## **TMDs of a Spin-1 Target**

## Ian Cloët Argonne National Laboratory

#### QCD Evolution 2017

Jefferson Lab — 22–26 May 2017



Office of Science



#### Momentum Tomography



A spin-1 target can have tensor polarization [associated with  $\lambda = 0$ ]

• 3 additional *T*-even and 7 additional *T*-odd quark TMDs compared to nucleon [A. Bacchetta and P. J. Mulders, Phys. Rev. D 62, 114004 (2000)]

Analogous situation for gluon TMDs [See talk of Mulders & Shanahan]

• to fully expose role of gluons in nuclei need polarized nuclear targets [e.g. D, <sup>6</sup>Li]

Wigner Distributions

#### TMDs of Spin-1 Targets

- Spin 4-vector of a spin-1 particle moving in z-direction – with spin quantization axis  $S = (S_T, S_L)$  reads:
  - for given direction S the particle has the three possible spin projections  $\lambda = \pm 1, 0$
  - longitudinal polarization  $\implies S_T = 0, S_L = 1$ ; transverse  $\implies |S_T| = 1, S_L = 0$
- Define quark TMDs of a spin-1 target with respect to the k<sub>T</sub> dependent quark correlation function:

At leading-twist:

$$\langle \gamma^+ \rangle_{\boldsymbol{S}}^{(\lambda)}(x, \boldsymbol{k}_T) = \boldsymbol{f}(x, \boldsymbol{k}_T^2) - \frac{3\lambda^2 - 2}{2} \left[ \left( S_L^2 - \frac{1}{3} \right) \boldsymbol{\theta}_{LL}(x, \boldsymbol{k}_T^2) \right. \\ \left. + \frac{(\boldsymbol{k}_T \cdot \boldsymbol{S}_T)^2 - \frac{1}{3} \boldsymbol{k}_T^2}{m_h^2} \, \boldsymbol{\theta}_{TT}(x, \boldsymbol{k}_T^2) + S_L \, \frac{\boldsymbol{k}_T \cdot \boldsymbol{S}_T}{m_h} \, \boldsymbol{\theta}_{LT}(x, \boldsymbol{k}_T^2) \right] \\ \left. \langle \gamma^+ \gamma_5 \rangle_{\boldsymbol{S}}^{(\lambda)}(x, \boldsymbol{k}_T) = \dots, \qquad \left\langle \gamma^+ \gamma^i \gamma_5 \right\rangle_{\boldsymbol{S}}^{(\lambda)}(x, \boldsymbol{k}_T) = \dots \right]$$



#### **PDFs of Spin-1 Targets**

Integrating over  $k_T^2$  gives 4 leading-twist quark PDFs for a spin-1 target

$$f(x) = \int d\mathbf{k}_T \ f(x, \mathbf{k}_T^2), \quad \theta(x) = \int d\mathbf{k}_T \left[ \theta_{LL}(x, \mathbf{k}_T^2) - \frac{\mathbf{k}_T^2}{2 m_h^2} \theta_{TT}(x, \mathbf{k}_T^2) \right], \dots$$

For DIS on spin-1 target 4 additional structure functions b<sub>1...4</sub>(x) appear;
 in Bjorken limit just one b<sub>1</sub>(x) [Hoodbhoy, Jaffe and Manohar, Nucl. Phys. B 312, 571 (1989)]

$$b_1(x) = \sum_q e_q^2 \left[ b_1^q(x) + b_1^{\bar{q}}(x) \right], \quad b_1^q = \frac{1}{2} \theta_q = \frac{1}{4} \left[ 2 q_S^{(\lambda=0)} - q_S^{(\lambda=1)} - q_S^{(\lambda=-1)} \right]$$

- To measure b<sub>1</sub>(x) in DIS need tensor polarized target; HERMES has <sup>2</sup>H data, experiment planned at JLab
- Seems impossible to explain HERMES data with only bound nucleons degrees of freedom
  - need exotic QCD states: 6q bags, etc
  - JLab experiment is needed



