Impact of SoLID Experiment on TMDs

1 m

Light:Gas Heavy,Gas Therenkov Cherenkov

Nucleon Spin Decomposition

Proton spin puzzle

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s \sim 0.3$$

Spin decomposition

$$J = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Quark spin only contributes a small fraction to nucleon spin.

J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989).

Access to $L_{q/g}$

It is necessary to have transverse information.

Coordinate space: GPDs Momentum space: TMDs

3D imaging of the nucleon.

Unified View of Nucleon Structure

Light-front wave function $\Psi(x_i, k_{T_i})$

Structure Functions

SIDIS differential cross section

 $d\sigma$

 $\overline{dxdydzdP_T^2d\phi_hd\psi}$

18 structure functions $F(x, z, Q^2, P_T)$, model independent. (one photon exchange approximation) $= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right)$ $\times \left\{ F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon F_{UU}^{\cos 2\phi_h} \cos 2\phi_h + \lambda_e \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h + S_L \left[\sqrt{2\epsilon(1+\epsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \epsilon F_{UL}^{\sin 2\phi_h} \sin 2\phi_h\right] + \lambda_e S_L \left[\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h\right] + S_T \left[\left(F_{UT,T}^{\sin(\phi_h-\phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h-\phi_S)}\right) \sin(\phi_h - \phi_S) + \epsilon F_{UT}^{\sin(\phi_h+\phi_S)} \sin(\phi_h + \phi_S) + \epsilon F_{UT}^{\sin(3\phi_h-\phi_S)} \sin(3\phi_h - \phi_S) + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin\phi_S} \sin\phi_S + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin(2\phi_h-\phi_S)} \sin(2\phi_h - \phi_S) \right] + \lambda_e S_T \left[\sqrt{1-\epsilon^2} F_{LT}^{\cos\phi_S} \cos\phi_S + \sqrt{2\epsilon(1-\epsilon)} F_{LT}^{\cos(2\phi_h-\phi_S)} \cos(2\phi_h - \phi_S) \right] \right\}$

SIDIS Experiment @ JLab-6GeV

E06-010 @ Hall A

- First neutron data in SIDIS
- Electron beam energy: 5.9 GeV Average current: 12µA
- 40cm transversely polarized ³He target Average polarization: $55.4 \pm 2.8\%$
- BigBite at 30° as electron arm scattered electron momentum 0.6~2.5 GeV/c
- HRS at 16° as hadron arm hadron momentum ~ 2.35 GeV/c

Published results from E06-010:

- X. Qian *et al.*, Sivers and Collins SSA of π^{\pm} production in SIDIS, *Physical Review Letters* 107, 072003 (2011).
- Y. Zhang *et al.*, Pretzelosity SSA of π^{\pm} production in SIDIS, *Physical Review* C 90, 055209 (2014).
- Y.X. Zhao *et al.*, Sivers and Collins SSA of K[±] production in SIDIS, *Physical Review* C 90, 055201 (2014).
- J. Huang *et al.*, Beam-target DSA of π^{\pm} production in SIDIS, *Physical Review Letters* 108, 052001 (2012).
- K. Allada *et al.*, SSA of inclusive hadron, π^{\pm} , K^{\pm}, and proton, productions, *Physical Review* C 89, 042201(R) (2014).
- Y.X. Zhao *et al.*, DSA of inclusive hadron, π^{\pm} , K^{\pm}, and proton, productions, *Physical Review* C 92, 015207(R) (2015).
- X. Yan *et al.*, Unpolarized differential cross section of π^{\pm} production in SIDIS, *Physical Review* C 95, 035209 (2017).

SIDIS SSA/DSA Results from E06-010

Differential Cross Section

First measurement of unpolarized SIDIS differential cross section on ³He target

X. Yan et al., Phys. Rev. C 95, 035209 (2017).

5 [x bins] × 2 [P_T bins] × 10 [ϕ_h bins]

Azimuthal Modulation

 $\cos \phi_h$ azimuthal modulations in unpolarized SIDIS cross section on ³He target

• Fit with $A(1 - B \cos \phi_h)$ to $10 \phi_h$ bins in each x, P_T bin

X. Yan et al., Phys. Rev. C 95, 035209 (2017).

Differential Cross Section

First measurement of unpolarized SIDIS differential cross section on ³He target

X. Yan et al., Phys. Rev. C 95, 035209 (2017).

 $10 \text{ [x bins]} \times 10 \text{ [P}_{T} \text{ bins]}$

Multi-Hall SIDIS Program @ JLab

Hall B: CLAS12 SIDIS with polarized H/D Comprehensive SIDIS program

Hall C: SHMS SIDIS with unpolarized H/D

Overview of SoLID

Solenoidal Large Intensity Device

Full exploitation of JLab 12 GeV upgrade with broad physics

- Luminosity ~ 10^{37} cm⁻² s⁻¹ (open geometry)
- 3D nucleon structure
 - TMD (Semi-inclusive DIS)
 - GPD (TCS, DVMP, DVCS, DDVCS)
- Conformal anomaly
 - J/ψ production near threshold
- Luminosity $\sim 10^{39}$ cm⁻² s⁻¹ (baffled geometry)
- Standard model test, new physics in 10~20 TeV region
 - Parity-violating DIS

Five highly rated approved experiments

- Three SIDIS, one PVDIS, one J/ψ production
- Run group: di-hadron, TCS, inclusive SSA ...

