, we plot comparisons between CRI/MOM ⌦ f
u�d

and f
u�d

(x, µ
R

), as shown in Fig. 3. As one can
see, the quasi PDF in the RI/MOM scheme is quite sensitive to the scale µ

R

that we use to define it.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi PDF and PDF has already been calculated in Ref. [18], which
was used in the lattice calculations of f

u�d

in Refs. [14–17]. In Ref. [18] the UV divergence is regularized by a
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x/y->∞ corresponds to y->0, which is related to the smallest 
momentum fraction in the PDF (or quasi PDF if we reverse the 
factorization formula);

8

IV. DISCUSSION

A. Numerical Results of the Convolution between Matching Coe�cient and PDF

In this section we study how the matching procedure as depicted in Eq. (6) changes the PDF from its original
values. We take the unpolarized iso-vector parton distribution as an example,
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where we have also included the anti-parton distributions
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(x, µ) . (27)

Now let us calculate the convolution between the matching coe�cient CRI/MOM(⇠) and f
u�d

(x). To numerically
calculate the integrals we should be careful with the singularities at ⇠ = 1 in the “real” part of CRI/MOM(⇠). The
plus functions in Eq. (25) will help us avoid such singularities, but in practice we find it more convenient to use
CRI/MOM(⇠) in the form without plus functions. Specifically, we rewrite CRI/MOM(⇠) as
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Our inputs are the iso-vector PDF f
u�d

from “MSTW 2008” [7], and the next-to-next-to-leading order strong
coupling ↵

s

(µ). For numerical calculation we impose a UV cut-o↵ xcut = 10n on both |x/y| and |y/x| for fixed x, and
a soft cut-o↵ 10�✏ on y when x/y ! 1. By varying ✏ = 4, 5, 6 and n = 4, 5, 6, 7, we find the integrals insensitive to
these two cut-o↵s, so we choose ✏ = 5 and n = 4 for our display of the results.

At P z = 2
p
2 GeV, we fix the renormalization scale µ

R

= 4 GeV in the quasi PDF and vary the factorization scale µ.
The result is compared to f

u�d

(x, µ) in Fig. 2a. The red and blue solid curves are f
u�d

(x, µ) and the convoluted result
CRI/MOM ⌦ f

u�d

at µ = 4 GeV respectively, while the yellow and green uncertainty bands cover µ 2 [2 GeV, 8 GeV].
A first glance at Fig. 2a tells us that the convoluted result only di↵ers from the original PDF slightly, which is
appealing for the convergence of perturbation theory. To take a closer look, we subtract f

u�d

(x, µ = 4 GeV) from
both f

u�d

(x, µ) and the CRI/MOM ⌦ f
u�d

, and plot their di↵erences in Fig. 2b. In addition, we plot the ratios
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in Fig. 2c. As shown in Fig. 2b, the CRI/MOM ⌦ f
u�d

has small non-zero values outside the region �1 < x < 1. It
is also evident from both Fig. 2b and Fig. 2c that in the approximate regions �0.4 < x < �0.1 and 0 < x < 0.6
CRI/MOM⌦f

u�d

lies within the uncertainty band of f
u�d

. The di↵erence between CRI/MOM⌦f
u�d

and f
u�d

becomes
significant for large |x|, i.e., �1.0 < x < �0.5 and 0.7 < x < 1.0, but these are also regions where f

u�d

is close to
zero.
Our next step is to fix the factorization scale at µ = 8 GeV and vary the renormalization scale µ

R

in the quasi
PDF. According to Eq. (22), the quasi PDF defined in the RI/MOM scheme does not satisfy a renormalization group
equation, so di↵erent renormalization (or subtraction) scale µ

R

’s lead to di↵erent definitions of quasi PDF’s. For
µ
R

= 4, 8, 16 GeV, we plot comparisons between CRI/MOM ⌦ f
u�d

and f
u�d

(x, µ
R

), as shown in Fig. 3. As one can
see, the quasi PDF in the RI/MOM scheme is quite sensitive to the scale µ

R

that we use to define it.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi PDF and PDF has already been calculated in Ref. [18], which
was used in the lattice calculations of f

u�d

in Refs. [14–17]. In Ref. [18] the UV divergence is regularized by a
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In this section we study how the matching procedure as depicted in Eq. (6) changes the PDF from its original
values. We take the unpolarized iso-vector parton distribution as an example,
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where we have also included the anti-parton distributions

f
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(�x, µ) = �f
d̄

(x, µ) . (27)

Now let us calculate the convolution between the matching coe�cient CRI/MOM(⇠) and f
u�d

(x). To numerically
calculate the integrals we should be careful with the singularities at ⇠ = 1 in the “real” part of CRI/MOM(⇠). The
plus functions in Eq. (25) will help us avoid such singularities, but in practice we find it more convenient to use
CRI/MOM(⇠) in the form without plus functions. Specifically, we rewrite CRI/MOM(⇠) as

CRI/MOM(⇠) = CRI/MOM
r
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Our inputs are the iso-vector PDF f
u�d

from “MSTW 2008” [7], and the next-to-next-to-leading order strong
coupling ↵

s

(µ). For numerical calculation we impose a UV cut-o↵ xcut = 10n on both |x/y| and |y/x| for fixed x, and
a soft cut-o↵ 10�✏ on y when x/y ! 1. By varying ✏ = 4, 5, 6 and n = 4, 5, 6, 7, we find the integrals insensitive to
these two cut-o↵s, so we choose ✏ = 5 and n = 4 for our display of the results.