#### TMD Positivity Constraints

Desitivity conditions must be imposed on [Bourrely, Soffer and Leader, Phys. Rept. 59, 95 (1980)]

$$M^{(\lambda)s}(x, \boldsymbol{k}_T) = \begin{bmatrix} \Phi^{(\lambda)s}(x, \boldsymbol{k}_T) \gamma^+ \end{bmatrix}^T \qquad \Phi^{(\lambda)s}_{\boldsymbol{\beta}_{\boldsymbol{\alpha}}}(x, \boldsymbol{k}_T) = \frac{p}{\varepsilon_{\boldsymbol{\alpha}, \boldsymbol{\lambda}_T}^{(\lambda)}} \begin{pmatrix} \boldsymbol{k}_T & \boldsymbol{k}_T \\ \Phi^{\mu\nu}_{\boldsymbol{\beta}_{\boldsymbol{\alpha}}}(x, \boldsymbol{k}_T) & \boldsymbol{k}_T \end{pmatrix}$$

- the matrix M is the antiquark-hadron forward scattering matrix
- in hadron rest-frame M is a  $6 \times 6$  matrix in quark and hadron spin space

Positivity implies that eigenvalues of M must be semi-positive for all x & k<sub>T</sub>
 imposes 6 sufficient conditions on the 9 spin-1 quark TMDs (very complicated)
 also sub-minors of M must be semi-positive – imposes 63 necessarily conditions

For quark PDFs of a spin-1 target this gives 3 sufficient conditions:

$$\begin{split} f(x) &\ge 0, \qquad |g(x)| \leqslant f(x) - \frac{1}{3}\,\theta(x) \\ 2\,h(x)^2 &\leqslant \left(f(x) + \frac{2}{3}\,\theta(x)\right) \left(f(x) + g(x) - \frac{1}{3}\,\theta(x)\right) \quad \text{spin-1 Soffer bound} \end{split}$$

[A. Bacchetta and P. J. Mulders, Phys. Lett. B 518, 85 (2001)]

Positivity conditions place tight constraints on experiment and calculations

#### Measuring TMDs of Spin-1 Targets

- Need longitudinal and tensor polarized spin-1 targets, e.g., deuteron and <sup>6</sup>Li
- For SIDIS there are 41 structure functions; 18 for U+L which also appear for spin-1/2 and 23 associated with tensor polarization

[W. Cosyn, M. Sargsian and C. Weiss, PoS DIS 2016, 210 (2016)]

For proton + deuteron Drell-Yan there are 108 structure functions; 60 associated with tensor structure of deuteron

[S. Kumano, J. Phys. Conf. Ser. 543, no. 1, 012001 (2014)]

- Very challenging experimentally
  - need solid physics motivation and likely an EIC



#### **QCD's Dyson-Schwinger Equations**

- The equations of motion of QCD  $\iff$  QCD's Dyson–Schwinger equations
  - an infinite tower of coupled integral equations
  - must implement a symmetry preserving truncation
- Most important DSE is QCD's gap equation  $\implies$  *dressed quark propagator*



• ingredients - dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

• S(p) has correct perturbative limit

- $M(p^2)$  exhibits dynamical mass generation  $\iff$  DCSB
- S(p) has complex conjugate poles
   no real mass shell \(\low confinement\)



#### **QCD's Dyson-Schwinger Equations**

- The equations of motion of QCD  $\iff$  QCD's Dyson–Schwinger equations
  - an infinite tower of coupled integral equations
  - must implement a symmetry preserving truncation
- Most important DSE is QCD's gap equation  $\implies$  *dressed quark propagator*



• ingredients - dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

• S(p) has correct perturbative limit

- $M(p^2)$  exhibits dynamical mass generation  $\iff$  DCSB
- S(p) has complex conjugate poles
   no real mass shell \(\low confinement\)



#### TMDs for a Rho Meson





#### TMDs for a Rho Meson



- Are spin-one TMDs interesting do they contain new information?
- Each of these six *T*-even spin-one TMDs that have a nucleon analogy
  - each TMD is comparable in magnitude and shape
  - however arguably contain few surprises; peak near  $x \sim 1/2$ , have power-law behavior  $1/k_T^2$  for large transverse momentum
- With only 2.2 MeV binding energy the deuteron helicity and transversity TMDs are likely much smaller ... but maybe there are surprises c.f. b<sub>1</sub>(x)

#### TMDs for a Rho Meson – Tensor Polarization





Tensor polarized TMDs have a number of surprising features

$$\theta(x, \textbf{k}_T^2) = \theta_{LL} - \frac{\textbf{k}_T^2}{2\,m_h^2}\,\theta_{TT}$$

• TMDs  $\theta_{LL}(x \mathbf{k}_T^2)$  &  $\theta_{LT}(x \mathbf{k}_T^2)$  identically vanishes at x = 1/2 for all  $\mathbf{k}_T^2$ 

