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Lattice QCD



Lattice Approximation

⇒ Fields ψ(), Aμ() specified only at grid sites (or links); 
interpolate for other points. 

⇒ Solving QCD → multidimensional integration (billions of 
variables ⇒ Monte Carlo):
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Lattice Simulations

• Parameters: choose bare αs then tune, for example, 

• Generate Monte Carlo results for multiple lattice spacings 
(masses, volumes …). Extrapolate to physical values. 

• Use vacuum expectation values of numerous operators to 
extract lots of physics with no free parameters!

m� =md $ m2
�

ms $ 2m2
K �m

2
�

mc $ (3m� +m�c)/4
mb $ (3m� +m�b)/4
� $ ƒ� or m�0 �m� . . .

✦ Tunings decouple. 
✦ Experimental 

errors negligible. 
✦ Small e/m, isospin 

errors.



Lattice QCD Comes of Age

Before 2004: Unrealistic treatment 
of light sea quarks ⇒ large 
uncontrolled systematic errors. 

After 2004: New lattice quark 
actions ⇒ realistic simulations of 
light sea quarks ⇒ 1% or better 
errors possible for first time in 
history. 

[Davies et al (2004).]
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• Finite lattice spacing ⇒ UV cutoff Λ = π/a. 

• Effective Lagrangian: 
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Lattice QCD = an Effective Field Theory

• Wrong but suppressed by (ap)2 
where p = typical momentum. 

• Break Lorentz invariance, etc. 

• Remove by taking a → 0. 

• Remove with correction terms.



Three Examples



Example: QCD Parameters (αs, m̅q)  
from jj Correlators



Heavy Quark Pseudoscalar Correlator

• Compute hh̅  (heavy-quark) correlator: 

• Mass factors imply UV finite (PCAC because HISQ). 

• Implies:

[Follana et al (HPQCD, Karlsruhe) 0805.2999 
McNeile et al (HPQCD) 1004.4285 
Chakraborty et al (HPQCD) 1408.4169]

�h�5�h

G(t) = a6
X

x
(am0h)2h0| j5(x, t) j5(0,0) |0i

Euclidean t

Gcontin(t) = Gl�t(t) + O(a2) for all t



αs and m̅q from Moments 

Low-n moments perturbative (Ethreshold – E ≈ mηh ≫ ΛQCD): 

Implies (n≥4):

from simulations

from continuum pert’n theory 
(known to 3rd order for n=4..10) 

solve for coupling  
and mass 

Gn =
X

t
(t/a)nG(t)!

�n

�En
�(E = 0)

Gn =
gn
�
�MS,�/mh
�

(amh(�))n�4
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D. nf = 4 Lattice Results

We fit all of the reduced moments from our simulation
data — with lattice spacings from 0.12 fm to 0.06 fm, and
n = 4, 6, 8 and 10 in Table III — simultaneously to for-
mula (12–16) by adjusting fit parameters described in the pre-
vious sections. The fit is excellent with a �2 per degree of
freedom of 0.51 for 92 pieces of data (p-value is 1.0).

The fit has two key physics outputs. One is a new result for
the running coupling constant:

↵
MS

(5 GeV, nf = 4) = 0.2128(25). (35)

To compare with our old determination and other determi-
nations, we use perturbation theory to add b quarks to the
sea [27], with mb(mb) = 4.164(23) GeV [2], and evolve to
the Z mass (91.19 GeV) to get

↵
MS

(MZ , nf = 5) = 0.11822(74). (36)

This agrees well with 0.1183(7) from our nf = 3 analysis [2].
It also agrees well with the current world average 0.1185(6)
from the Particle Data Group [28].

The second important physics output is the c quark’s mass,
whose value at µ = 5 GeV is a fit parameter:

mc(µ, nf = 4) =

8
><

>:

0.8905(56) GeV µ = 5GeV

0.9851(63) GeV µ = 3GeV

1.2715(95) GeV µ = mc(µ),

(37)

where we have used Eq. (21) to evolve our result to other
scales for comparison with other determinations. These
again agree well with our previous nf = 3 analysis [2],
which gave 0.986(6) GeV for the mass at 3 GeV. The errors
for mc(3 GeV) and ↵

MS

(MZ) are correlated, with correla-
tion coefficient 0.19.

We use our result from mc to calculate the mass renormal-
ization factors

Zm(µ) ⌘ mc(µ)

m
0c

(38)

that relate MS masses to bare lattice masses for each config-
uration. These factors can be used to convert the bare mass
for any quark to its MS equivalent. We tabulate these results,
with µ = 3 GeV, for our configurations in Table II. These
Zm values are much more accurate than can be obtained from
order ↵s lattice QCD perturbation theory [29], but they agree
qualitatively and suggest that higher-order corrections from
lattice perturbation theory are small.

Our results confirm that a perturbative treatment of c quarks
in the sea, as in our previous paper, is correct, at least to our
current level of precision.

Our result at µ = mc has a larger error because ↵
MS

in
the mass evolution equation (Eq. (21)) becomes fairly large
at that scale (↵

MS

⇡ 0.4) and quite sensitive to uncertainties
in its value. We use the coupling from our fit for this evolu-
tion. Were we instead to use the Particle Data Group’s (more
accurate) ↵

MS

, our value for mc(mc) would be

mc(mc, nf = 4) = 1.2733(76) GeV. (39)
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FIG. 1. The c quark mass mc(µ = 3mh) as determined from mo-
ments with heavy-quark masses ranging from mc to 2.9mc. The
data points show results obtained by substituting nonperturbative
simulation values for R̃n into Eq. (40), after correcting for mistun-
ings of the sea-quark masses (using the fit). Errors are about the
size of the plot symbols, or smaller. Results are shown for three
lattices spacings: 0.12 fm (green points, through mh/mc = 1.2),
0.09 fm (blue points, through mh/mc = 1.8), and 0.06 fm (red
points, through mh/mc = 2.9). The dotted lines show our fits to
these data points. The gray band shows the values expected from our
best-value mc(5GeV) = 0.8905(56)GeV evolved perturbatively to
the other scales.

In any case, it is probably better to avoid such low scales, if
possible.

Note that our c mass comes from moments whose heavy-
quark mass varies from mh = mc to mh = 3mc. Each (non-
perturbative) ˜Rn with n � 6, for each heavy-quark mass mh,
gives an independent estimate of the c mass:

mc(3mh) =

rn(↵
MS

(3mh), µ = 3mh)

˜Rn

. (40)

The extent to which these estimates agree with each other is
shown in Figure 1, where the nonperturbative results (data
points) are compared with our best-fit result for mc(5 GeV)

evolved perturbatively to other scales using Eq. (21) (gray
band). As expected, finite a2 errors are larger for smaller val-
ues of n and larger values of mh [2, 30]. Taking account of
these errors, agreement between different determinations of
the mass is excellent.

The dominant sources of error for our results are listed in
Table IV. The most important systematics are due to the trun-
cation of perturbation theory and our extrapolation to a2

= 0.
As in our previous analysis, the a2 extrapolations are not

mc(3GeV, nƒ = 4) = 0.9851(63)GeV
�MS(MZ, nƒ = 5) = 0.11822(74)

0.12 fm

0.09 fm

0.06 fm

Perturbative evolution



Results (nf=3 [1004.4285])

Lattice spacings to 0.045fm 
⇒ mb possible.

mc(3GeV, nƒ = 4) = 0.986(6)GeV

mb(mb,nƒ = 5) = 4.164(23)GeV

mb(�, nƒ )/ mc(�, nƒ ) = 4.53(4)
�MS(MZ, nƒ = 5) = 0.1183(7)

Note that the ratio mbð!; nfÞ=mcð!; nfÞ is independent
of ! and nf. We obtain the following result for this mass
ratio:

mb=mc ¼ 4:53ð4Þ: (36)

The other important output from our fit is a value for the
parameter

"0 $ "MSð5 GeV; nf ¼ 3Þ ¼ 0:2034ð21Þ: (37)

To compare with other determinations of the coupling, we
add vacuum polarization corrections from the c and b
quarks, using the masses above, and evolve to the
Z-meson mass [20–23]:

"MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ: (38)

Figure 2 shows how consistent our simulation results are
with the theoretical curve for "MSð!; nf ¼ 3Þ correspond-
ing to our value for "0. For this figure we extracted values
for "MS from each Rn separately by dividing out the a2

dependence and zð3; m#h
Þ using our best-fit parameters,

and then solving for "MS by matching with perturbation
theory for rn. (In our fit, of course, we fit all Rn’s simul-
taneously to obtain a single "MS for all of them.)
The dominant sources of error for our results are listed in

Table IV. The largest uncertainties come from extrapola-
tions to a ¼ 0, especially for quantities involving b quarks;
unknown higher-order terms in perturbation theory, espe-
cially for quantities involving c quarks; statistical fluctua-
tions; extrapolations in the heavy quark mass, especially
for quantities involving b quarks; and uncertainties in
static-quark parameters r1=a and r1. The pattern of errors
is as expected in each case. The nonperturbative contribu-
tion from the gluon condensate is negligible except for mc,
again as expected; and errors due to mistuned sea-quark
masses, finite-volume errors, and uncertainties in MS cou-
pling and mass evolution are negligible (< 0:05%).
The a2 extrapolations of our data are not large. This is

illustrated for mh % mc in Fig. 3, which shows the a2

dependence of the reduced moments. The smallest two
lattice spacings are sufficiently close to a ¼ 0 so that the
extrapolation is almost linear from those points. The a ¼ 0
extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n ¼ 4, 6, 8, 10, respectively, for the masses used in the
figure.
We tested the stability of our analysis in several ways:
(i) Vary perturbation theory: We chose ! ¼ 3mh in

order to keep scales large and "MSð!Þ small. Our
results are quite insensitive to !, however. Choosing
! ¼ mh, for example, shifts none of our results by
more than 0:2$, and leaves all errors unchanged
except for mcð3Þ, where the error increases by a
third. Taking ! ¼ 9mh shifts results by less than
0:4$, and reduces the mc error by one-third, leaving
others only slightly reduced. Adding more terms to
the perturbative expansions (Npth ¼ 6 ! 8) also has
essentially no effect on the results. The prior for the