At P z = 2
p
2 GeV, we fix the renormalization scale µ

R

= 4 GeV in the quasi PDF and vary the factorization scale µ.
The result is compared to f

u�d

(x, µ) in Fig. 2a. The red and blue solid curves are f
u�d

(x, µ) and the convoluted result
CRI/MOM ⌦ f

u�d

at µ = 4 GeV respectively, while the yellow and green uncertainty bands cover µ 2 [2 GeV, 8 GeV].
A first glance at Fig. 2a tells us that the convoluted result only di↵ers from the original PDF slightly, which is
appealing for the convergence of perturbation theory. To take a closer look, we subtract f

u�d

(x, µ = 4 GeV) from
both f

u�d

(x, µ) and the CRI/MOM ⌦ f
u�d

, and plot their di↵erences in Fig. 2b. In addition, we plot the ratios

CRI/MOM ⌦ f
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in Fig. 2c. As shown in Fig. 2b, the CRI/MOM ⌦ f
u�d

has small non-zero values outside the region �1 < x < 1. It
is also evident from both Fig. 2b and Fig. 2c that in the approximate regions �0.4 < x < �0.1 and 0 < x < 0.6
CRI/MOM⌦f

u�d

lies within the uncertainty band of f
u�d

. The di↵erence between CRI/MOM⌦f
u�d

and f
u�d

becomes
significant for large |x|, i.e., �1.0 < x < �0.5 and 0.7 < x < 1.0, but these are also regions where f

u�d

is close to
zero.
Our next step is to fix the factorization scale at µ = 8 GeV and vary the renormalization scale µ

R

in the quasi
PDF. According to Eq. (22), the quasi PDF defined in the RI/MOM scheme does not satisfy a renormalization group
equation, so di↵erent renormalization (or subtraction) scale µ

R

’s lead to di↵erent definitions of quasi PDF’s. For
µ
R

= 4, 8, 16 GeV, we plot comparisons between CRI/MOM ⌦ f
u�d

and f
u�d

(x, µ
R

), as shown in Fig. 3. As one can
see, the quasi PDF in the RI/MOM scheme is quite sensitive to the scale µ

R

that we use to define it.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi PDF and PDF has already been calculated in Ref. [18], which
was used in the lattice calculations of f

u�d

in Refs. [14–17]. In Ref. [18] the UV divergence is regularized by a



RI/MOM	
9

(a) (b)

(c)

FIG. 2: Comparison between the convoluted result CRI/MOM ⌦ f
u�d

and f
u�d

. The yellow and green bands indicate
the uncertainties in the factorization scale µ. (a) CRI/MOM ⌦ f

u�d

and f
u�d

; (b) Di↵erences between
CRI/MOM ⌦ f

u�d

, f
u�d

, and f
u�d

(x, 4 GeV); (c) Ratios of the di↵erences to the sums of the absolute values of
CRI/MOM ⌦ f

u�d

, f
u�d

, and f
u�d

(x, 4 GeV).

(a) (b)

FIG. 3: Comparison between the convoluted result CRI/MOM ⌦ f
u�d

at di↵erent µ
R

’s and f
u�d

. The yellow bands
indicate the uncertainties in the renormalization scale in PDF. (a) CRI/MOM ⌦ f

u�d

and f
u�d

; (b) Di↵erences
between CRI/MOM ⌦ f

u�d

, f
u�d

, and f
u�d

(x, 8 GeV).
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Insensitive	to	soft	cut-off	10-ε or	UV	cut-off	10n	
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(a) (b)

FIG. 4: Convoluted results for other schemes. The yellow and green bands indicate the uncertainties in the
renormalization scale of PDF. (a) Ccut-o↵ ⌦ f

u�d

and f
u�d

with di↵erent xcut’s; (b) CMS ⌦ f
u�d

and f
u�d

with
di↵erent xcut’s.

which is calculable in the continuum theory with dimensional regularization. Since all the large corrections in lattice
perturbation theory are absorbed into the nonperturbative renormalization constant, the uncertainty of this procedure
comes from lattice discretization e↵ects and perturbative matching in the continuum theory. Our numerical results
show that the one-loop matching for the RI/MOM scheme has nice UV convergence and only slightly modifies the
PDF, which is in contrast to the matching for the MS scheme. This indicates that the theoretical uncertainty in the
perturbative matching for the RI/MOM scheme is small and controllable, thus making it more favorable than the
MS scheme. Finally, to increase the accuracy of calculation, we can study the lattice improvement for the simulation
of quasi PDF and calculate the matching coe�cient to higher orders in perturbation theory. With the capability
to do simulations with larger nucleon momentum on the lattice, we believe that this work will complete the lattice
calculation of PDF with desirable accuracy in the near future.