- x = 1/2 corresponds to zero relative momentum between (the two) constituents, that is, *s*-wave contributions
- therefore  $\theta_{LL} \& \theta_{LT}$  only receive contributions from  $L \ge 1$  components of the wave function *sensitive measure of orbital angular momentum*

Features hard to determine from a few moments – difficult for lattice QCD

#### TMDs for a Rho Meson – Tensor Polarization





 Tensor polarized TMDs have a number of surprising features

$$\theta(x, \boldsymbol{k}_T^2) = \theta_{LL} - \frac{\boldsymbol{k}_T^2}{2 \, m_h^2} \, \theta_{TT}$$

• TMDs  $\theta_{LL}(x k_T^2)$  &  $\theta_{LT}(x k_T^2)$  identically vanishes at x = 1/2 for all  $k_T^2$ 

- x = 1/2 corresponds to zero relative momentum between (the two) constituents, that is, *s*-wave contributions
- therefore  $\theta_{LL} \& \theta_{LT}$  only receive contributions from  $L \ge 1$  components of the wave function *sensitive measure of orbital angular momentum*

Features hard to determine from a few moments – difficult for lattice QCD

#### TMDs for a Rho Meson – Tensor Polarization





 Tensor polarized TMDs have a number of surprising features

$$\theta(x, \boldsymbol{k}_T^2) = \theta_{LL} - \frac{\boldsymbol{k}_T^2}{2 \, m_h^2} \, \theta_{TT}$$

• TMDs  $\theta_{LL}(x k_T^2)$  &  $\theta_{LT}(x k_T^2)$  identically vanishes at x = 1/2 for all  $k_T^2$ 

- x = 1/2 corresponds to zero relative momentum between (the two) constituents, that is, *s*-wave contributions
- therefore  $\theta_{LL} \& \theta_{LT}$  only receive contributions from  $L \ge 1$  components of the wave function *sensitive measure of orbital angular momentum*

Features hard to determine from a few moments – difficult for lattice QCD

#### Spin-1 Fragmentation Functions: $q \rightarrow \rho + X$

- Measuring the *ρ* TMDs is clearly not possible for the forseeable future
  - for spin-1 need nuclear target
- However, measuring the q → ρ TMD fragmentation functions is forseeable
- Fragmentation functions are particularly important
  - potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark becomes a tower of hadrons
- Understanding the nature of confinement and its relation to DCSB is one of the most important challenges in hadron physics – origin of ~98% of mass in visible universe



# Spin-0 TMDs – Pion



#### The Pion in QCD

- Today the pion is understood as both a bound state of a dressed-quark and a dressed-antiquark in QFT and the Goldstone mode associated with DCSB in QCD
- This dichotomous nature has numerous ramifications, e.g.:

 $m_{
ho}/2 \sim M_N/3 \sim 350 \,\mathrm{MeV}$  however  $m_{\pi}/2 \simeq 0.2 \times 350 \,\mathrm{MeV}$ 

- pion is unusually light, the key is *dynamical chiral symmetry breaking* (DCSB)
- In QFT a two-body bound state (e.g. a pion or rho) is described by the Bethe-Salpeter equation (BSE):

$$= \prod_{k=1}^{k} = \prod_{k=1}^{k} + \prod_{k=1}^{k} + \dots$$

• the kernel must yield a solution that encapsulates the consequences of DCSB, e.g., in chiral limit  $m_{\pi} = 0$  &  $m_{\pi}^2 \propto m_u + m_d$ 

Pion BSE wave function has the general form

 $\chi_{\pi}(p,k) = S(k) \Big[ E_{\pi}(p,k) + \not p F_{\pi}(p,k) + \not k \cdot p \mathcal{G}(p,k) + \sigma^{\mu\nu} k_{\mu} p_{\nu} \mathcal{H}(p,k) \Big] \gamma_5 S(k-p)$ 



#### **Pion's LFWFs**

Leading LFWF is given by

 $\psi_{\lambda\lambda'}(x, \mathbf{k}_T) = \int dk^- \ \bar{u}_\lambda \ \gamma^+ \ \chi_{\text{BSE}}(p, k) \ \gamma^+ \ v_{\lambda'}$ 

LFWFs have many remarkable properties:

- frame-independent; probability interpretation
  - as close as QFT gets to QM
- boosts are kinematical not dynamical