Strong collaboration

- 250+ collaborators from 70+ institutes, 13 countries
- Significant international collaborations and strong theoretical support

PVDIS @ SoLID

Charge symmetry violation

E12-10-007: Parity violating asymmetry in DIS with LH₂ and LD₂ targets.

- Sub 1% precision over broad kinematic range
- High luminosity $\sim 10^{39}$ cm⁻² s⁻¹
- Large scattering angle
 large x and y
 - Precision test of SM with sensitivity to new PV physics in 10~20 TeV
 - Search for charge symmetry violation at partonic level
 - Test QCD higher twist corrections
 - Measure *d/u* ratio for proton free of nuclear effect

J/y @ SoLID

Approved J/ψ near threshold production

E12-12-006: measure J/ψ near threshold production cross section on proton (LH₂).

Imaginary part: total cross section through the optical theorem.

Real part: contains the conformal anomaly.

H. Gao et al., The Universe 3, no.2, 18 (2015).

Run group: E12-12-006A Timelike Compton Scattering (TCS).

- electro- and photo- production with unprecedented precision in unexplored region
- Probe color force inside the nucleon
- Conformal anomaly (proton mass budget)
- A window for future J/ψ -N interaction studies

SIDIS @ SoLID

Approved SIDIS experiments 11/8.8 GeV

E12-10-006: Single Spin Asymmetry on Transversely polarized ³He, 90 days.
E12-11-007: Single and Double Spin Asymmetry on Longitudinally polarized ³He, 35 days.
E12-10-008: Single Spin Asymmetry on Transversely polarized proton (NH₃), 120 days. Two run groups: E12-10-006A, E12-11-108A Dihadron process Target single spin asymmetry A_y

High statistics (example)

SIDIS @ SoLID

Impact of SoLID: Transversity

Transversity distribution

$$h_1$$
 $(Collinear & TMD)$

- Chiral-odd: Unique for the quarks, no mixing with gluons, and simpler evolution effect.
- Collins asymmetry

 $A_{UT}^{\sin(\phi_h + \phi_S)} \sim h_1(x, k_\perp) \bigotimes H_1^\perp(z, p_\perp)$

A transverse counter part to the longitudinal spin structure: helicity g_{1L}, but NOT the same.

Couple to another chiral-odd function. (*e.g.* Collins function H_1^{\perp})

SIDIS (E12-10-006, E12-11-008), Drell-Yan Di-hadron (approved as run group with E12-10-006)

Impact of SoLID: Transversity

The improvement on transversity distributions

- With both statistical and systematic errors
- 1 order of magnitude improvement

Ye, Sato, Allada, TL, Chen, Gao, Kang, Prokudin, Sun, Yuan, Phys. Lett. B 767, 91 (2017).

Impact of SoLID Data: Tensor Charge

Tensor charge

$$\langle P, S | \bar{\psi}_q i \sigma^{\mu\nu} \psi_q | P, S \rangle = \delta_T q \bar{u}(P, S) i \sigma^{\mu\nu} u(P, S) \qquad \delta_T q = \int_0^1 \left[\delta_T q \bar{u}(P, S) + \delta_T q \bar{u}(P, S) \right] ds$$

$$f = \int_0^1 \left[h_1^q(x) - h_1^{\bar{q}}(x) \right] \mathrm{d}x$$

- A fundamental QCD quantity: matrix element of local operators.
- Moment of the transversity distribution: valence quark dominant.
- Calculable in lattice QCD.

SoLID impact

- With both statistical and systematic errors
- 1 order of magnitude improvement

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and nEDM

- Current neutron EDM limit: $3.0 \times 10^{-26} e$ cm, J.M.Pendlebury *et al.*, Phys. Rev. D 92, 092003 (2015).
- Future neutron EDM experiments are expected to have the sensitivity of $10^{-28} e$ cm.

H. Gao, TL, Z. Zhao, arXiv:1704.00113.

Tensor Charge and Proton EDM

Tensor charge and pEDM

- Current proton EDM limit: $2.6 \times 10^{-25} e$ cm derived from mercury EDM.
- Future storage ring proton EDM experiment is expected to have the sensitivity of $10^{-29} e$ cm.