FIG. 2 (color online). QCD coupling "MSð!; nf ¼ 3Þ as a
function of m#h

where ! ¼ 3mh. The solid line, plus gray error

envelope, shows the best-fit coupling from our fit when pertur-
bative evolution is assumed. The data points are values of "MS

extracted from individual simulation results for Rn after extrap-
olating to a ¼ 0 and dividing out zð3; m#h

Þ (n > 4). Results are
given for moments n ¼ 4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

TABLE IV. Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncertainty is
given as a percentage of the final value.

mcð3Þ mbð10Þ mb=mc "MSðMZÞ
a2 extrapolation 0.2% 0.6% 0.5% 0.2%
Perturbation theory 0.5 0.1 0.5 0.4
Statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0
Errors in r1 0.2 0.1 0.1 0.1
Errors in r1=a 0.1 0.3 0.2 0.1
Errors in m#c

, m#b
0.2 0.1 0.2 0.0

"0 prior 0.1 0.1 0.1 0.1
Gluon condensate 0.0 0.0 0.0 0.2

Total 0.6% 0.7% 0.8% 0.6%

MCNEILE et al. PHYSICAL REVIEW D 82, 034512 (2010)

034512-8



Sanity Checks

Test evolution by letting β0 and 
γ0 float, as fit parameters ⇒ 
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FIG. 4. Results for the MS c mass and coupling from nf = 4 fits
that treat perturbative coefficients beyond order N as fit parameters,
with priors specified by Eq. (24). The gray bands and dashed lines
indicate the means and standard deviations of our final results, which
correspond to N = 3.

FIG. 5. The ratio of the c and s quark masses as a function of the
squared lattice spacing (in units of the bare c mass). The data come
from simulations at lattice spacings of 0.15, 0.12, 0.09 and 0.06 fm,
after tuning the s and c masses to reproduce physical values for the ⌘s
and ⌘c masses on each ensemble. The errors for the data points are
highly correlated, as they come primarily from uncertainties in w0,
m⌘s , and m⌘c . The red dashed line shows our fit, which has a �2 per
degree of freedom of 0.21 for 9 degrees of freedom (p-value of 0.99).
The black dashed line and gray band show the mean value and stan-
dard deviation for our result extrapolated to zero lattice spacing.

III. mc/ms FROM nf = 4

As discussed above (Section II A), we can use lattice QCD
to extract ratios of MS quark masses completely nonperturba-
tively [32], since ratios of quark masses are scheme and scale

independent: for example,

m
0c

m
0s

����
lat

=

mc(µ, nf )

ms(µ, nf )

����
MS

+ O((amc)
2↵s). (42)

While ratios of light-quark masses can be obtained from chiral
perturbation theory, only lattice QCD can produce nonpertur-
bative ratios involving heavy quarks. These ratios are very
useful for checking mass determinations that rely upon per-
turbation theory, as illustrated in [2]. They also allow us to
leverage precise values of light-quark masses from very accu-
rately determined heavy-quark masses.

In [32] we used nonperturbative simulations, with nf = 3

sea quarks, to determine the s quark’s mass from the c quark’s
mass and the ratio mc/ms. We repeat that analysis here, but
now for nf = 4 sea quarks, using the tuned values of the bare
s and c masses for each of our lattice ensembles: amtuned

0s and
amtuned

0c in Table II, respectively. We expect

amtuned

0c

amtuned

0s

=

mc

ms

 
1 + hm

�msea

uds

ms
+ ha2,m

�msea

uds

ms

✓
mc

⇡/a

◆
2

+h
1

↵s(⇡/a)

✓
mc

⇡/a

◆
2

+

Na2X

j=2

hj

✓
mc

⇡/a

◆
2j
1

A ,

(43)

where again we ignore �msea

c and �m2 dependence since they
are negligible. We fit the data from Table II using this formula
with the following fit parameters and priors:

hm = 0 ± 0.1, ha2,m = 0 ± 0.1, (44)
h
1

= 0 ± 6, hj = 0 ± 2 (j > 1). (45)

The extrapolated value mc/ms is also a fit parameter. We set
Na2

= 5, but get identical results for any Na2 � 2.
The result of this fit is presented in Fig. 5, which shows

the a2 dependence of the lattice results. The sensitivity of our
new results to a2 is about half what we saw in our previous
analysis. Our new fit is excellent and gives a final result for
the mass ratio of:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (46)

The leading sources of error in this result are listed in Ta-
ble IV. These are dominated by statistical errors and uncer-
tainty in the ⌘s mass. Many other potential sources of error,
such as uncertainties in the lattice spacing, largely cancel in
the ratio.

Note that the discussion in Appendix A and Eq. (A19),
in particular, imply that the leading effect of mistuned sea-
quark masses cancels in ratios of quark masses. This is sub-
stantiated by our fit which makes parameter hm negligibly
small (�0.0080(34)). Setting hm = 0 shifts our result for
mc/ms by only �/7.

Our result is a little more than a standard deviation lower
than the recent result, 11.747(19)

�
+59

�43

�
, computed by the Fer-

milab/MILC collaboration (using many of the same configu-
rations we use) [33]. Our analysis uses a different scheme for

convergence of pert’n theory

�0 = 0.675(54) (exact 0.663)
�0 = 0.292(19) (exact 0.318)

Nonperturbative determination 
of m̅b/m̅c = 4.49(4) agrees with 
perturbative value 4.53(4).
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FIG. 2. The Hs − ηh/2 mass difference plotted versus mHs

as the h quark’s mass is varied. The solid line and gray band
show our best-fit estimates for the mass differences extrapo-
lated to zero lattice spacing. Best-fit results (dashed lines)
and simulation data are also shown for five different lattice
spacings, with results for smaller lattice spacings extending
to larger masses (since we require amh < 1). The simulation
data points have been corrected for small mistunings in the
s quark’s mass. Data points (in black) at mDs

and mBs
are

the experimental values after correcting for small effects from
electromagnetism, ηb annihilation, and c quarks in the sea,
none of which are included in the simulation.

corrections from electromagnetism, ηb annihilation, and
c quarks in the sea (not included in our simulations) [18,
20]. Our fit also gives a value for mDs

−mηc
/2; it also

agrees well with experiment [6].

In this paper, we have shown how to use a highly
improved discretization of the relativistic quark action
to make accurate calculations for mesons containing
b quarks. Our result for the Bs decay constant, fBs

=
0.225(4)GeV, agrees with other determinations from lat-
tice QCD but is almost three times more accurate than
the most precise previous result. The reliability of our
extrapolations is underscored both by our previous de-
termination of the b-quark’s MS mass, which agrees with
other determinations to within errors of less than ±1%,
and by our calculation here of the mBs

− mηb
/2 mass

difference, which agrees with experiment to within errors
of ±11MeV or less than 2%. Our analysis of the decay
constant gives the most extensive information to date on
the heavy-quark mass dependence of the decay constant,
and provides the first empirical evidence for the leading
1/

√
mh dependence predicted by HQET. Further results

on the Bc mesons, and the decay constant fηh
will be

presented elsewhere [21].

Our analysis has important implications for future lat-
tice simulations of B physics. Other Bs quantities, like
semileptonic form factors, can be analyzed in the same
way, bringing few-percent precision within reach. Simi-
lar precision for B quantities is possible by combining Bs

calculations like these with precise calculations of Bs/B
ratios using (very efficient) non-relativistic effective field
theories for b-quark dynamics.
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4

Set Ncfg ⇥Nt mca ✏ aM⌘
c

aMJ/ a�Mhyp afJ/ /Z Zcc

1 2099⇥ 8 0.622 -0.221 1.79118(4) 1.85934(8) 0.06817(6) 0.2810(2) 0.979(12)
2 2259⇥ 4 0.63 -0.226 1.80851(5) 1.87797(10) 0.06946(8) 0.2855(2) 0.979(12)
2 2259⇥ 8 0.66 -0.244 1.86667(4) 1.93430(9) 0.06763(7) 0.2925(2) 0.974(12)
3 323⇥ 8 0.617 -0.218 1.78212(12) 1.85081(23) 0.06869(17) 0.2804(5) 0.979(12)
4 566⇥ 4 0.413 -0.107 1.28052(7) 1.32901(12) 0.04849(10) 0.1829(2) 0.983(12)
5 200⇥ 2 0.273 -0.0487 0.89948(8) 0.93369(13) 0.03421(11) 0.1244(3) 0.986(12)
6 208⇥ 1 0.193 -0.0247 0.66649(6) 0.69217(11) 0.02568(10) 0.0925(3) 0.990(12)

TABLE II: Results in lattice units for the masses of ⌘c and J/ and their di↵erence on each ensemble along with the raw
(unrenormalised) decay constant and Z factor for the J/ . Columns 3 and 4 give the bare HISQ charm quark mass, tuned
from the ⌘c and the corresponding coe�cient ✏ used in the Naik discretization improvement term of the HISQ action [2]. All of
the charm quark masses are very well tuned except for the lower result on set 2 (mca = 0.66), which was deliberately mistuned
to assess the sensitivity of quantities to the tuning. Of the remaining masses the least well-tuned is on superfine set 5 where
M⌘

c

is 0.5% too high. Column 2 gives the number of configurations used and the number of time sources for propagators on
each configuration. Results are binned on time sources and binned over neighbouring configurations for sets 5 and 6. The J/ 

correlators are averaged over polarisations except on sets 2 and 3 where only one polarisation was calculated. The results for
the ⌘c masses are also given in [2]. They di↵er slightly from these in some cases because of fitting simultaneously with J/ 

correlators. The Z factors are taken from moment 4 of the nonperturbative (on the lattice) current-current correlator method
described in Appendix B 1.
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FIG. 2: Results for the charmonium hyperfine splitting plot-
ted as a function of lattice spacing. For the x-axis we use
(mca)

2 to allow the a-dependence of our fit function (eq. (3))
(blue dashed line with grey error band) to be displayed sim-
ply. The data points have been corrected for c quark mass
mistuning and sea quark mass e↵ects, but the corrections are
smaller than the error bars. We do not include on the plot
the deliberately mistuned c mass but it is included in the
fit to constrain the c mass dependence. The errors shown
include (and are dominated by) uncertainties from the de-
termination of the lattice spacing a (from the physical value
of the parameter r1) that are correlated between the points.
The experimental average is plotted as the black point at the
origin, o↵set slightly from the y-axis for clarity.

resenting its uncertainty, is approximately 2� [16]1. Thus
lattice spacing uncertainties are typically much more im-
portant in the determination of hyperfine splittings than

1 This point has frequently been overlooked in lattice QCD calcu-
lations.

statistical errors.
We fit the hyperfine splitting as a function of lattice

spacing and sea quark masses to the form:

f(a, �x

l

, �x

s

) = f

0

⇥ (3)
X
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+ (d
0

+ d
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(am

c
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⌘

c

,latt

� M

⌘

c

,expt

).