• Pion has two leading LFWFs:  $\psi_{\uparrow\downarrow}(x, \mathbf{k}_T) \& \psi_{\uparrow\uparrow}(x, \mathbf{k}_T)$ 

- find broad concave functions in x
- find same power-law behavior as predicted by perturbative QCD:  $\psi_{\uparrow\downarrow} \sim 1/k_T^2 \& \psi_{\uparrow\uparrow} \sim 1/k_T^4$
- Parton distribution amplitudes (PDAs) are related to light-front wave functions

$$\varphi(x) = \int d^2 \mathbf{k}_T \ \psi_{\uparrow\downarrow}(x, \mathbf{k}_T) \ \Leftrightarrow \ \varphi_{\pi}^{\mathrm{asy}}(x) = 6 \ x \left(1 - x\right)$$





#### **Pion's Parton Distribution Amplitude**

• pion's PDA –  $\varphi_{\pi}(x)$ : is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state

• it's a function of the light-cone momentum fraction  $x = \frac{k^+}{p^+}$  and the scale  $Q^2$ 



PDAs enter numerous hard exclusive scattering processes

#### **Pion PDA from the DSEs**



Both DSE results – each using a different Bethe-Salpeter kernel – exhibit a pronounced broadening compared with the asymptotic pion PDA

• scale of calculation is given by renormalization point  $\xi = 2 \text{ GeV}$ 

A realization of DCSB on the light-front

ERBL evolution demonstrates that the pion's PDA remains broad & concave for all accessible scales in current and conceivable experiments

Broading of PDA influences the  $Q^2$  evolution of the pion's EM form factor

#### **Pion PDA from Lattice QCD**



- however this expansion is guaranteed to converge rapidly only when Q<sup>2</sup> → ∞
   method results in a *double-humped* pion PDA not supported by BSE WFs
- Advocate using a generalized expansion

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha} (1-x)^{\alpha} \left[ 1 + \sum_{n=2,4,\dots} a_n^{\alpha+1/2}(Q^2) C_n^{\alpha+1/2}(2x-1) \right]$$

Find  $\varphi_{\pi} \simeq x^{\alpha}(1-x)^{\alpha}$ ,  $\alpha = 0.35^{+0.32}_{-0.24}$ ; good agreement with DSE:  $\alpha \sim 0.52$ 

#### **Pion PDA from Lattice QCD**

Currently, lattice QCD can determine only one non-trivial moment, e.g.:  $\int_{0}^{1} dx (2x-1)^{2} \varphi_{\pi}(x) = 0.27 \pm 0.04 \qquad (3)$ 

[V. M. Braun et al., Phys. Rev. D 74, 074501 (2006)]

- scale is  $Q^2 = 4 \,\mathrm{GeV}^2$
- Standard practice to fit first coefficient of "*asymptotic expansion*" to moment

$$\varphi_{\pi}(x,Q^2) = 6 x (1-x) \left[ 1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1) \right]$$

- however this expansion is guaranteed to converge rapidly only when Q<sup>2</sup> → ∞
  method results in a *double-humped* pion PDA not supported by BSE WFs
- Advocate using a *generalized expansion*

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha} (1-x)^{\alpha} \left[ 1 + \sum_{n=2,4,\dots} a_n^{\alpha+1/2}(Q^2) C_n^{\alpha+1/2}(2x-1) \right]$$

Find  $\varphi_{\pi} \simeq x^{\alpha}(1-x)^{\alpha}$ ,  $\alpha = 0.35^{+0.32}_{-0.24}$ ; good agreement with DSE:  $\alpha \sim 0.52$ 



#### Pion PDA from Lattice QCD – updated

Most recent lattice QCD moment:

$$\int_{0}^{1} dx \, (2 \, x - 1)^{2} \varphi_{\pi}(x) = 0.2361 \, (41) \, (39) \, (?)$$

[V. M. Braun, et al., Phys. Rev. D 92, no. 1, 014504 (2015)]

DSE prediction:

$$\int_{0}^{1} dx \, (2 \, x - 1)^2 \varphi_{\pi}(x) = 0.251$$

- Near complete agreement between DSE prediction and latest lattice QCD result
- Conclude that the pion PDA is a broad concave function
  - *double humped distributions are very likely for the pion*



#### **Pion Elastic Form Factor**

- Direct, symmetry-preserving computation of pion form factor predicts maximum in  $Q^2 F_{\pi}(Q^2)$ at  $Q^2 \approx 6 \,\mathrm{GeV^2}$ 
  - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as



