High-Precision QCD with the Lattice

G. Peter Lepage (HPQCD) Cornell University May 2017

Lattice QCD

Lattice Approximation

- ⇒ Fields $\psi(x)$, $A_{\mu}(x)$ specified only at grid sites (or links); interpolate for other points.
- ⇒ Solving QCD → multidimensional integration (billions of variables ⇒ Monte Carlo):

$$\int \mathcal{D}A_{\mu} \dots e^{-\int Ldt} \longrightarrow \int \prod_{x_j \in \text{grid}} dA_{\mu}(x_j) \dots e^{-\alpha \sum L_j}$$

Lattice Simulations

• Parameters: choose bare α_s then tune, for example,

$$m_{u} = m_{d} \leftrightarrow m_{\pi}^{2} + Tunings decouple.$$

$$m_{s} \leftrightarrow 2m_{K}^{2} - m_{\pi}^{2} + Experimental$$

$$m_{c} \leftrightarrow (3m_{\psi} + m_{\eta_{c}})/4$$

$$m_{b} \leftrightarrow (3m_{\Upsilon} + m_{\eta_{b}})/4$$

$$a \leftrightarrow f_{\pi} \text{ or } m_{\Upsilon'} - m_{\Upsilon} \dots$$
+ Tunings decouple.
+ Experimental
errors negligible.
+ Small e/m, isospin
errors.

- Generate Monte Carlo results for multiple lattice spacings (masses, volumes ...). Extrapolate to physical values.
- Use vacuum expectation values of numerous operators to extract lots of physics with no free parameters!

Lattice QCD Comes of Age

Before After f_{π} f_K M_{Ω} $3M_{\Xi} - M_N$ M_D $2M_{D_s} - M_{\eta_c}$ $2M_{B_c} - M_{\Upsilon}$ $2M_{B_s}-M_{\Upsilon}$ $M_{D_s^*} - M_{D_s}$ $M_{\psi} - M_{\eta_c}$ $\psi(1P-1S)$ $\Upsilon(1D - 1S)$ $\Upsilon(2P-1S)$ $\Upsilon(3S-1S)$ $\Upsilon(1P - 1S)$ 0.91 1.1 0.91 1.1 LQCD/Exp't $(n_f = 0)$ LQCD/Exp't $(n_f = 3)$

Before 2004: Unrealistic treatment of light sea quarks ⇒ large uncontrolled systematic errors.

After 2004: New lattice quark actions \Rightarrow realistic simulations of light sea quarks \Rightarrow 1% or better errors possible for first time in history.

[Davies et al (2004).]

Lattice QCD = an Effective Field Theory

- Finite lattice spacing \Rightarrow UV cutoff $\Lambda = \pi/a$.
- Effective Lagrangian:

$$\mathcal{L}_{lat}^{(a)} \approx \sum_{\mu\nu} \frac{1}{2} \operatorname{Tr} F_{\mu\nu}^{2} + c_{2} a^{2} \operatorname{Tr} F_{\mu\nu} (D_{\mu}^{2} + D_{\nu}^{2}) F_{\mu\nu} + \cdots$$
$$+ \sum_{q} \overline{\psi}_{q} (iD \cdot \gamma - m_{q}) \psi_{q} + d_{2} a^{2} \sum_{\mu} \overline{\psi}_{q} iD_{\mu}^{3} \gamma_{\mu} \psi_{q} + \cdots$$

- Wrong but suppressed by $(ap)^2$ where p = typical momentum.
- Break Lorentz invariance, etc.
- Remove by taking $a \rightarrow 0$.
- Remove with correction terms.

Three Examples

Example: QCD Parameters (α_s , \overline{m}_q **)** from *jj* Correlators

Heavy Quark Pseudoscalar Correlator

• Compute $h\overline{h}$ (heavy-quark) correlator:

$$G(t) = a^{6} \sum_{\mathbf{x}} (am_{0h})^{2} \langle 0|j_{5}(\mathbf{x}, t)j_{5}(0, 0)|0 \rangle$$

$$\begin{bmatrix} \mathbf{U} \\ \mathbf{U} \\ \mathbf{U} \end{bmatrix}$$

- Mass factors imply UV finite (PCAC because HISQ).
- Implies:

$$G_{\text{contin}}(t) = G_{\text{lat}}(t) + \mathcal{O}(a^2)$$
 for all t

[Follana et al (HPQCD, Karlsruhe) 0805.2999 McNeile et al (HPQCD) 1004.4285 Chakraborty et al (HPQCD) 1408.4169]