Here f

0

is the physical result, the sum over ijkl allows for
discretisation errors and sea quark e↵ects and the final
term allows for mistuning of the c quark mass. We allow
the discretisation errors, which are evident in our results,
to have a scale set by the c quark mass. These appear
only as even powers of a for staggered quarks. �x

l

and
�x

s

are the mistuning of the sea quark masses:

�x

q

=
m

q,sea

� m

q,phys

m

s,phys

. (4)

�x

l

and �x

s

values are given for each ensemble in Ta-
ble I and are taken from Appendix A of [2]. Eq. (3)
includes a term for each sea quark (u/d appearing twice,
and s), with the coe�cients constrained to be the same
so that the fit function is symmetric with respect to inter-
change of any two. The division by 10 is because the scale
for dependence on light quark masses from chiral pertur-
bation theory is 4⇡f

⇡

⇡ 10m

s

. We see no significant
sea quark mass dependence in the hyperfine splitting. A
fairly strong dependence was seen in the twisted mass cal-
culations [10]. However, at least some of that dependence
could be attributed to the sea quark mass dependence of
the lattice spacing, since that is determined only in the
chiral limit. Here we determine the lattice spacing for
each ensemble and hence separate lattice spacing depen-
dence from physical sea quark mass e↵ects. The sum over
ijkl in eq. (3) allows for the possibility of lattice spacing
dependent sea quark mass e↵ects.

6

Our results for f

J/ 

/Z are given in Table II. The fi-
nal column of that table gives the values of Z deter-
mined from current-current correlators as described in
Appendix B. This method uses continuum perturbation
theory through O(↵3

s

) to normalise the lattice QCD cor-
relators at small times. Z then results from a combina-
tion of non-perturbative lattice QCD calculations with
continuum perturbation theory in a similar approach to
that of the RI-MOM scheme3 used to renormalise the cur-
rents for the same calculation using twisted mass quarks
in [10]. The current-current correlator method has the
advantage that we can use the same correlators from
which we also extract, at large times, the nonpertur-
bative information on the ground-state mass and decay
constant. Indeed this allows some cancellation of dis-
cretisation errors apparent in the unrenormalized decay
constant.

Multiplying f

J/ 

/Z by Z and then by a

�1 in GeV
gives the physical results for the decay constant plotted
in Figure 3. We fit these to the same function of lat-
tice spacing and sea quark mass used for the hyperfine
splitting, eq. (3). The only di↵erences are that the prior
on f

0

is taken as 0.5(5) in this case and the priors on
the slope of the variation of f

J/ 

with M

⌘

c

are taken as:
d

0

, 0.065(5) and d

1

, 0.00(25). These are informed by the
variation we see for the deliberately mistuned c mass on
set 2 and also by our extensive study of the behaviour of
f

⌘

c

with M

⌘

c

in [2]. There we find a strong a-dependence
in the slope of the decay constant with mass and so we
allow for that here.

The physical result that we obtain in the continuum
limit is:

f

J/ 

= 405(6)(2)MeV. (9)

The first error is from the fit and is dominated by the
error from the Z factor. The second error is an estimate
of systematic e↵ects from missing electromagnetism in
our lattice QCD calculation [2]. The e↵ect of missing
c-in-the-sea is negligible in this case. A complete error
budget is given in Table III.

The leptonic width is determined by the amplitude of
the ground-state that dominates the correlator at large
times. We can also determine the charm contribution
to R

e

+
e

� through the time moments of the J/ correla-
tor which depend on the behaviour at short times. The
moments are defined by:

G

V

n

= Z

2

C

V

n

= Z

2

X

˜

t

t̃

n

C

J/ 

(t̃) (10)

where t̃ is lattice time symmetrised around the centre of
the lattice (see Appendix B). Results for (GV

n

/Z

2)1/(n�2)

in lattice units on each of our ensembles are given in Ta-
ble IV for n = 4, 6, 8 and 10. The power 1/(n � 2) is

3 This method is often called ‘nonperturbative’ in the lattice QCD
literature.
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FIG. 3: Results for the charmonium vector decay constant
plotted as a function of lattice spacing. For the x-axis we use
(mca)

2 to allow the a-dependence of our fit function (eq. (3))
(blue dashed line with grey error band) to be displayed sim-
ply. The data points have been corrected for c quark mass
mistuning and sea quark mass e↵ects, but the corrections are
smaller than the error bars. We do not include on the plot the
deliberately mistuned c mass but it is included in the fit to
constrain the c mass dependence. The errors shown include
(and are dominated by) uncertainties from the determination
of the current renormalization factor, Z, that are correlated
between the points. The experimental average is plotted as
the black point at the origin, o↵set slightly from the y-axis
for clarity.

taken to reduce all the moments to the same dimension.
We take the Z factor for the vector current to be the
same one used for the leptonic width above, determined
in Appendix B. Figure 4 then shows the physical results
for the moments as a function of lattice spacing. The
gray bands show our fits which use the same function of
lattice spacing and sea quark masses as given in eq. (3).
We reduce the prior width on the lattice spacing depen-
dent terms by a factor of 4 because the moments are not
as sensitive to short distances as the leptonic width or
hyperfine splitting.

The physical results that we obtain for each moment
in the continuum limit are given by:

(GV

4

)1/2 = 0.3152(41)(9) GeV�1

(GV

6

)1/4 = 0.6695(57)(13) GeV�1

(GV

8

)1/6 = 0.9967(65)(10) GeV�1

(GV

10

)1/8 = 1.3050(65)(6) GeV�1

. (11)

The first error comes from the fit and the second allows
for electromagnetism (e.g. photons in the final state)
missing from our calculation but present in experiment.
The error is estimated by substituting ↵

QED

for ↵
s

in
the perturbative QCD analysis of the moments [22]. A
complete error budget for our results is given in Table V.

The results agree well with the values extracted for the
q

2 derivative moments, M
k

(n = 2k + 2), of the charm
quark vacuum polarization using experimental values for

mBs – mηb/2

mDs – mηc/2

ψ hyperfine splittingψ → ee̅  decay const

expt

expt

No free parameters!
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Current LQCD Results (nf ≥ 3)

mb /mc = 4.49(4) 
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4.0 4.1 4.2 4.3 4.4 4.5
mb(mb,n f = 5)(GeV)

HPQCD NRQCD JJ

HPQCD HISQ ratio n f = 4

ETMC ratio

HPQCD HISQ JJ n f = 3

HPQCD NRQCD E0

FIG. 7: Lattice QCD results for m
b

in the MS scheme with
5 flavours and evaluated at its own scale. Results are from
calculations that include either 3 or 4 flavours of sea quarks
and so can be perturbatively corrected to 5 flavours. All 5
results use di↵erent methods, indicated on the right. The
top result is from this paper, the second from [15], the third
from [64], the fourth from [18] and the fifth from [65], adjusted
perturbatively to n

f

= 5. The grey band gives the weighted
average of the lattice results: 4.178(14) GeV.

Appendix A: Determination of Z
V

The perturbative analysis of heavy-heavy current-
current correlators is well developed in continuum QCD
perturbation theory [39–43] and here we make use of that
to normalise the lattice NRQCD vector current for bb an-
nihilation that we use to determine the ⌥ leptonic width.
The method is a variation of that used for the J/ lep-
tonic width in [8]. In that case we were working with
a relativistic discretisation of the QCD quark action on
the lattice. Since here we have a nonrelativistic discreti-
sation there are some di↵erences in the approach that we
lay out in this section5.

Time-moments of current-current correlators, being
ultraviolet-finite quantities, can be calculated in lattice
QCD and extrapolated to the continuum limit to give a
continuum result that can be compared to experiment [8].
The current used in the correlator must be matched to
the continuum current, however. When the Highly Im-
proved Staggered Quark discretisation [22] is used, for
example, the local pseudoscalar density is absolutely nor-

5 Note also that, in a nonrelativistic formalism, the annihilation
and scattering currents do not have the same renormalisation
factor

malised [14, 15] but the vector current normalisation has
to be fixed. For heavy quarks this can be done using
the continuum QCD perturbation theory for the vec-
tor current-current correlator moments. The multiplica-
tive renormalisation factor Z

V

is simply determined by
matching the lattice result at a given lattice spacing for
a specific moment to the perturbative result. We can
choose which moment to use, since di↵erences in Z

V

that
arise from a di↵erent choice are discretisation e↵ects that
must disappear in the continuum limit, along with other
discretisation errors that result from working at a non-
zero lattice spacing. The low moments, 4–10, are known
through O(↵3

s

) so are clearly to be preferred over higher
ones. It is convenient to use ratios of vector to pseu-
doscalar current-current correlator moments since then
factors of the quark mass cancel [8].