H. Gao, TL, Z. Zhao, arXiv:1704.00113.

Sivers Distribution

Sivers distribution

naively time-reversal odd.

$$f_{1T}^{\perp q}(x,k_{\perp})\Big|_{\text{SIDIS}} = -f_{1T}^{\perp q}(x,k_{\perp})\Big|_{\text{DY}}$$

M. Anselmino, M. Boglione, U. D'Alesio, F. Murgia, A. Prokudin, JHEP 04 (2017) 046.

0.6

1

Impact of SoLID: Sivers

On-going with N.Sato, A. Prokudin, W. Melnitchouk, Z. Ye, K. Allada, H. Gao, J.-P. Chen.

r

Monte Carlo Sampling

On-going with N.Sato, A. Prokudin, W. Melnitchouk, Z. Ye, K. Allada, H. Gao, J.-P. Chen.

Summary

- Lepton scattering is a powerful tool to probe the internal structure of the nucleon.
- Many efforts have been made in JLab 6-GeV SIDIS experiments.
- SIDIS experiments in JLab 12-GeV era, *e.g.* SoLID: high luminosity and large acceptance, multidimensional mapping with high precision.
- Transversity as an example: SoLID experiment will improve the precision by one order of magnitude.
- New physics: tensor charge together with next generation EDM experiments.
- Sivers as an example (ongoing): simultaneously fit to unpolarized and polarized data.

Thank you!

Differential Cross Section Analysis

Systematic uncertainties:

Source	Range (%)
e^- identification in BigBite	2.0-8.0
e^- tracking efficiency in BigBite	< 3.0
π^{\pm} identification in the HRS	$<\!2.0$
Experimental acceptance corrections	5.0 - 10.0
Radiative corrections	1.0 - 3.5
Exclusive tail subtractions	1.0 - 3.0
Bin-centering corrections	<3.0

X. Yan et al., Phys. Rev. C 95, 035209 (2017).

Differential Cross Section Ratio

X. Yan et al., Phys. Rev. C 95, 035209 (2017).

Tensor Charge Improvement by SoLID

observable	$Q^2(\text{GeV}^2)$	KPSY15	δ_{KPSY15}	$\delta_{ m SoLID}$	$\delta_{\text{SoLID}}/\delta_{\text{KPSY15}}(\%)$
$\delta u^{[0,0.05]}$	2.4	0.046	0.010	0.005	49
$\delta u^{[0.05,0.6]}$	2.4	0.349	0.122	0.015	12
$\delta u^{[0.6,1]}$	2.4	0.018	0.007	0.001	14
$\delta u^{[0,1]}$	2.4	0.413	0.133	0.018	14
$\delta u^{[0,0.05]}$	10	0.051	0.011	0.005	46
$\delta u^{[0.05,0.6]}$	10	0.332	0.117	0.014	12
$\delta u^{[0.6,1]}$	10	0.0126	0.0048	0.0007	14
$\delta u^{[0,1]}$	10	0.395	0.128	0.018	14
$\delta d^{[0,0.05]}$	2.4	-0.029	0.028	0.003	10
$\delta d^{[0.05,0.6]}$	2.4	-0.200	0.073	0.006	9
$\delta d^{[0.6,1]}$	2.4	-0.00004	0.00009	0.00001	13
$\delta d^{[0,1]}$	2.4	-0.229	0.094	0.008	9
$\delta d^{[0,0.05]}$	10	-0.035	0.030	0.003	10
$\delta d^{[0.05,0.6]}$	10	-0.184	0.067	0.006	9
$\delta d^{[0.6,1]}$	10	-0.00002	0.00006	0.00001	14
$\delta d^{[0,1]}$	10	-0.219	0.090	0.008	9
$g_T^{(truncated)}$	2.4	0.55	0.14	0.018	13
$g_T^{(\text{full})}$	2.4	0.64	0.15	0.021	14
$g_T^{(truncated)}$	10	0.51	0.13	0.017	13
$g_T^{(\text{full})}$	10	0.61	0.14	0.020	14

Z. Ye, N. Sato, K. Allada, T.L., J.-P. Chen, H. Gao, Z.-B. Kang, A. Prokudin, P. Sun, F. Yuan, Phys. Lett. B 767, 91 (2017).

Systematic Uncertainties

Statistical (abs.)	Systematic (abs.)		Systematic (rel.)	
	Raw asymmetry Detector resolution	0.0014 < 0.0001	Target polarization Nuclear effect Random coincidence Radiative correction Diffractive meson	3% $4 \sim 5\%$ 0.2% $2 \sim 3\%$ 3%
0.0067	Total	0.0014	Total	$6\sim7\%$

Z. Ye, N. Sato, K. Allada, T.L., J.-P. Chen, H. Gao, Z.-B. Kang, A. Prokudin, P. Sun, F. Yuan, Phys. Lett. B 767, 91 (2017).