Excited States and Precision Calculations of Hadron Structure

David Richards Jefferson Lab

QCD Evolution Workshop Jefferson Lab 22-26 May, 2017

Systematic Uncertainties

- Non-zero lattice spacing and continuum limit $a \rightarrow 0$
- Finite volume $V \rightarrow \infty$
- $m_{\pi} \rightarrow m_{\pi}^{phys}$
- Number of quark flavors
- Isolating ground states
 - Nucleon Charges
 - Nucleon Charge Radius

Precision Calculations of Nucleon Charges

Hadron Structure

M Constantinou, arXiv:1511.00214

- Governs beta-decay rate
- Important for proton-proton fusion rate in solar models
- Benchmark for lattice QCD calculations of hadron structure

e.g. novel interactions probed in ultracold neutron decay

Calculation of Physics Observables

Our paradigm: nucleon mass
$$C(t) = \sum_{\vec{x}} \langle N(\vec{x}, t) \bar{N}(0) \rangle = \sum_{n} |A_n|^2 e^{-E_n t}$$

Noise:
$$C_{\sigma^2}(t) = \sum_{\vec{x}} \langle \bar{N}N(\vec{x},t)\bar{N}N(0) \rangle \longrightarrow e^{-3m_{\pi}t}$$

whence $\frac{\vec{x}}{C(t)/\sqrt{C_{\sigma^2}(t)}} \simeq e^{-(m_N - 3m_{\pi}/2)t}$

Use local nucleon interpolating operators

$$[uC\gamma_5(1\pm\gamma_4)d]u$$

Replace quark field by spatially extended (smeared) quark field

$$\psi \longrightarrow (1 - \sigma^2 \nabla^2 / 4N)^N \psi$$

Excited States: Smearing Radii

Yoon et al., Phys. Rev. D 93, 114506 (2016)

ID	Method	Analysis	Smearing Parameters	t_{sep}	LP	HP
R1	AMA	2-state	$\{5, 60\}$	10,12,14,16,18	96	3
R2	LP	VAR	$\{3, 22\}, \{5, 60\}, \{7, 118\}$	12	96	
R3	AMA	VAR	$\{5, 46\}, \{7, 91\}, \{9, 150\}$	12	96	3
R4	AMA	2-state	$\{9, 150\}$	10,12,14,16,18	96	3

$$m_{\rm eff} = \ln C(t) / C(t+1) \to E_0$$

Variational Method

Subleading terms → *Excited* states

Construct matrix of correlators: *different smearing radii*

$$C_{ij}(t) = \sum_{\vec{x}} \langle N_i(\vec{x}, t) \bar{N}_j(0) \rangle = \sum_n A_n^i A_n^{j\dagger} e^{-E_n t}$$

Delineate contributions using *variational method*: solve

$$C(t)v^{(N)}(t,t_0) = \lambda_N(t,t_0)C(t_0)v^{(N)}(t,t_0).$$

$$\lambda_N(t, t_0) \to e^{-E_N(t-t_0)} (1 + \mathcal{O}(e^{-\Delta E(t-t_0)}))$$

Eigenvectors, with metric $C(t_0)$, are orthonormal and project onto the respective states

$$v^{(N')\dagger}C(t_0)v^{(N)} = \delta_{N,N}$$

Nucleon Mass - II

Variational Method

Variational Comparison - II

Variational - III

Controlling excited states essential for precision calculations!

Renormalized Charges

Feynman-Hellman Method proceeds through looking at variation of a spectral function w.r.t external current.

$$rac{\partial E_n}{\partial \lambda} = \langle n \mid H_\lambda \mid n \rangle \text{ where } H = H_0 + \lambda H_\lambda$$
 See talk by K. Orginos

Nucleon Charge Radius

Bouchard, Chang, Orginos, Richards, PoS LATTICE2016 (2016) 170

Proton EM form factors

 Nucleon Pauli and Dirac Form Factors described in terms of matrix element of vector current

 $\langle N \mid V_{\mu} \mid N \rangle(\vec{q}) = \bar{u}(\vec{p}_f) \left[F_q(q^2)\gamma_{\mu} + \sigma_{\mu\nu}q_{\nu}\frac{F_2(q^2)}{2m_N} \right] u(\vec{p}_i)$

• Alternatively, Sach's form factors determined in experiment $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$ $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$