When a nonrelativistic discretisation of the QCD quark
action is used, neither the pseudoscalar nor the vector
currents is absolutely normalised and the lattice current
is only determined to a given order in a relativistic expan-
sion. Hence the match to continuum QCD perturbation
theory has both discretisation errors and relativistic er-
rors, which are mixed by the higher dimension operators
used to implement corrections, and so we cannot simply
take a value of Z from the match for a specific moment.

In determining the normalisation of the current we
can, however, make use of the fact that time-moments
with low moment number emphasise very short times
in the current-current correlator and are therefore sen-
sitive to much higher internal spatial momenta within
the quark-antiquark pair (the overall momentum of the
pair is zero) than higher moments are [15]. Thus, as the
moment number changes, the sensitivity to relativistic
corrections changes. This is easily seen in an analysis of
the free case. At leading relativistic order, for vector or
pseudoscalar moments, multiplying the free quark and
antiquark propagators together we have

G
n

= 4

Z
d4x tn

Z
dE

1

d3p
1

(2⇡)4
dE

2

d3p
2

(2⇡)4
(A1)

e�2mtei(E1+E2)tei(p1+p2)·x

(iE
1

+ p2

1

/2m)(iE
2

+ p2

2

/2m)

where the quarks have mass m. Integrating over x and
p gives

G
n

= 4

Z
dt tn⇥(t)e�2mt

Z
d3p

(2⇡)3
e(�p

2
/m)t. (A2)

Performing the integral over t allows us to study the con-
tribution to the integral as a function of v2, the square
of the heavy quark velocity (in units of c2) in the quark-
antiquark pair and the expansion parameter in the non-
relativistic expansion. In

G
n

=
n!

⇡22n+1mn�2

Z
(v2)1/2d(v2)

(1 + v2/2)n+1

(A3)

the integrand peaks at v2 = 1/(n + 1/2), falling as ex-
pected with increasing n.

4.178(14) GeV
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0.116 0.118 0.120
aMS(MZ,n f = 5)

HPQCD 1408.4169
ETMC 1310.3763

u,d,s,c sea
u,d,s sea

Basavov et al 1205.6155
HPQCD 1004.4285a
HPQCD 1004.4285b
JLQCD 1002.0371
PACS-CS 0906.3906

0.1185(4)

10.5 11.0 11.5 12.0 12.5
mc/ms

HPQCD 0910.3102

ETMC 1010.3659

ETMC 1403.4504

MILC 1407.3772

HPQCD 1408.4169

Durr 1108.1650

u,d,s,c sea

u,d,s sea

u,d sea

11.700(46)

mc/ms

αMS

m̅s

msð2 GeVÞ ¼

8
<

:

92.4ð1.5Þ MeV HPQCD ½32%;
99.6ð4.3Þ MeV ETMC ½36%;
95.5ð1.9Þ MeV Durr et al. ½44%;

msð3 GeVÞ ¼ 81.64ð1.17Þ MeV RBC=UKQCD ½45%:

ð56Þ

654 We compare these nonperturbative results in Fig. 9, together
655 with an earlier perturbative determination from [44].
656 Finally, we have also updated our previous (nf ¼ 3)
657 nonperturbative analysis of mb=mc using our new nf ¼ 4

658 data. We obtain

mbðμ; nfÞ
mcðμ; nfÞ

¼ 4.528ð54Þ; ð57Þ

659which agrees with our previous result of 4.51(4) [2].
660Combining this result with our new value for mc
661[Eq. (52)] gives

mbðmb; nf ¼ 5Þ ¼ 4.162ð48Þ: ð58Þ

662This again agrees with our earlier result of 4.164(23) GeV,
663but with larger errors. We can also multiply our results for
664mb=mc and mc=ms to obtain

mbðμ; nfÞ
msðμ; nfÞ

¼ 52.55ð55Þ: ð59Þ

665This is almost four standard deviations (but only 4%) away
666from the result predicted by the Georgi-Jarlskog relation-
667ship [47] for certain classes of grand unified theory: the
668Georgi-Jarlskog relationship says that mb=ms should
669equal 3mτ=mμ ¼ 50.45.
670The prospects for improving our results over the next
671decade are good. Detailed meta-simulations, described in
672[1], indicate that errors from our analysis can be pushed
673below 0.25% by a combination of higher-order perturbation
674theory, and, especially, smaller lattice spacings (0.045,
6750.03, and 0.023 fm)—both improvements that are quite
676feasible over a decade [1]. There are also many other
677promising approaches within lattice QCD. Several exist
678already for extracting the QCD coupling; see, for example,
679[37–41,48,49]. One can also use simulations of other
680renormalized quantities, such as the mhψ̄hγ5ψ vertex
681function, to compute quark masses [12].
682Small lattice spacings are particularly important for the b
683mass, because lattice spacing errors are typically of order
684ðambÞ2. One approach is to use highly improved relativistic
685actions for the b quarks, like the HISQ action used here. As
686shown in [3], all but one of theOða; a2Þ operators that arise
687in the Symanzik improvement of a quark action are
688suppressed by extra factors of the heavy-quark velocity:
689factors of ðv=cÞ2 for mesons made of heavy quarks and v=c
690for mesons made of a combination of heavy and light
691quarks. The one operator that does not have extra sup-
692pression is

P
μ ψ̄ γμðDμÞ3ψ , which violates Lorentz invari-

693ance and so is easily tuned nonperturbatively using the
694meson dispersion relation. This is the strategy adopted in
695the HISQ discretization we use here. The extra factors of
696v=c suppress ðambÞ2 errors by an extra order of magnitude,
697beyond the suppression, by a power of αs, coming from
698tree-level corrections for a2 errors in HISQ.
699ðambÞ2 errors can be avoided completely by using
700effective field theories like NRQCD [50] or the Fermilab
701formalism [51] for b dynamics. Such approaches should
702be sufficiently accurate provided they are corrected to
703sufficiently high order in ðvb=cÞ2. Our recent NRQCD
704analysis of mb, using current-current correlators, is
705encouraging [52].

10 5 11 0 11 5 12 0 12 5
mc ms

HPQCD 0910.3102

ETMC 1010.3659

ETMC 1403.4504

MILC 1407.3772

HPQCD this paper

Durr 1108.1650

u,d,s,c sea

u,d,s sea

u,d sea

F8:1 FIG. 8 (color online). Lattice QCD determinations of the ratio
F8:2 of the c and s quarks’ masses. The ratios come from this paper
F8:3 and references [32,33,36,42,43]. The gray band is the weighted
F8:4 average of the three nf ¼ 4 results: 11.700(46).

75 80 85 90 95
ms 3GeV n f 3

HPQCD this paper

ETMC 1403.4504

u d s c sea
u d s sea

RBC/UKQCD 1411.7017

Durr et al 1011.2403

HPQCD 0910.3102

HPQCD (pert) 0511160

F9:1 FIG. 9 (color online). Lattice QCD determinations of the MS
F9:2 s-quark mass msð3 GeV; nf ¼ 3Þ in MeV. These masses come
F9:3 this paper and references [32,36,44–46] The gray band is the
F9:4 weighted average of these results: 84.1(5) MeV.
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Example: HVP Contribution  
to Muon’s g-2



Hadronic Vacuum Polarization in g-2

• Dominant QCD correction to μ’s g–2: 

• Best current theory from e+e– data: 0.7% (±4x10-10). 

• Need ≤0.25% errors to compete with new experiment. 

• New physics?

The hadronic vacuum polarization contribution to aµ from full lattice QCD
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(Dated: May 4, 2016)

We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 666(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

INTRODUCTION

The muon’s gyromagnetic ratio g

µ

is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, a

µ

⌘ (g
µ

� 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment—the di↵erence is
currently 2.2(7) ppm [3]—but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in a

µ

comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of a

µ

) from experimental data on e

+
e

� !
hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum
polarization at ↵

2
QED

. We achieve a precision of 2%, for
the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis

µ

q

q

FIG. 1: The ↵2
QED hadronic vacuum polarization contribution

to the muon anomalous magnetic moment is represented as a
shaded blob inserted into the photon propagator (represented
by a wavy line) that corrects the point-like photon-muon cou-
pling at the top of the diagram.

of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
either a uū or dd̄ pair; we calculated contributions from
heavier quarks in [14, 26, 27]. Disconnected diagrams,
where the quarks and antiquarks created by the photons
annihilate into gluons rather than photons, give much
smaller contributions [28, 29]; we will discuss these at
the end of this paper.
The leading-order contribution to the muon anomalous

magnetic moment from the HVP is obtained by inserting
the quark vacuum polarization into the photon propa-
gator [30, 31]. Ignoring disconnected contributions, the
vacuum polarization separates into distinct contributions

for q = u,d

�̂(k2) =
�X

n=1
�n k2n

! (2,2) Padé approximant



Results from u,d

4

FIG. 2: Our results for the connected u/d contribution to
aHVP,LO
µ as a function of the u/d quark mass (expressed as

its deviation from the physical value in units of the s quark
mass). The lower curve shows our uncorrected data; the up-
per curve includes correction factors discussed in the text
and is used to obtain the final result. Data come from sim-
ulations with lattice spacings of 0.15 fm (purple triangles),
0.12 fm (blue circles), and 0.09 fm (red squares). The gray
bands show the ±1� predictions of our model (Eq. (7)) after
fitting it to the data. The �2 per degree of freedom was 0.9
and 0.6 for the upper and lower fits, respectively.

our 10 ensembles to a function of the form

a

HVP,LO
µ

✓
1 + c`

�m`

⇤
+ cs

�ms

⇤
+ c̃`

�m`

m`
+ ca2

(a⇤)2

⇡

2

◆

(6)

where �mf ⌘ mf � m

phys
f , and ⇤ ⌘ 5ms is of order the

QCD scale (0.5GeV). The fit parameters have the fol-
lowing priors:

c` = 0(1) cs = 0.0(3) c̃` = 0.00(3) ca2 = 0(1) (7)

together with prior 600(200) ⇥ 10�10 for a

HVP,LO
µ . This

fit corrects for mis-tuned quark masses, higher-order cor-
rections to the ⇡

+
⇡

� contribution, and the finite lattice
spacing. More details are given in the supplementary
materials.

