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Parton Densities and Matrix element

Experimentally, one works with hadrons

Theoretically, we work with quarks

Hadron to Parton Transition

p p

0z. .

M(−(pz),−z2)

Can be described in momentum or coordinate space

Concept of PDFs does not rely on spin complications

〈p|φ(0)φ(z)|p〉 =M(−(pz),−z2)

Lorentz: 〈p|φ(0)φ(z)|p〉 depends on z through (pz) and z2
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Pseudo-PDF

p p

0z. .

M(−(pz),−z2)

Pseudo-PDF P(x,−z2): Fourier transform with respect to (pz)

M(−(pz),−z2) =

∫ 1

−1

dx e−ix(pz) P(x,−z2)

Should be valid in general for a very wide class of functions

Non-trivial: limits of integration over x

Support region is dictated by properties of Feynman diagrams

Is determined by denominators of propagators

Not affected by numerators present in non-scalar theories
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Ioffe-time distribution

p p

0z. .

M(−(pz),−z2)

M(−(pz),−z2) =

∫ 1

−1

dx e−ix(pz) P(x,−z2)

(pz) ≡ −ν is Ioffe time [(pz) = Mz0 in rest frame p = {M, 0, 0, 0}]
M(ν,−z2) is Ioffe-time distribution

M(ν,−z2) =

∫ 1

−1

dx eixν P(x,−z2)

Inverse transformation

P(x,−z2) =
1

2π

∫ ∞
−∞

dν e−ixνM(ν,−z2)

We do not need here z2 = 0 or p2 = 0
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Collinear Parton Distribution

p p

0z. .

M(−(pz),−z2)

Take light-like z = z−: collinear parton distribution f(x) = P(x, 0)

M(−p+z−, 0) =

∫ 1

−1

dx f(x) e−ixp+z−

Usual interpretation: parton carries fraction x of hadron p+

z2 → 0 nontrivial in QCD, sinceM(ν, z2) has ∼ ln z2 singularities

Reflect perturbative evolution of parton densities

Within OPE, ln z2 singularities are subtracted,
e.g., by dimensional renormalization ln(1/z2)→ lnµ2

Resulting PDFs depend on renormalization scale µ,
f(x)→ f(x, µ2)

In P(x,−z2) pseudo-PDFs, 1/z2 serves as cut-off scale
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TMDs and quasi-PDFs

Treat target momentum p as longitudinal p = (E,0⊥, P )

Take z with z− and z⊥ = {z1, z2} components (z+ = 0),
then (pz) = p+z− ≡ −ν; define TMD

M(ν, z2
⊥) =

∫ 1

−1

dx eixν
∫ ∞
−∞

d2k⊥ e
−i(k⊥z⊥)F(x, k2

⊥)

Parton carries xp+ and has transverse momentum k⊥

Rotational invariance in z⊥ plane: this TMD depends on k2
⊥ only

Take z = {0, 0, 0, z3}, define Quasi-PDF

〈p|φ(0)φ(z3)|p〉 ≡ M(Pz3︸︷︷︸
ν

, z2
3︸︷︷︸

ν2/P2

) =

∫ ∞
−∞

dy eiyPz3 Q(y, P )

Inverse Fourier transformation

Q(y, P ) =
1

2π

∫ ∞
−∞

dν e−iyνM(ν, ν2/P 2)

Q(y, P ) tends to f(y) in P →∞ limit, as far as
M(ν, ν2/P 2)→M(ν, 0).
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Quasi-PDFs vs Pseudo-PDFs

P1

P2

P3

ν

z3

Quasi-PDFs Q(y, P ): integration ofM(ν, z2
3) over z3 = ν/P lines

Becomes horizontal z3 = 0 line in P →∞ limit→ PDF

Q(y, P ) has perturbative evolution wrt P for large P

Support region −∞ < y <∞
Psedo-PDFs: integration ofM(ν, z2

3) over z3 =const lines

Always has −1 ≤ x ≤ 1 support

P(x, z2
3) has perturbative evolution wrt 1/z3 for small z3

∼ PDF f(x,C2/z2
3) for small z3

C = matching coefficient, CMS = 2e−γE ≈ 1.12
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Relations between quasi-PDFs and TMDs

Write definition of quasi-PDF

Q(y, P ) =
1

2π

∫ ∞
−∞

dν e−iyνM(ν, ν2/P 2)

Write definition of TMDs

M(ν, z2
1 + z2

2) =

∫ 1

−1

dx eixν
∫ ∞
−∞

dk1dk2 e
−ik1z1−ik2z2F(x, k2

1 + k2
2)