α_s and \overline{m}_q from Moments

Low-*n* moments perturbative ($E_{\text{threshold}} - E \approx m_{\eta h} \gg \Lambda_{\text{QCD}}$):

$$G_n = \sum_t (t/a)^n G(t) \to \frac{\partial^n}{\partial E^n} \Pi(E=0)$$

Implies $(n \ge 4)$:

Results (n_f=4 [1408.4169])

Results (n_f=3 [1004.4285])

Lattice spacings to 0.045fm $\Rightarrow m_b$ possible.

 $\overline{m}_{c}(3 \text{ GeV}, n_{f} = 4) = 0.986(6) \text{ GeV}$ $\overline{m}_{b}(\overline{m}_{b}, n_{f} = 5) = 4.164(23) \text{ GeV}$ $\overline{m}_{b}(\mu, n_{f})/\overline{m}_{c}(\mu, n_{f}) = 4.53(4)$ $\alpha_{\overline{\text{MS}}}(M_{Z}, n_{f} = 5) = 0.1183(7)$

Sanity Checks

convergence of pert'n theory

Test evolution by letting β_0 and γ_0 float, as fit parameters \Rightarrow $\beta_0 = 0.675(54)$ (exact 0.663) $\gamma_0 = 0.292(19)$ (exact 0.318)

Nonperturbative determination of $\bar{m}_b/\bar{m}_c = 4.49(4)$ agrees with perturbative value 4.53(4).

Sanity Check: HPQCD α_{MS} History

 $\pi/\alpha = 4.8 \text{ GeV } n_f = 0, 2 \rightarrow 3$ simple discretization 2^{nd} order in α_s (4 data points) $\pi/a = 4-14 \text{ GeV } n_f = 3,4$ highly improved discretization 3^{rd} + approx. 4^{th} order in α_s (444 data points)

Current LQCD Results ($n_f \ge 3$ **)**

Example: HVP Contribution to Muon's g-2

Hadronic Vacuum Polarization in g-2

• Dominant QCD correction to μ 's g-2:

- Best current theory from e^+e^- data: 0.7% (±4x10⁻¹⁰).
- Need $\leq 0.25\%$ errors to compete with new experiment.
- New physics?

Results from *u***,***d*

Corrections for:

- finite lattice volume + staggered quarks (chiral pert'n theory);
- δm_{ℓ} dependence (rescale m_{ρ});
- finite lattice spacing, etc.

[Chakraborty et al (HPQCD) 1601.03071 and 1512.03270]

Finite-Volume Corrections

• Use chiral perturbation theory for infrared corrections:

Answer: Total HVP Summary (HPQCD)

Sanity Checks: *p* Physics

Sanity Checks: c Moments

[Donald et al (HPQCD) 1208.2855, 1004..4285]

Sanity Checks: s Physics

[Chakraborty et al (HPQCD) 1403.1778]

 $- m_{\ell}$ 5x too big

Example: Meson Form Factor

π Form Factor at Low q^2

[Koponen et al (HPQCD) 1511.07382]

η_s Form Factor at High q^2

 η_s = pion whose valence quarks have mass m_s .

- Rescale by $(f_{\pi}/f_{\eta s})^2$ to obtain estimate for pion form factor at $q^2=6$.
- New perturbative QCD tests; important, e.g., for $B \rightarrow \pi \ell \nu$.
- Demo/prep for (much more costly) analysis of K and π form factors.

[Koponen et al (HPQCD) 1701.04250]

Conclusions

- Lattice QCD now a standard tool for strong interaction physics, both theoretical and experimental.
 - Most accurate strong-interaction calculations in history.
 - Landmark in history of quantum field theory: high-precision quantitative verification of nonperturbative technology (for a real theory).
 - Essential for weak interaction phenomenology, Beyond the Standard Model physics, ... — QCD backgrounds.
 - New source of "data".
- Problems that remain: hadronization of jets, quark matter, axial gauge theories, SUSY ...
 - Need methods that don't rely upon Monte Carlo integration.