- Find consistency between the *direct pion form factor calculation* and the QCD hard-scattering formula – if DSE pion PDA is used
  - 15% disagreement may be explained by higher order/higher-twist corrections
- Predict that QCD power law behavior with QCD's scaling law violations sets in at  $Q^2 \sim 8 \,\mathrm{GeV^2}$ [Featured in 2015 NP Long Range Plan]

#### **Pion Elastic Form Factor**

- Direct, symmetry-preserving computation of pion form factor predicts maximum in  $Q^2 F_{\pi}(Q^2)$ at  $Q^2 \approx 6 \,\mathrm{GeV^2}$ 
  - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as



- Find consistency between the *direct pion form factor calculation* and the QCD hard-scattering formula – if DSE pion PDA is used
  - 15% disagreement may be explained by higher order/higher-twist corrections
- Predict that QCD power law behavior with QCD's scaling law violations sets in at  $Q^2 \sim 8 \,\mathrm{GeV^2}$ [Featured in 2015 NP Long Range Plan]

#### **Pion Elastic Form Factor**

- Direct, symmetry-preserving computation of pion form factor predicts maximum in  $Q^2 F_{\pi}(Q^2)$ at  $Q^2 \approx 6 \,\mathrm{GeV^2}$ 
  - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as



- Find consistency between the *direct pion form factor calculation* and the QCD hard-scattering formula – if DSE pion PDA is used
  - 15% disagreement may be explained by higher order/higher-twist corrections
- Predict that QCD power law behavior with QCD's scaling law violations sets in at  $Q^2 \sim 8 \,\mathrm{GeV^2}$ [Featured in 2015 NP Long Range Plan]

### Pion TMD from its LFWFs

- DCSB results in broad pion LFWFs at hadronic scales
  - this is reflected in DSE and lattice result for pion's PDA
- Using pion's LFWFs straightforward to make predictions for pion GPDs, TMDs, etc; For TMDs:

$$f(x, \boldsymbol{k}_T^2) \propto \left| \psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2) \right|^2 + \boldsymbol{k}_T^2 \left| \psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2) \right|^2$$

- Contrast our result with Pasquini
   & Schweitzer [PRD 90 014050 (2014)]
  - each result gives similar PDF but very different TMD
  - illustration of the potential for TMDs to differentiate between different frameworks & thereby expose quark-gluon dynamics in QCD



0.2

 $\frac{0.4}{k_T^2}$ 

0.8

1.0

20/21

0.3

0.2

0.1

### Pion TMD from its LFWFs

- DCSB results in broad pion LFWFs at hadronic scales
  - this is reflected in DSE and lattice result for pion's PDA
- Using pion's LFWFs straightforward to make predictions for pion GPDs, TMDs, etc; For TMDs:

$$f(x, \boldsymbol{k}_T^2) \propto \left| \psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2) \right|^2 + \boldsymbol{k}_T^2 \left| \psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2) \right|^2$$

- Contrast our result with Pasquini
   & Schweitzer [PRD 90 014050 (2014)]
  - each result gives similar PDF but very different TMD
  - illustration of the potential for TMDs to differentiate between different frameworks & thereby expose quark-gluon dynamics in QCD



#### Conclusion

- Spin-1 targets present a rich quark and gluon structure that can help expose novel aspects of QCD
  - find that TMDs associated with tensor polarization are sensitive to orbital angular momentum in target
  - *ρ* meson results a stepping stone to deuteron calculations
- Find that because of DCSB pion's LFWFs are broad and concave in x
   results have perturbative power-law behavior for large k<sup>2</sup><sub>T</sub>
  - find that PDFs can not distinguish between vastly different LFWFs
  - however TMDs are a powerful tool to expose underlying quark/gluon dynamics



QCD Evolution 2017 22-26 May

#### Conclusion

- Spin-1 targets present a rich quark and gluon structure that can help expose novel aspects of QCD
  - find that TMDs associated with tensor polarization are sensitive to orbital angular momentum in target
  - *ρ* meson results a stepping stone to deuteron calculations
- Find that because of DCSB pion's LFWFs are broad and concave in x
   results have perturbative power-law behavior for large k<sup>2</sup><sub>T</sub>
  - find that PDFs can not distinguish between vastly different LFWFs
  - however TMDs are a powerful tool to expose underlying quark/gluon dynamics