Take z1 = 0, z2 = ν/P and combine expressions to get

Q(y, P )/P =

∫ 1

−1

dx

∫ ∞
−∞

dk1F(x, k2
1 + (y − x)2P 2)

Introduce momentum distributions in k3 ≡ yP

R(k3, P ) = Q(k3/P, P )/P =

∫ 1

−1

dxR(x, k3 − xP )

R(x, k3) is TMD F(x, κ2) integrated over k1

R(x, k3) ≡
∫ ∞
−∞

dk1F(x, k2
1 + k2

3)



Quasi &
Pseudo

Parton
Distributions
Matrix element

Pseudo-PDF

Ioffe-time

Collinear PDF

TMD

Quasi-PDF

Relations

Momentum
distributions

Factorized models

Numerical results

Small P

Large P

QCD

Factorizable pPDF

Evolution

Nonfactorizable case

Summary

P1

P2

P3

ν

z3

Momentum distributions

Convolution nature of quasi-PDFs

R(k3, P ) = Q(k3/P, P )/P =

∫ 1

−1

dxR(x, k3 − xP )

Take hadron at rest, p = {M, 0, 0, 0}

R(k3, P = 0) ≡ r(k3) =

∫ 1

−1

dxR(x, k3)

1D distribution obtained from density
M(0, z2

3) = 〈p|φ(0)φ(z3)|p〉|p=0

M(0, z2
3) =

∫ ∞
−∞

dk3 r(k3) eik3z3

r(k3) = primordial distribution of k3 in rest frame
In moving hadron, parton momentum k3 = xP + (k3 − xP ) comes
a) from motion of hadron as a whole (part xP )
governed by x-dependence of TMD F(x, κ2)
b) remaining part k3 − xP governed by κ2 dependence of TMD
reflecting primordial rest-frame distribution



Quasi &
Pseudo

Parton
Distributions
Matrix element

Pseudo-PDF

Ioffe-time

Collinear PDF

TMD

Quasi-PDF

Relations

Momentum
distributions

Factorized models

Numerical results

Small P

Large P

QCD

Factorizable pPDF

Evolution

Nonfactorizable case

Summary

P1

P2

P3

ν

z3

Factorized distributions

Two sources of k3 “look” independent

Try factorized model

Rfact(x, k3 − xP ) = f(x)r(k3 − xP )

(x integral of f(x) is normalized to 1)

For originalM(ν,−z2) function, this Ansatz corresponds to

Mfact(ν,−z2) =M(ν, 0)M(0,−z2)

Popular idea: Gaussian dependence of TMD on k⊥. Gives

rG(k3) =
1√
πΛ

e−k
2
3/Λ

2

, density : rG(z3
3) = e−z

2
3Λ2/4

Factorized Gaussian model for momentum distribution

Rfact
G (k3, P ) =

1

Λ
√
π

∫ 1

−1

dx f(x) e−(k3−xP )2/Λ2
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Numerical results for Gaussian model

Take simple PDF f(x) = 4(1− x)3θ(0 ≤ x ≤ 1)
resembling valence quark distributions

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

R(k, P )

k/Λ

P = Λ

P = 10Λ

P = 50Λ

Changes from a Gaussian shape (for small P )
to a shape resembling stretched PDF (for large P )
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Small Momenta P

Small-P approximation (x̃ = average x, in our model x̃ = 0.2)

R(k3, P ) =

∫ 1

−1

dx f(x) r(k3 − xP ) ≈ r(k3 − x̃P )

-2 -1 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

R(k, P )

k/⇤

P = 0 P = ⇤

P = 2⇤

P = 5⇤

P = 10⇤
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Large Momenta P

For large P

rG(k3 − xP ) =
1√
πΛ

e−(k3−xP )2/Λ2

→ 1

P
δ(x− k3/P )

Combination P R(k3, P ) in large P limit converts into
f(k3/P ) = f(y)

For finite P , we have P R(k3, P ) = Q(y = k3/P, P )

-1.0 -0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y

Q(y, P )

P = Λ

P = 50Λ

P = 10Λ
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QCD case

Matrix element in QCD

Mα(z, p) ≡ 〈p|ψ̄(0) γα Ê(0, z;A)ψ(z)|p〉

with standard 0→ z straight-line gauge link Ê(0, z;A)

Decompose into pα and zα parts

Mα(z, p) = 2pαMp(−(zp),−z2) + zαMz(−(zp),−z2)