It should be noted that in the lattice theory there are not only discretization errors, but also mixings with other
operators due to the broken Lorentz symmetry. We should include all the possible operators that mix with the
gauge-invariant quark bilinear and determine their renormalization constants nonperturbatively. At last, it is still
worthwhile to study the nonpertrubative subtraction of linear divergence in quasi PDF. The renormalization condition
in Eq. (9) should be able to completely remove all the divergences in the bare matrix element, but a rigorous proof
that this subtraction is regularization invariant will be critical to the implementation of RI/MOM and its matching
to the MS scheme. If we understand how the relation in Eq. (8) is proved [26], we will gain further insight into the
above issue. Otherwise, we have to seek a redefinition of the quasi PDF that is free of linear divergence to implement
the RI/MOM scheme on the lattice. After all, in both cases, the procedure detailed in this work is applicable, and
the matching coe�cient we have calculated will be used to obtain PDF in the MS scheme.
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Insensitive	to	soft	cut-off	10-ε,	but	sensitive	to	UV	cut-off	10n	

Transverse	
momentum	cut-off	

MSbar	



•  	The	counterterm	in	RI/MOM	guarantees	that	the	UV	

divergence	in	the	integration	over	x	is	subtracted,	so	the	

convolution	integral	is	insensitive	to	the	UV	cut-off;	

•  So	far	lattice	results	only	come	from	quasi	PDF	in	the	

transverse	momentum	cut-off	scheme.	We	should	test	the	

sensitive	of	the	factorization	formula	to	the	smallest	

momentum	fraction	in	the	quasi	PDF.	
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Summary	

•  The	implementation	of	the	RI/MOM	scheme	on	the	

nonperturbative	renormalization	of	the	quasi	PDF	in	lattice	

QCD	is	discussed;	

•  Matching	between	quasi	PDF	in	the	RI/MOM	scheme	and	

PDF	in	the	MSbar	scheme	is	calculated	at	one-loop	level.	

•  Matching	between	RI/MOM	quasi	PDF	and	PDF	is	a	small	

effect,	and	has	nice	convergence.	
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Back	up	slides	
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Perturbative	Calculation	of	Zψ,z	

•  The	calculation	is	done	for	off-shell	quark	(with	

momentum	p,	p2<0)	matrix	element	of	the	operator;	

•  In	order	to	calculate	the	matching	coefficient,	we	need	

expansion	around	p2=0	to	identify	the	IR	divergence	
ln(p2)	and	compare	to	PDF;	

•  However,	on	the	Euclidean	lattice,	pE
2 ≥ pz

2,	so	this	

expansion	cannot	be	done.	
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Perturbative	Calculation	of	Zψ,z	
What	should	we	do	next	for	the	matching?	
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Renormalized	quasi	PDF	in	lattice	QCD	

Renormalized	PDF	in	the	MSbar	scheme	

Renormalized	quasi	PDF	in	the	continuum	

1.	Fit	the	
ln(pE

2)	
dependence	
with	the	
Altarelli-Parisi	
kernel	in	the	
numerical	
value	of	Zψ,z	

2.	Analytically	
continue	ln(pE

2)	
to		ln(p2),	so	that	
we	can	compare	
to	PDF	in	the	
MSbar	scheme	to	
do	the	matching	

Numerical	matching,	the	matching	is	
independent	of	p2	and		pz.	

Analytical	matching,	already	done.	



Renormalization	of	Quasi	PDF	on	
the	Lattice	

One	of	the	standard	methods	is	the	lattice	perturbation	theory	(S. Capitani, 
2003):	

•  L	Feynman	rules	complicated	by	fermion	and	gluon	actions	on	the	

lattice;	

•  L	Calculation	of	lattice	Feynman	diagrams	is	cumbersome	and	difficult,	

limiting	our	ability	to	go	to	higher	loop	orders.	

Therefore,	we	focus	on	a	nonperturbative	method,	the	regularization-

invariant	momentum	subtraction	(RI/MOM)	scheme,	that	has	been	widely	

used	in	lattice	theory.	

Other	nonperturbative	methods	such	as	Yang-Mills	gradient	flow	(K. Orginos 

and C. Monohan, 2016)	
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Open	questions	

•  Rigorous	proof	of	the	renormalization	relation	

of	the	quasi	PDF	.	✔	

•  Determination	of	δm from	lattice	QCD.	

•  If	δm is	absorbed	into	the	RI/MOM	

renormalization	factor,	whether	the	result	is	

still	regularization-invariant.	
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