Our final result from the fit for the connected contri-
bution from u/d quarks is a

HVP,LO
µ = 598(6)(8) ⇥ 10�10,

where the first error comes from the lattice calculation
and fit and the second is due to missing contributions
from QED and isospin breaking (mu 6= md), each of
which we estimate to enter at the level of 1% of the u/d

piece of a

HVP,LO
µ . These estimates are supported by more

detailed studies: The key isospin breaking e↵ect of ⇢� !

mixing is estimated in [36] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [37] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III.

TABLE III: Error budget for the connected contributions
to the muon anomaly aµ from vacuum polarization of u/d
quarks.

aHVP,LO
µ (u/d)

QED corrections: 1.0%
Isospin breaking corrections: 1.0%

Staggered pions, finite volume: 0.7%
Valence m` extrapolation: 0.4%

Monte Carlo statistics: 0.4%
Padé approximants: 0.4%

a2 ! 0 extrapolation: 0.3%
ZV uncertainty: 0.4%
Correlator fits: 0.2%

Tuning sea-quark masses: 0.2%
Lattice spacing uncertainty: < 0.05%

Total: 1.8%

DISCUSSION/CONCLUSIONS

Adding results from our earlier analyses [14, 26], the
connected contributions to a

HVP,LO
µ are:

a

HVP,LO
µ

��
conn.

⇥1010 =

8
>>><

>>>:

598(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(8)

We combine these results with our recent estimate [27]
of the contribution from disconnected diagrams involving
u, d and s quarks. We take this as 0(9) ⇥ 10�10 to ob-
tain an estimate for the entire contribution from hadronic
vacuum polarization:

a

HVP,LO
µ = 666(6)(12) ⇥ 10�10 (9)

This agrees well with the only earlier u/d/s/c lat-
tice QCD result, 674(28) ⇥ 10�10 [13], but has errors
from the lattice calculation reduced by a factor of four.
It also agrees with earlier non-lattice results (⇥1010):
694.9(4.3) [5], 690.8(4.7) [6], and 681.9(3.2) [7] and
687.2(3.5) [8]. These are separately more accurate than
our result but the spread between them is comparable to
our uncertainty.

It is also useful to compare our result to the ex-
pectation from experiment. Assuming there is no new
physics beyond the Standard Model, experiment requires
a

HVP,LO
µ to be 720(7) ⇥ 10�10. This value is obtained

by subtracting from experiment the accepted values of
QED [38], electroweak [39], higher order HVP [5, 40] and
hadronic light-by-light contributions [41]. It is roughly
3.5� away from our result (Eq. (9)), but we need signif-
icantly smaller theoretical errors before we can make a
case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [28, 42] and from new simulations
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FIG. 6: Results for the ⇢ meson mass (upper plot) and de-
cay constant (lower plot) from the vector correlators used to
determine the u/d connected contribution to aHVP,LO

µ . Re-
sults are shown for di↵erent u/d masses, as indicated by the
corresponding values of m2

⇡ (the lightest being the physical
value). Data come from simulations with lattice spacings of
0.15 fm (purple triangles), 0.12 fm (blue circles), and 0.09 fm
(red squares). Experimental results for the mass (dashed line)
and decay constant (gray band) are shown as well. A com-
parison of our results with those of [11, 13] is given in [48].

correcting for the finite temporal extent of the lattice.
Note that about 80% of our final result for aµ comes
from t  t

⇤ (=1.5 fm), where we use simulation data
rather than our fit.

The sum over states in Gfit (above) includes vector
mesons like the ⇢ and also multi-hadron states, which
enter as discrete energy eigenstates because of the fi-
nite spatial volume of our lattice. The lowest-energy
states are ⇡⇡ states for configurations with physical pion
masses, but we see no evidence of these in our fits — the
dominant contribution comes from the ⇢ meson. This
is expected because there are only a few ⇡⇡ states be-
low the ⇢ mass, and their contribution is suppressed by
a factor of one over the lattice volume (see Eq. (B32) be-
low), making their contributions to aµ smaller than our
statistical errors. Note that it has been possible to see
coupled ⇢ and ⇡⇡ states in lattice QCD calculations (see,
for example, [49]) but to do so requires careful meson
and multi-meson operator optimization to achieve mea-
surable overlaps; the calculations do not use the local
vector current that is relevant here.
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c)

FIG. 7: Leading diagrams from chiral perturbation theory
that contribute to �⇧j : a) leading-order ⇡+⇡� vacuum po-
larization; b) vacuum polarization corrected for the pion’s
charge radius; c) ⇡⇡ scattering correction. Dashed lines rep-
resent pions.

We vary t

⇤ to estimate systematic errors in aµ associ-
ated with these low-energy ⇡⇡ states. Their contribution
coming from t  t

⇤ is included in our calculation, since
we use the Monte Carlo results in that region. The con-
tribution from t > t

⇤ can be calculated using the chiral
formalism developed below. The low-energy ⇡⇡ contri-
bution to aµ from t > t

⇤ is 3 ⇥ 10�10 when t

⇤ = 1.5 fm
(our default value). This is negligible given our other
errors. We verified this estimate by repeating our full
analysis with t

⇤ = 0.5 fm instead of 1.5 fm. This dou-
bles the low-energy ⇡⇡ contribution from t > t

⇤. Our
final result for aµ changed by 0 ± 3 ⇥ 10�10. Thus we
use ±3 ⇥ 10�10 as our estimate of the uncertainty due
to t

⇤ when t

⇤ = 1.5 fm.
An important check on the quality of our correlators

and fit is that the ⇢ mass and decay constant agree with
experiment when the light quarks have their physical val-
ues. This is illustrated by Figure 6, which shows the mass
and decay constants from each of our configuration sets.
Theory and experiment agree to within errors for physi-
cal quark masses.2

Appendix B: Finite Volume and Staggered Pions

We use chiral perturbation theory to correct systematic
errors in our lattice results caused by the finite volumes of
our lattices, and by mass splittings between the di↵erent
tastes of pion generated by our (staggered-quark) HISQ
discretization. Our general strategy is to identify terms
in the chiral expansion that are sensitive to the volume
and to pion masses (i.e., loops with pions). We calcuate
these terms without and with lattice artifacts, and then
add the di↵erence to the lattice results.

The only relevant contribution from zeroth order in

2
The definition of f⇢ is complicated by the large width of the ⇢ me-

son. Applying naive definitions gives results around 0.208 GeV

from ⌧ decay and around 0.220 GeV from ⇢ ! ee, with errors

of order a couple percent in each case. A more careful analysis,

which models non-resonant backgrounds in each case, is needed

to resolve the di↵erences between these two channels. We take

the experimental value to be f⇢ = 0.21(1) GeV for Figure 6.
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a) b) 2 ⇥

c)

FIG. 8: Leading diagrams from the ⇢ e↵ective field theory
that correspond (to leading order in q2/m2

⇢) to the diagrams in
Fig. 7 from the standard chiral theory: a) leading-order ⇡+⇡�

vacuum polarization; b) correction for the pion’s charge radius
from � ! ⇢ ! ⇡⇡; c) correction for ⇡⇡ scattering correction
from ⇡⇡ ! ⇢ ! ⇡⇡. Dashed and solid lines represent pions
and rhos, respectively.

obtained from the configuration set (Table I), and then
we subtract from it the same quantity but with

⌃̂(�q

2
E , m⇡, m⇡) ! 1

16

X

⇠
a

,⇠
b

⌃̂V (�q

2
E , m⇡(⇠a), m⇡(⇠b))

(B34)
where ⌃̂V is evaluated for the finite volume of the con-
figuration (Eq. (B32)), and averaged over the staggered-
pion taste combinations ⇠a � ⇠b listed above. The correc-
tions �⇧j are the Taylor coe�cients of this di↵erence be-
tween continuum and finite-volume/staggered-pion vac-
uum polarizations.

The contribution to aµ from the first term in Eq. (B33)
is roughly five times larger than that from the second
term, and has the opposite sign. This is for our simula-
tion results with physical pion masses and the interme-
diate lattice spacing (set 8). The largest contributions
come mainly from the terms

� ⌃̂(�q

2
E , m⇡, m⇡) ⇥
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(B35)
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⇡iq2
E
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⌘
(B36)

in Eq. (B33) (Figs. 8a and 8b), where r⇡ is the charge
radius of the pion. They contribute corrections to aµ

of 50 ⇥ 10�10 and �13 ⇥ 10�10, respectively. Further
(q2

/m

2
⇢)

n corrections to the �-⇡⇡ vertex contribute 3 ⇥
10�10. The other q

2
E/m

2
⇢ correction in Eq. (B33) is from

⇡⇡ scattering (Fig. 8c):

f
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⇢

2m

2
⇢

q

2
E

m

2
⇢

⇣
g⇢g⇢⇡⇡⌃̂(�q

2
E , m⇡, ⇡)

⌘2
. (B37)

This should be small because it is second order in
g⇢g⇢⇡⇡⌃̂; in fact, it contributes less than 0.5 ⇥ 10�10.
The total correction from all contributions (to all orders)
is 41 ⇥ 10�10 for set 8 —chiral perturbation theory con-
verges relatively rapidly here.