For TMD: take z = (z−, z⊥) and α = +⇒ zα-part drops out

TMD F(x, k2
⊥) is related toMp(ν, z

2
⊥) by scalar formula

For quasi- PDF: take time component ofMα(z = z3, p) and define

M0(z3, p) = 2p0

∫ 1

−1

dy Q(y, P ) eiyPz3

⇒ Quasi-PDF Q(y, P ) is related to TMD F(x, k2
⊥) by scalar formula
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Pseudo-PDFs and Ioffe-time distributions

P1

P2

P3

ν

z3

Quasi-PDFs Q(y, P ): integration ofM(ν, z2
3) over z3 = ν/P lines

Have x-convolution structure even ifM(ν, z2
3) factorizes, i.e.,

M(ν, z2
3) =M(ν, 0)M(0, z2

3)

FitM(Pz3, z
2
3) byM(ν, z2

3) (K. Orginos) and take reduced function

M(ν, z2
3) ≡ M(ν, z2

3)

M(0, z2
3)

In factorized case, givesM(ν, 0)
⇒ take its Fourier transform to get PDF f(x)

Bonus: z2
3-dependence due to self-energy of gauge link

cancels in ratio (K. Orginos)
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Evolution of Ioffe-time distributions

LO Evolution equation (Braun et al. 1994) for Ioffe-time distribution

d

d ln z2
3

M(ν, z2
3) =

αs
2π

CF

∫ 1

0

duB(u)M(uν, z2
3)

Nonsinglet evolution kernel

B(u) =

[
1 + u2

1− u

]
+

Valence f(x) = 4(1− x)3 corresponds to
M(ν, 0) = 12

[
ν2 − 4 sin2(ν/2)

]
/ν4

5 10 15 20

-1.0

-0.5

0.5

1.0

⌫

M(⌫, 0)

B ⌦ M(⌫)

No perturbative evolution forM(0, z2
3) [vector current is conserved]
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Nonfactorizable case, evolution

In reality: M(ν, z2
3) will have residual z2

3-dependence from
a) perturbative evolution visible as ln(1/z2

3Λ2) spike for small z2
3

Take for illustration Psoft(x, z2
3) = f(x)e−z

2
3Λ2/4

(corresponding to TMD F soft(x, k2
⊥) = f(x)e−k

2
⊥/Λ

2

/πΛ2)
and αs/π = 0.1 for hard part ∼ Γ[0, z2

3Λ2/4]

M(⌫, z2
3)

⌫ = 1

1 2 3 4

0.2

0.4

0.6

0.8

1.0

⌫ = 5

⌫ = 10

⌫ = 20 z3⇤

If Λ = 300MeV we have z3Λ = 1.5 for z3 = 1 fm
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Nonfactorizable case, soft

M(ν, z2
3) may also have residual z2

3-dependence from
b) violation of factorization for soft part

Take for illustration Psoft(x, z2
3) = f(x)e−x(1−x)z23Λ̃2/4

F soft(x, k2
⊥) = f(x)e−k

2
⊥/x(1−x)Λ̃2

/[πx(1− x)Λ̃2])

To have the same 〈k2
⊥〉 we need Λ̃2 = 15

2
Λ2

z2
3⇤

2

⌫ = 5

M(⌫, z2
3)

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
⌫ = 1

⌫ = 10

⌫ = 20

z2
3Λ2 = 2.25 for z3 = 1 fm
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Summary

Quasi-PDFs are hybrids of PDFs and primordial rest-frame
momentum distributions

Complicated convolution nature of quasi-PDFs necessitates
p3 & 3 GeV to wipe out primordial effects

Alternative approach is to use pseudo-PDFs P(x, z2
3)

related by Fourier transform to Ioffe-time distributionsM(ν, z2
3)

Pseudo-PDFs have same −1 ≤ x ≤ 1 support as PDFs

Their z2
3-dependence for small z2

3 is governed
by a usual evolution equation

Using ratioM(ν, z2
3)/M(0, z2

3) of Ioffe-time distributions one
divides out z2

3-dependence of primordial rest-frame distribution

Ratio excludes z2
3-dependence

coming from gauge link self-energy corrections
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Primordial TMDs

QCD operator Oα(0, z;A) involves straight-line link

Our TMD differs from stapled-link TMDs
used in Drell-Yan and SIDIS processes

Stapled links reflect initial or final state interactions
inherent in these processes

The “straight-link” TMDs describe structure of a hadron
in non-disturbed or “primordial” state

Unlikely that such a TMD can be measured
in a scattering experiment

Still, it is a well-defined quantum field theory object

Hopefully can be measured on the lattice
through its connection to pseudo-PDFs
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