Charge radius is slope at $Q^2 = 0$

$$\frac{\partial G_E(Q^2)}{\partial Q^2}\Big|_{Q^2=0} = -\frac{1}{6}\langle r^2 \rangle = \left.\frac{\partial F_1(Q^2)}{\partial Q^2}\right|_{Q^2=0} - \frac{F_2(0)}{4M^2}$$

EM Form factors

Green et al, arXiv:1404.40

Direct calculation of charge radius through coordinatespace moments

UKQCD, Lellouch, Richards et al., NPB444 (1995) 401

Boosted interpolating operators

Bali et al., Phys. Rev. D 93, 094515 (2016)

LHPC, Syritsyn, Gambhir, Orginos et al, Lattice 2016

Isgur-Wise Function and CKM matrix

UKQCD, L. Lellouch et al., Nucl. Phys. B444, 401 (1995), hep-lat/9410013

Moment Methods

- Introduce three-momentum projected three-point function $C^{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x}'} \left\langle N^a_{t,\vec{x}} \Gamma_{t',\vec{x}'} \overline{N}^b_{0,\vec{0}} \right\rangle e^{-ikx'_z}$
- Now take derivative w.r.t. k²

whence
$$C'_{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x}'} \frac{-x'_{z}}{2k} \sin(kx'_{z}) \left\langle N^{a}_{t,\vec{x}} \Gamma_{t',\vec{x}'} \overline{N}^{b}_{0,\vec{0}} \right\rangle$$
$$\lim_{k^{2} \to 0} C'_{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x}'} \frac{-x'^{2}_{z}}{2} \left\langle N^{a}_{t,\vec{x}} \Gamma_{t',\vec{x}'} \overline{N}^{b}_{0,\vec{0}} \right\rangle.$$

Odd moments vanish by symmetry

Moment Methods - II

• Analogous expressions for two-point functions:

$$C_{2pt}(t) = \sum_{\vec{x}} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle e^{-ikx_z}$$

$$\Rightarrow C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z}{2k} \sin(kx_z) \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle$$

$$\Rightarrow \lim_{k^2 \to 0} C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z^2}{2} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle.$$

Lowest coordinate-space moment ⇔ slope at zero momentum

Moment Methods - II

• Analogous expressions for two-point functions:

$$C_{2pt}(t) = \sum_{\vec{x}} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle e^{-ikx_z}$$

$$\Rightarrow C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z}{2k} \sin(kx_z) \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle$$

$$\Rightarrow \lim_{k^2 \to 0} C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z^2}{2} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle.$$

Lowest coordinate-space moment ⇔ slope at zero momentum

Lattice Details

• Two degenerate light-quark flavors, and strange quark set to its physical value

a	\simeq	$0.12~{ m fm}$
m_{π}	\simeq	$400 { m MeV}$
Lattice Size	:	$24^3 \times 64$

• To gain control over finite-volume effects, replicate in z direction: $24 \times 24 \times 48 \times 64$

Two-point correlator

Three-point correlator

- Spatial moments push the peak of the correlator away from origin
- Larger finite volume corrections compared to regular correlators

Jefferson Lab

Fitting the data...

$$C^{3\text{pt}}(t,t') = \sum_{n,m} \frac{Z_n^{\dagger a}(0)\Gamma_{nm}(k^2)Z_m^b(k^2)}{4M_n(0)E_m(k^2)} e^{-M_n(0)(t-t')} e^{-E_m(k^2)t'}$$

$$C_{2\text{pt}}(t) = \sum_m \frac{Z_m^{b\dagger}(k^2)Z_m^b(k^2)}{2E_m(k^2)} e^{-E_m(k^2)t}$$
where
$$Z_n^{\dagger a}(0) \equiv \langle \Omega | N^a | n, p_i = (0,0,0) \rangle$$

$$Z_m^b(k^2) \equiv \langle n, p_i = (0,0,k) | \overline{N}^b | \Omega \rangle$$

$$\Gamma_{nm}(k^2) \equiv \langle n, p_i = (0,0,0) | \Gamma | m, p_i = (0,0,k) \rangle$$

Allow for multi-state contributions in the fit

Fitting - II

• Now look at the functional form of derivatives:

Fitting - III

F₁ Form Factor

Thomas Jefferson National Accelerator Facility

Outlook

- Controlling the contribution from excited states in study of hadron structure is a crucial for precise and accurate calculations
- The approach of the variational method is a powerful way of addressing systematic uncertainties due to excited state
- Current basis of operators based on quasi-local sources. Exploring basis that admits non-zero orbital structure

• Structure of Excited States - Raul Briceno