We add an extra 10% uncertainty to each correc-
tion �⇧j to account for missing contributions suppressed
by ms/⇤, due to tadpole and other renormalizations of

1 2 3 4 5
n

10�10
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10�8

10�7
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10�3
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n
m

2
n
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|

corrected
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FIG. 9: Contributions to the hadronic vacuum polariza-
tion ⇧̂(q2) at q2 = �m2

µ coming from individual Taylor coef-
ficients ⇧n with n = 1 . . . 5. Results are show for corrected
(above) and uncorrected (“raw”, below) coe�cients coming
from our lattice QCD simulations with physical sea-quark
masses (sets 3 and 8). The corrected coe�cents include both
corrections described in Section II B: 1) adding �⇧n from
Table IV; and 2) replacing the pion mass from the simula-
tion with the physical pion mass in the leading ⇡⇡ loop. To
compare with experiment, we add contributions from s and
c quarks [14] to both the raw and corrected moments, neglect-
ing their contribution to the n = 5 moment (which is negli-
gible). The dashed lines are results derived from e+e� data:
see the “data direct” column in Table I of [56]. The error
estimates on the lattice results do not include contributions
due to electromagnetic, isospin-violating, and disconnected
contributions; (estimated to be around 2% for the n = 1 mo-
ment).

the leading vacuum polarization. This uncertainty also
accounts for corrections of order (q2

/⇤)2 and higher that
are only partially included by our analysis.

The taste structure of the ⇡⇡ vacuum polarization mat-
ters because its contribution to aµ is quite sensitive to the
pion mass (see Eq. (B25)) and pions of di↵erent taste
di↵er in mass. Taste-changing interactions normally lead
to small corrections that extrapolate smoothly to zero,
like ↵s(⇡/a) a

2, as the lattice spacing vanishes. This does
not work for the ⇡⇡ vacuum polarization with physical
pions, however, because its moments are non-analytic in
m⇡ (Eq. (B25) and the taste-changing e↵ects are com-
parable to the (physical) pion mass. This is why we use
chiral perturbation theory to remove the e↵ects of the
staggered pion masses in the ⇡⇡ vacuum polarization.
There are other e↵ects from taste-changing but we only
need correct contributions that are non-analytic in m⇡

(and large enough to matter); all other e↵ects will ex-
trapolate away as we take the lattice spacing to zero.

Re+e� exp’t
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Lattice QED + Isospin

��(HVP, LO) ⇥ 1010 =
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>>>>><
>>>>>:

599(11) from �/d (1601.03071)
53.4(6) from s (1403.1178)
14.4(4) from c (1403.1778)
0.27(4) from b (1408.5768)
0(9) from disc. (1512.03270)

= 667(6)(12)
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FIG. 4: Bayesian probability distribution for aHVP,LO
µ (u/d)

(bars) compared with results from the least-squares fit
(dashed line).

mixing is estimated in [37] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [38] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III. Note that our final result is 3.5% above the
extrapolated result from the raw data shown in Fig. 3;
most of that shift comes from corrections to the ⇡⇡ vac-
uum polarization in chiral perturbation theory.

We tested the validity of the least-squares fit that de-
termines our a

HVP,LO
µ (u/d) by replacing the fit with a

Bayesian expectation value (a 16-dimensional numerical
integration) over the distributions of the input data and
priors. The results, in Fig. 4, show that the least-squares
fit (dashed-line) agrees well with the probability distri-
bution from the corresponding Bayesian analysis (bars).

III. DISCUSSION/CONCLUSIONS

Adding results from our earlier calculations for other
quark flavours [14, 27], the connected contributions to
a

HVP,LO
µ are:

a

HVP,LO
µ

��
conn.

⇥ 1010 =

8
>>><

>>>:

599(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(9)

We combine these results with our recent estimate [28] of
the contribution from disconnected diagrams involving u,
d and s quarks, taking this as 0(9) ⇥ 10�10. This agrees
with, but has a more conservative uncertainty than, the
value obtained in [29]. We then obtain an estimate for the
entire contribution from hadronic vacuum polarization:

a

HVP,LO
µ = 667(6)(12) ⇥ 10�10 (10)
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FIG. 5: Our final result for aHVP,LO
µ from lattice QCD com-

pared to an earlier lattice result (also with u, d, s and c
quarks) from the ETM Collaboration [13], and to recent re-
sults using experimental cross-section information [5–8]. We
also compare with the result expected from the experimental
value for aµ assuming that there are no contributions from
physics beyond the Standard Model.

This agrees well with the only earlier u/d/s/c lattice
QCD result, 674(28) ⇥ 10�10 [13], but has errors from
the lattice calculation reduced by a factor of four. It
also agrees with earlier non-lattice results using exper-
imental data, ranging from (⇥1010): 694.9(4.3) [5] to
681.9(3.2) [7]. These are separately more accurate than
our result but have a spread comparable to our uncer-
tainty. New results from BESIII [39] may resolve this.

It is also useful to compare our result to the expecta-
tion from experiment. Assuming there is no new physics
beyond the Standard Model, experiment requires a

HVP,LO
µ

to be 720(7)⇥10�10. This value is obtained by subtract-
ing from experiment the accepted values of QED [40],
electroweak [41], higher order HVP [5, 42] and hadronic
light-by-light contributions [43]:

a

HVP,LO,no new physics
µ = a

expt
µ � a

QED
µ � a

EW
µ

� a

HVP,HO
µ � a

Hlbl
µ . (11)

Figure 5 compares our results with others from pre-
vious continuum and lattice analyses. We also compare
with results expected from experiment if there is no new
physics contributing to aµ. The ‘no-new-physics’ value
is roughly 3.5� away from our result (Eq. (10)), but we
need significantly smaller theoretical errors before we can
make a case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [29, 44] and from new simulations
with mu 6= md; this is straightforward. Adding QED
e↵ects to a simulation is more di�cult (see, for exam-
ple, [45]), but it is particularly simple here because the
hadronic system is electrically neutral, so there are no
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SUPPLEMENTAL MATERIALS

CORRELATOR FITS

We construct a 2⇥2 matrix of meson propagators using
all combinations of two meson operators, with zero three
momentum, for the source and sink. One meson operator
(“loc”) is the local vector current. The other (“sm”) is
a vector current but with smearing applied to the quark
field, using operator


1 +

r20D
2

4n

�n
(1)

where D2 is the covariant Laplacian operator and r0 is
a width parameter. Since we are using staggered quarks
and require current-current correlators of a specific stag-
gered taste, we use the stride-2 D2 operator here, with
the di↵erence operator defined for grid spacing 2a (rather
than a). We choose r0 = 3a, 3.75a, and 4.5a for lattices
spacings 0.15 fm, 0.12 fm and 0.09 fm, respectively, with
n = 20, 30, and 40.

The result is a matrix of correlators, Gij , where i labels
the source and j the sink. Each of i, j is either “loc” for
the local vector operator or “sm” for the smeared vector
operator. We fit Gij to the form:

Gij(t) = a3
N�1X

k=0

b(k)i b(k)j

⇣
e�E(k)t + e�E(k)(T�t)

⌘
(2)

� (�1)ta3
N�1X

k=0

d(k)i d(k)j

⇣
e�Ẽ(k)t + e�Ẽ(k)(T�t)

⌘

where k labels the energy eigenvalues appearing in the
correlator and T is the temporal extent of the lattice.
The first sum is over 1�� vector states that couple to
the vector operators. The second is over opposite-parity
states that arise here because of our use of staggered
quarks; this term oscillates in sign as t increases, which
helps the fit distinguish between it and the first term. We
use a Bayesian approach to the fitting [1] with the fol-
lowing fit parameters and broad priors (in units of GeV):

log(E(0)) = log(0.75(38))

log(E(k) � E(k�1)) = log(1.0(5)) (k > 0)

log(b(0)loc) =

(
log(0.14(14)) (k = 0)

log(0.42(42)) (k > 0)

b(0)sm , b(k)sm = 0.01(1) (3)

for the first sum, and the analogous parameters and pri-
ors for the second sum but with

log(Ẽ(0)) = log(1.2(6)), (4)

to reflect the higher mass of the lowest opposite-parity
state. To avoid lattice artifacts (from the HISQ action)

FIG. 1: Results for the ⇢ meson mass (upper plot) and de-
cay constant (lower plot) from the vector correlators used to
determine the u/d connected contribution to aHVP,LO

µ . Re-
sults are shown for di↵erent u/d masses, as indicated by the
corresponding values of m2

⇡ (the lightest being the physical
value). Data come from simulations with lattice spacings of
0.15 fm (purple triangles), 0.12 fm (blue circles), and 0.09 fm
(red squares). Experimental results for the mass (dashed line)
and decay constant (gray band) are shown as well. A com-
parison of our results with those of [2, 3] is given in [4].

at very small times, we fit the correlators only for t values
larger than 0.5–0.7 fm. We used N = 5, but get identical
results with larger values of N . The fits were all excel-
lent, with �2 per degree of freedom ranging between 0.6
and 1.1 in di↵erent fits. The use of a smeared operator

improves the fit results for E(0) and b(0)loc (from which we
obtain our values for m⇢ and f⇢) by an amount commen-
surate with its numerical cost.

As discussed in the main text, we use a combination
of data and fit results when computing moments of the
local current-current correlator G ⌘ Gloc,loc:

G(t) =

(
Gdata(t) t  t⇤

Gfit(t) t > t⇤
(5)

where we define

Gfit(t) = a3
N�1X

k=0

b(k)loc b(k)loc e�E(k)t (6)

� (�1)ta3
N�1X

k=0

d(k)loc d(k)loc e�Ẽ(k)t

expt’t
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Figure 3: The plot on the left represents the results for mf �mhs calculated using HISQ formalism on ml =
ms/5 and physical point ensembles with varied lattice spacings and extrapolated to a = 0. The continuum
results are compared to the experimental result related to G(f ! e+e�). The plot on the right shows the
similar results for ff .

The s quark propagators are combined into a correlator with a local vector current at either
end to form the vector meson f . The end point is summed over spatial sites on a timeslice to set
the spatial momentum to zero. We use the random colour wall source created from a set of U(1)
random numbers over a timeslice for improved statistics. The local current is not the conserved
vector current for HISQ quark action and must be renormalised. We have found the local vector
current renormalisation constant (ZV,ss) completely non-perturbatively with 0.1% uncertainty on
the finest ml = ms/5 lattice[16].

