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Systematic Uncertainties
• Non-zero lattice spacing and continuum limit a → 0 
• Finite volume V →∞ 
• mπ → mπphys 

• Number of quark flavors 

• Isolating ground states
• Nucleon Charges
• Nucleon Charge Radius



Precision Calculations 
of Nucleon Charges



Hadron Structure
M Constantinou, arXiv:1511.00214

• Governs beta-decay rate 
• Important for proton-proton fusion 

rate in solar models 
• Benchmark for lattice QCD 

calculations of hadron structure

e.g. novel interactions probed in ultra-
cold neutron decay
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Calculation of Physics Observables

Our paradigm: nucleon mass

Noise: 

whence 
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Excited States: Smearing Radii
Yoon et al., Phys. Rev. D 93, 114506 (2016)

me↵ = lnC(t)/C(t+ 1) ! E0



Construct matrix of correlators: different smearing radii

Variational Method

Delineate contributions using variational method: solve

Eigenvectors, with metric C(t0), are orthonormal and project onto the 
respective states

Subleading terms ➙ Excited states
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Nucleon Mass - II

Variational method: single-state domination 
nearer source 
increase signal-to-noise 

me↵ = lnC(t)/C(t+ 1) ! E0

}
Variational

Fixed Smearing



Variational Method

Grey Band : tsep ! 1
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Variational Comparison - II



Variational - III

Controlling excited states essential for precision calculations!



Renormalized Charges

ID Lattice Theory a fm M⇡(MeV) gu�d
A gu�d

S gu�d
T gu�d

V

a127m285 2+1 clover-on-clover 0.127(2) 285(6) 1.249(28) 0.89(5) 1.023(21) 1.014(28)
a12m310 2+1+1 clover-on-HISQ 0.121(1) 310(3) 1.229(14) 0.84(4) 1.055(36) 0.969(22)
a094m280 2+1 clover-on-clover 0.094(1) 278(3) 1.208(33) 0.99(9) 0.973(36) 0.998(26)
a09m310 2+1+1 clover-on-HISQ 0.089(1) 313(3) 1.231(33) 0.84(10) 1.024(42) 0.975(33)
a091m170 2+1 clover-on-clover 0.091(1) 166(2) 1.210(19) 0.86(9) 0.996(23) 1.012(21)
a09m220 2+1+1 clover-on-HISQ 0.087(1) 226(2) 1.249(35) 0.80(12) 1.039(36) 0.969(32)
a09m130 2+1+1 clover-on-HISQ 0.087(1) 138(1) 1.230(29) 0.90(11) 0.975(38) 0.971(32)

Consistency between different actions Matrix Elements of 1st excited state?

Yoon et al., Phys. Rev. D 95, 074508 (2017)

arXiv:1704.01114, Berkowitz et al

Feynman-Hellman Method proceeds through looking at variation of a spectral function w.r.t external current.

@En
@� = hn | H� | ni where H = H0 + �H�

See talk by K. Orginos



Nucleon Charge Radius

Bouchard, Chang, Orginos, Richards, PoS LATTICE2016 (2016) 170



Proton EM form factors
• Nucleon Pauli and Dirac Form Factors described in 

terms of matrix element of vector current
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
Fq(q

2)�µ + �µ⌫q⌫
F2(q2)

2mN

�
u(~pi)

• Alternatively, Sach’s form factors determined in 
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EM Form factors
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2.2 Proton Form-Factor Ratio Measurements up to Q2= 12 GeV2 using Recoil Polarization

Introduction The experiment GEp (E12-07-109) was approved by PAC32 in August of 2007 and was
the experiment that provided the original motivation for the Super Bigbite Spectrometer. It will measure
the Sachs Form Factors ratio Gp

E/Gp
M of the proton using the polarization-transfer method in the reaction

p(�e, e��p). The polarization of the recoil proton will be measured using a large-acceptance spectrometer,
based on the Super Bigbite magnet, that will incorporate a double polarimeter instrumented with GEM
trackers and a highly-segmented hadron calorimeter.

The electron will be detected in coincidence by a electromagnetic calorimeter that is sometimes referred
to as “BigCal”. PAC35 allocated 45 days of beam time for the proposed measurement and recommended a
maximum value of Q2 = 12 GeV2.

These parameters were used to readjust the original plan of measurements which will be made at three
values of Q2 : 5, 8, and 12 GeV2 , while achieving an error in the ratio Gp

E/Gp
M of 0.07. The projected results

are shown in Fig 3, in which we show results from earlier Gp
Emeasurements, and the anticipated errors for the

present GEp experiment. The excellent precision that GEp will obtain even at 12 GeV2 is clearly evident.
Additional measurements at even higher values of Q2 will be evaluated after SBS commissioning.

Figure 3: Gp
E/Gp

M existing measurements and expected statistical accuracy for the GEp experiment. The
projected errors for the measurements made with the Super Bigbite Spectrometer are indicated by the filled
blue squares, corresponding to 45-day run with the recommended highest value of momentum transfer 12
GeV2.

Equipment A schematic representation of the experiment is shown in Fig. 4.

Q2 . 4.1 GeV2Q2 . 8.2 GeV2

LHPC, Syritsyn, Gambhir, Orginos et 
al, Lattice 2016

UKQCD, Lellouch, Richards et 
al., NPB444 (1995) 401

Nucleon Charge Radius

Direct calculation of charge 
radius through coordinate-
space moments

Boosted interpolating operators
Bali et al., Phys. Rev. D 93, 094515 (2016)Green et al, arXiv:1404.40

Differing treatment of 
Excited states



Isgur-Wise Function and CKM matrix

Lattice

Extract Vcb if know 
intercept at zero recoil

UKQCD, L. Lellouch et al., Nucl. Phys. 
B444, 401 (1995), hep-lat/9410013

Calculate slope at zero recoil..



Moment Methods

• Introduce three-momentum projected three-point function

• Now take derivative w.r.t. k2
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whence

Odd moments vanish by symmetry



Moment Methods - II

• Analogous expressions for two-point functions:
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Lowest coordinate-space moment ⇔ slope at zero 
momentum



Moment Methods - II

• Analogous expressions for two-point functions:
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Lattice Details
• Two degenerate light-quark flavors, and strange quark 

set to its physical value
a ' 0.12 fm

m⇡ ' 400 MeV

Lattice Size : 243 ⇥ 64

• To gain control over finite-volume effects, replicate in z 
direction: 24⇥ 24⇥ 48⇥ 64



Two-point correlator
ln [C2pt(t, xz)]

Any polynomial 
moment in xz 
converges 

lnC2pt(t, xz)/C2pt(t, xz + 1)

“Effective mass”



Three-point correlator
ln [C3pt(t

0
, x

0
z)]

“Effective mass”

• Spatial moments push the peak of the correlator away from 
origin 

• Larger finite volume corrections compared to regular 
correlators



Fitting the data…
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Fitting - II
• Now look at the functional form of derivatives:
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Fitting - III

In practice we use multi-
exponential, Bayesian 
fits



F1 Form Factor



Outlook
• Controlling the contribution from excited states in study of hadron 

structure is a crucial for precise and accurate calculations 
• The approach of the variational method is a powerful way of 

addressing systematic uncertainties due to excited state 
• Current basis of operators based on quasi-local sources.  Exploring 

basis that admits non-zero orbital structure
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Starting point

Introduce circular basis: 

Dudek, Edwards, arXiv:1201.2349
R.G.Edwards et al., arXiv:1104.5152

• Structure of Excited States - Raul Briceno