# **Backup Slides**



#### **OCD Evolution & Asymptotic PDA**

ERBL  $(Q^2)$  evolution for pion PDA [c.f. DGLAP equations for PDFs]

$$\mu \frac{d}{d\mu} \, \varphi(x,\mu) = \int_0^1 dy \, V(x,y) \, \varphi(y,\mu)$$

This evolution equation has a solution of the form

$$\varphi_{\pi}(x,Q^2) = 6 x \left(1-x\right) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1)\right]$$

- $\alpha = 3/2$  because in  $Q^2 \rightarrow \infty$  limit QCD is invariant under the collinear conformal group  $SL(2; \mathbb{R})$
- Gegenbauer- $\alpha = 3/2$  polynomials are irreducible representations  $SL(2;\mathbb{R})$
- The coefficients of the Gegenbauer polynomials,  $a_n^{3/2}(Q^2)$ , evolve logarithmically to zero as  $Q^2 \to \infty$ :  $\varphi_{\pi}(x) \to \varphi_{\pi}^{asy}(x) = 6 x (1-x)$
- At what scales is this a good approximation to the pion PDA?

E.g., AdS/QCD find  $\varphi_{\pi}(x) \sim x^{1/2} (1-x)^{1/2}$  at  $Q^2 = 1 \text{ GeV}^2$ ; expansion in terms of  $C_n^{3/2}(2x-1)$  convergences slowly:  $a_{32}^{3/2}/a_2^{3/2} \sim 10\%$ 23/21

#### When is the Pion's PDA Asymptotic



• Under leading order  $Q^2$  evolution the pion PDA remains broad to well above  $Q^2 > 100 \text{ GeV}^2$ , compared with  $\varphi_{\pi}^{\text{asy}}(x) = 6 x (1 - x)$ 

- Consequently, the asymptotic form of the pion PDA is a poor approximation at all energy scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors
- Importantly,  $\varphi_{\pi}^{\text{asy}}(x)$  is only guaranteed be an accurate approximation to  $\varphi_{\pi}(x)$  when pion valence quark PDF satisfies:  $q_{v}^{\pi}(x) \sim \delta(x)$ 
  - This is far from valid at forseeable energy scales

#### When is the Pion's Valence PDF Asymptotic



LO QCD evolution of momentum fraction carried by valence quarks

$$\left\langle x \, q_v(x) \right\rangle(Q^2) = \left(\frac{\alpha_s(Q^2)}{\alpha_s(Q_0^2)}\right)^{\gamma_{qq}^{(0)2}/(2\beta_0)} \left\langle x \, q_v(x) \right\rangle(Q_0^2) \quad \text{where} \quad \frac{\gamma_{qq}^{(0)2}}{2\beta_0} > 0$$

• therefore, as  $Q^2 \to \infty$  we have  $\langle x q_v(x) \rangle \to 0$  implies  $q_v(x) \propto \delta(x)$ 

At LHC energies valence quarks still carry 20% of pion momentum
 the gluon distribution saturates at \$\langle x g(x) \rangle ~ 55\%\$

#### Asymptotia is a long way away!





To observe onset of perturbative power law behaviour – *to differentiate from a monopole* – optimistically need data at 8 GeV<sup>2</sup> but likely also at 10 GeV<sup>2</sup>
 this is a very challenging task experimentally

Scaling predictions are valid for both spacelike and timelike momenta
 timelike data show promise as the means of verifying modern predictions

#### TMDs, Diquarks & Flavor Dependence



- of diquark correlations in TMDs
- This has numerous consequences:
  - scalar diquark correlations greatly increase  $\left\langle k_T^2 \right\rangle$
  - find deviation from Gaussian anzatz and that TMDs do not factorize in  $x \& k_T^2$
  - diquark correlations introduce a significant flavor dependence in the average  $\langle k_T^2 \rangle$ [analogous to the quark-sector electromagnetic form factors]
  - Work is also underway for nucleon GPDs, WACS, etc

 $\frac{1}{P} = k$ 

#### TMDs, Diquarks & Flavor Dependence



- Rigorously included transverse momentum of diquark correlations in TMDs
- This has numerous consequences:
  - scalar diquark correlations greatly increase  $\left\langle k_T^2 \right\rangle$
  - find deviation from Gaussian anzatz and that TMDs do not factorize in  $x \& k_T^2$
  - diquark correlations introduce a significant flavor dependence in the average  $\langle k_T^2 \rangle$ [analogous to the quark-sector electromagnetic form factors]
  - Work is also underway for nucleon GPDs, WACS, etc