4. Our results

4.1 properties of f meson

We are concerned with the properties of the correlation function at the shorter times that feed
into the theoretical determination of aµ,HVP. But at large time separations between source and sink
the correlators give the mass (mf ) and decay constant ( ff ) of the f meson [16]. The plots in figure 3
show how precisely we can extract those properties of the f meson, and therefore, how accurate
our correlators are. Our results for mf � mhs and ff in the continuum limit on the physical point
lattices agree with the experimental result related to G(f ! e+e�). The volume effect seemed
to be negligibly small. But, the valence HISQ strange quark mass tuning effect was significant.
Disconnected diagrams are not included in the calcualtion, but we expect really small contribution
from it.

4.2 Connected contributions to as
µ from full LQCD

We fit the results of as
µ using [2,2] Padé approximant from each configuration set to a function

of the form

as
µ,lat = as

µ ⇥
�
1+ ca2(aLQCD/p)2 + cseadxsea + cvaldxval

�

4
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Figure 3: The plot on the left represents the results for mf �mhs calculated using HISQ formalism on ml =
ms/5 and physical point ensembles with varied lattice spacings and extrapolated to a = 0. The continuum
results are compared to the experimental result related to G(f ! e+e�). The plot on the right shows the
similar results for ff .

The s quark propagators are combined into a correlator with a local vector current at either
end to form the vector meson f . The end point is summed over spatial sites on a timeslice to set
the spatial momentum to zero. We use the random colour wall source created from a set of U(1)
random numbers over a timeslice for improved statistics. The local current is not the conserved
vector current for HISQ quark action and must be renormalised. We have found the local vector
current renormalisation constant (ZV,ss) completely non-perturbatively with 0.1% uncertainty on
the finest ml = ms/5 lattice[16].

4. Our results

4.1 properties of f meson

We are concerned with the properties of the correlation function at the shorter times that feed
into the theoretical determination of aµ,HVP. But at large time separations between source and sink
the correlators give the mass (mf ) and decay constant ( ff ) of the f meson [16]. The plots in figure 3
show how precisely we can extract those properties of the f meson, and therefore, how accurate
our correlators are. Our results for mf � mhs and ff in the continuum limit on the physical point
lattices agree with the experimental result related to G(f ! e+e�). The volume effect seemed
to be negligibly small. But, the valence HISQ strange quark mass tuning effect was significant.
Disconnected diagrams are not included in the calcualtion, but we expect really small contribution
from it.

4.2 Connected contributions to as
µ from full LQCD

We fit the results of as
µ using [2,2] Padé approximant from each configuration set to a function

of the form

as
µ,lat = as

µ ⇥
�
1+ ca2(aLQCD/p)2 + cseadxsea + cvaldxval

�

4
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4

TABLE II. Upper table: Results for ⇡ energies in lattice units at the di↵erent spatial momenta used on each set, as well
as the corresponding amplitudes from the 2-point functions. The values given here come from the simultaneous fit of 2-point
correlators with 3-point correlators containing a vector current. Results for 2-point parameters from the fit of 2-point correlators
with 3-point correlators including a scalar current are in agreement. ⇡ results at zero momentum agree with those in [3, 29],
but are not the same because the fits used here also include 3-point functions.
Lower table: Results for unrenormalised form factors at q2 values corresponding to di↵erent combinations of ⇡ momenta (from
the upper table) at source and sink. The results at q2 = 0 come from using the lowest non-zero spatial momentum for both p

1

and p
2

. The scalar form factor results given are for the connected 3-point function only.

Set pa aE⇡ a3/2b pa aE⇡ a3/2b pa aE⇡ a3/2b
1 0.0 0.10167(5) 0.4845(3) 0.0623 0.11921(6) 0.4465(2) 0.2490 0.2669(9) 0.2936(14)
2 0.0 0.08159(3) 0.35773(15) 0.05 0.09569(4) 0.32981(14) 0.16482 0.1840(2) 0.2375(3)

0.2 0.2161(4) 0.2193(5)
3 0.0 0.05720(3) 0.23272(15) 0.0363 0.06767(4) 0.21397(13) 0.1451 0.1546(5) 0.1400(5)

Set q2a2 f
+

(q2)/ZV f conn

0

(q2)/ZS q2a2 f
+

(q2)/ZV f conn

0

(q2)/ZS q2a2 f
+

(q2)/ZV f conn

0

(q2)/ZS

1 0.0 0.837(3) 2.163(6) -0.0036 0.832(4) 2.143(4) -0.0346 0.761(8) 1.98(2)
-0.0751 0.678(10) 1.82(2)

2 0.0 0.852(2) 1.769(3) -0.0023 0.847(3) 1.753(2) -0.0054 0.838(4) 1.719(6)
-0.0167 0.797(3) 1.656(5) -0.0220 0.782(4) 1.623(7) -0.0384 0.731(5) 1.542(7)
-0.0480 0.702(8) 1.500(8)

3 0.0 0.841(2) 1.330(4) -0.0012 0.842(4) 1.321(3) -0.0116 0.775(7) 1.210(10)
-0.0254 0.692(8) 1.125(10)

0.6

0.7

0.8

0.9

1

1.1

1.2

�0.25 �0.2 �0.15 �0.1 �0.05 0

f +
(q

2

)

q2 [GeV2]

expt, NA7
expt fit
very coarse
coarse
fine
lattice fit

FIG. 3. Lattice QCD results for the vector form factor on
each ensemble compared directly to the experimental results
from [1]. Fit curves for both experiment and lattice QCD
results are given to a ‘monopole’ form.

Table II also gives the raw (unrenormalised) form fac-
tors for various q2 values obtained from di↵erent combi-
nations of momenta (in positive and negative) directions
at source and sink. The statistical errors on the form
factors are 0.5-3%. By dividing the values at non-zero q2

by the value at q2 = 0 we obtain normalised values for
f
+

. f
+

is plotted against q2 in Fig. 3 for all three sets
along with the results from experiment [1]. The agree-
ment with experiment is good, reflecting the fact that
our results correspond to physical ⇡ masses.

In fitting a functional form in q2 to our results to ex-
tract a mean squared radius, we use the same form as
that used for the experimental results [1], but including
allowance for finite lattice spacing e↵ects. We also fit

over a similar range of q2 values. We use:

f(q2) =
1

1 + c
a

2(⇤a)2 + c
a

4(⇤a)4 � hr2iq2/6
(6)

(note that q2 is negative), where

hr2i
V

(a, �m
sea

, m
⇡

) = (7)

hr2i
V


1 + b

a

2(⇤a)2 + b
a

4(⇤a)4 +
b
sea

�m
sea

10m
s,phys

�

� 1

⇤2

�

ln

✓
m2

⇡

m2

⇡,phys

◆
.

Here c
a

n and b
a

n allow for discretisation e↵ects in the
normalisation of f

+

and in hr2i respectively. We take
⇤ = 500 MeV and allow priors on the b and c fit pa-
rameters of 0.0(1.0) for b

a

4 and c
a

4 and 0.0(0.3) on b
a

2

and c
a

2 (since tree-level a2 errors are absent in this cal-
culation). We allow a prior width on the physical result
for the mean squared radius, hr2i

V

of 25%. The term
with coe�cient b

sea

allows for mistuning of sea quark
masses. From chiral perturbation theory a term linear in
the quark masses is expected, and it is convenient to take
this term as a ratio to another quark mass so that factors
of the quark mass renormalisation cancel. The factor of
10 multiplying m

s,phys

gives a value close to the chiral
scale, ⇤

�

. The mistuning of the sea masses is defined asP
u,d,s

(m
q

� mtuned

q

) and values of �m
sea

/m
s,phys

values
for these ensembles are tabulated in [30]. The values are
all less than 0.05, but not zero because of mistuning of
the sea s quark mass.

The final logarithmic term in eq. (7) comes from chiral
perturbation theory [4] and is the source of the diver-
gence in the radius as m

⇡

! 0. We use it, rescaling
the argument of the logarithm so that it vanishes at the

9

so that both the connected and disconnected contribu-
tions include uu + dd. Since we only have a calculation
of the disconnected pieces on coarse set 2 we use a simple
approach to determining the change in the mean square
radius, using a linear approximation to the form factor
over the small q2 range (0 to -0.0315 GeV2) covered by
the disconnected results. This has the advantage of mak-
ing clear how the disconnected contributions a↵ect the
result. They appear both in the value of the total form
factor at q2 = 0 which is used for the normalisation and
they contribute to the slope of the form factor in q2. As
discussed above, the e↵ect on the form factor at q2 = 0
is very small (1%) and the largest e↵ect comes from the
contribution to the slope. We have, comparing the form
factor at q2 to that at 0,

|q2|
6

hr2i =
|q2|
6

hr2i
conn

(1 + f
disc

(0)/f
conn

(0))�1 (16)

+
f
disc

(0) � f
disc

(q2)

f
conn

(0)
(1 + f

disc

(0)/f
conn

(0))�1.

The second term makes a large contribution to the mean
square radius because the change in the disconnected
contribution to the form factor over the range in q2 (de-
pending on the combination of flavours) is of the same
size as that of the connected contribution included in
hr2i

conn

. We find, for example, that the change in mean
square radius is 50(20)% for the singlet combination.

For the singlet and octet combinations we obtain:

hr2i(⇡)

S,singlet

= 0.506(38)(53) fm2, (17)

hr2i(⇡)

S,octet

= 0.431(38)(46) fm2.

Here the first error is statistical and comes from adding
in the disconnected contribution. The second error is sys-
tematic from electromagnetic/isospin and finite volume
e↵ects as discussed in Section II B 1 for the connected
scalar radius. The full error budget for the singlet/octet
radius is given in Table III.

For comparison with earlier work on configurations
that include only u and d quarks in the sea we can con-
struct a radius that corresponds to the form factor for a
uu + dd scalar current. We find

hr2i(⇡)

S,ud

= 0.481(37)(50) fm2. (18)

As eq. (16) makes clear, the results for the di↵erent
scalar radii are correlated. The di↵erences between them
are significant since a lot of the uncertainty cancels. For
example

hr2i(⇡)

S,singlet

� hr2i(⇡)

S,octet

= 0.075(20) fm2. (19)

We find the ordering:

hr2i(⇡)

S,singlet

> hr2i(⇡)

S,ud

> hr2i(⇡)

S,octet

> hr2i(⇡)

S,conn

. (20)
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FIG. 9. A summary of lattice QCD results for the mean
square electric charge radius of the ⇡ meson arranged by the
number of quark flavours included in the sea. The top result
is from this paper; those including u, d, and s quarks in the
sea (nf = 2 + 1) are from [9–11] and those including only
u and d quarks in the sea (nf = 2) are from [5–8]. Results
that include only one value of the lattice spacing have dotted
error bars. Experimental results are from [1, 41–44]. The
hashed vertical line gives the average from the Particle Data
Group [35].

III. DISCUSSION

Figure 9 compares the result obtained in this paper
for the mean square of the pion electric charge radius to
other lattice QCD calculations by RBC/UKQCD [11],
PACS-CS [10], the Mainz group [7], QCDSF [5],
ETMC [6] and JLQCD/TWQCD [8, 9], and to experi-
mental results [1, 41–44]. It should be noted that several
of these calculations include results at only one value of
the lattice spacing and error budgets are not complete in
all cases. A recent calculation by B. Owen et. al. [46]
used one lattice spacing and five di↵erent pion masses
down to 156 MeV but no chiral or continuum extrapola-
tion is given so the results are not included in the figure.

The calculation presented in this paper is the first one
that has been done at the physical pion mass — other
lattice QCD calculations have used heavier than physi-
cal pions. However, as Figure 9 shows, all lattice QCD
results agree well after extrapolation to zero lattice spac-
ing and physical pion mass. We see no di↵erence between
the lattice calculations using di↵erent sea quark content
(u and d only, u, d and s, or u, d, s and c quarks in the
sea) at this level of accuracy. In Figure 3 we compare the
shape of the electromagnetic form factor from our calcu-

1511.07382
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ηs Form Factor at High q2

3

direction to minimise discretisation e↵ects. We use ⌘s

mesons made with the local �

5

(Goldstone) operator; in
staggered quark parlance this corresponds to spin-taste
�

5

⌦ �

5

[33]. For our 3-point correlation functions we use
a 1-link temporal vector current with spin-taste �

0

⌦ 1.
We fit 2- and 3-point correlators simultaneously using

Bayesian methods [41] to constrain fit parameters and
determining the covariance between results at di↵erent
Q

2 values. The fit forms are [30, 36]

C

2pt(~p) =
X

i
b

2

i (p)f(Ei(p), t0) + o.p.t.

C

3pt(~p,�~p) =
X

i,j

⇥
bi(p)f(Ei(p), t)Jij(Q

2)bj(p) ⇥

f(Ej(p), T � t)
⇤
+ o.p.t.

f(E, t) = e

�Et + e

�E(Lt�t) (3)

The HISQ action gives opposite parity terms (o.p.t.) for
⌘s mesons at non-zero momentum; they are similar to the
terms given explicitly above but with factors of (�1)t0/a.
The fit parameters are chosen to be the log of the ground-
state energy, E

0

, and the log of energy di↵erences be-
tween the (ordered) excitations, i. For our kinematic
set-up F⌘s(Q

2) = J

00

(Q2)/J

00

(0), with J

00

the ground-
state to ground-state amplitude. The division by J

00

(0)
provides the normalisation of the lattice current.

We use priors of 800 ± 400 MeV for the energy split-
ting between successive excitations and prior widths on
amplitudes bi and Jij of at least 2 times the ground-state
value. We take results from fits that include 6 exponen-
tials where ground-state values and their uncertainties
have stabilised and we have checked that the prior widths
have only a minor impact on these uncertainties. Results
for the form factor are given in the supplementary ma-
terials and Q

2

F (Q2) is plotted in Figure 2. Results on
di↵erent ensembles lie close to each other, showing that
e↵ects from discretisation and di↵erent u/d masses are
very small. Further tests of discretisation e↵ects are re-
ported in the supplementary materials. Note that the
finer lattices have larger reach in Q

2 than the coarse.
To determine the form factor in the physical continuum

limit we must extrapolate in the lattice spacing and sea
u/d quark mass. We do this by a method which is now
standard for semileptonic weak form factors (see [43] for
a recent review), mapping the domain of analyticity in
t = q

2 onto the unit circle in z. Since z < 1 we can then
perform a power series expansion in z. We take [44]

z(t, t
cut

) =

p
t

cut

� t �
p

t

cutp
t

cut

� t +
p

t

cut

(4)

where t

cut

in our case is equal to 4M

2

K . We choose the
point that maps to z = 0 to be q

2 = 0, for simplic-
ity; this gives z

max

of 0.46 at Q

2 = 6 GeV2, well below
1. Rather than F (Q2) we work with P�(Q2)F (Q2), us-
ing P�(Q2) = (1 + Q

2

/M

2

�). The product P�F has re-

duced z-dependence because P

�1

� is a good match to the
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FIG. 2: Lattice QCD results for the vector form factor of
the ⌘s meson, multiplied by Q2 to focus on the large Q2 be-
haviour, plotted as a function of Q2. From coarse to fine:
set 1 results are given by green pluses, set 2 by blue crosses,
set 3 by blue bursts and set 4 by red triangles. Error bars
include statistical/fit errors and uncertainties from the lattice
spacing correlated between points. The black dashed line and
grey band (for ±1�) give the physical-point curve discussed in
the text. The green dashed line marked ‘pole’ gives the pole
form (P�1

� ), for comparison. The orange dotted line marked
‘PQCD 1’ gives the asymptotic perturbative QCD prediction
and that marked ‘PQCD 2’ includes non-asymptotic correc-
tions to the distribution amplitude discussed in the text.

form factor at small Q

2 (the � being the ss vector me-
son) and it has the correct Q

�2 dependence at large Q

2

(but the wrong value: see Figure 2). To combine a z-
expansion with lattice QCD results we simply allow the
coe�cients in the expansion to have independent a- and
m

sea

-dependence. Adapting the method from [45], we
use the fit function

P�F (z, a, m

sea

) = 1 + (5)
i
maxX

i=1

z

i
Ai


1 + Bi(a⇤)2 + Ci(a⇤)4 + Di

�m

10

�
.

Note that the lattice ‘data’ on the left-hand-side include
correlations between results. The coe�cients Bi and Ci

account for discretisation e↵ects; we take ⇤ = 1 GeV
⇡

p
t

cut

to allow for (pa)2 and (pa)4 terms in F . Note
that, by definition, there are no z-independent discreti-
sation errors. Di accounts for the heavier-than-physical
quark masses in the sea, using �m =

P
u,d,s(mq �

m

tuned

q )/m

tuned

s [29] and dividing by a factor of 10 to
convert this to a suitable chiral perturbation theory ex-
pansion parameter. We take priors on the Bi, Ci and Di

of 0.0(1.0) but on B

1

of 0.0(5), because leading a

2 errors
are suppressed by ↵s in the HISQ formalism [33]. For
the Ai, the coe�cients of the z-expansion in the contin-
uum and chiral limits, we take priors of 0.0(2.0), twice as
conservative as the Bayesian probability function would

ηs = pion whose valence 
quarks have mass ms. 

•Rescale by (fπ/fηs)2 to 
obtain estimate for pion 
form factor at q2=6. 

•New perturbative QCD 
tests; important, e.g., 
for B→π ℓν. 

•Demo/prep for (much 
more costly) analysis of 
K and π form factors.

[Koponen et al (HPQCD) 1701.04250]
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SUPPLEMENTAL MATERIALS

RESULTS

Table I gives our results for the form factor obtained
from simultaneous fits to our 2pt- and 3pt-functions on
each ensemble as described in the main text. These are
the results plotted in Figure 2 of the main text.

Table II gives the values of the vector current renor-
malisation factor for each ensemble inferred from electric
charge conservation at Q2 = 0. These show the expected
qualitative behaviour, slowly falling towards 1 on finer
lattices.

In Figure 1 we show how the statistical error in the
form factor result grows with Q2. The results from dif-
ferent lattice spacing values (for approximately the same
number of configurations and spatial lattice volume) ap-
pear to lie on a universal curve as a function of Q2(aQ)2.
The curve is approximately quadratic, showing that un-
certainties degrade rapidly at large pa values. However
the same Q can be reached with smaller pa on finer lat-
tices, moving down the curve. The plot helps to predict
the statistical accuracy that will be obtained from calcu-
lations on other lattices using the same (Breit) frame.
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FIG. 1: The statistical uncertainty that we obtain in the form

factor plotted as a function of Q2
(Qa)2 for sets 1, 2 and 4.

For set 2 at pa = 0.6 we have adjusted the error to be that

for one spatial momentum direction (instead of 4) to match

the statistics of the other points. Note that these results use

the Breit frame.

PARAMETERS OF THE FIT FUNCTION

We give below the values of the fitted parameters and
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Conclusions



• Lattice QCD now a standard tool for strong interaction 
physics, both theoretical and experimental. 

- Most accurate strong-interaction calculations in history. 

- Landmark in history of quantum field theory: high-precision 
quantitative verification of nonperturbative technology (for a real 
theory). 

- Essential for weak interaction phenomenology, Beyond the 
Standard Model physics, … — QCD backgrounds. 

- New source of “data”. 

• Problems that remain: hadronization of jets, quark matter, 
axial gauge theories, SUSY … 

- Need methods that don’t rely upon Monte Carlo integration.


