Excited States and Precision Calculations of Hadron Structure

David Richards Jefferson Lab

QCD Evolution Workshop Jefferson Lab 22-26 May, 2017

Systematic Uncertainties

- Non-zero lattice spacing and continuum limit $a \rightarrow 0$
- Finite volume $V \rightarrow \infty$
- $m_{\pi} \rightarrow m_{\pi}^{\text {phys }}$
- Number of quark flavors
- Isolating ground states
- Nucleon Charges
- Nucleon Charge Radius

Precision Calculations of Nucleon Charges

Hadron Structure

M Constantinou, arXiv:1511.00214

- Governs beta-decay rate
- Important for proton-proton fusion rate in solar models
- Benchmark for lattice QCD calculations of hadron structure
e.g. novel interactions probed in ultracold neutron decay

$H_{e f f} \supset G_{F}\left[\varepsilon_{S} \bar{u} d \times \bar{e}\left(1-\gamma_{5}\right) v_{e}+\varepsilon_{T} \bar{u} \sigma_{\mu \nu} d \times \bar{e} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) v_{e}\right]$
$\mathrm{g}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{S}}\langle p| \bar{u} d|n\rangle \quad \mathrm{g}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{T}}\langle p| \bar{u} \sigma_{\mu \nu} d|n\rangle$

Calculation of Physics Observables

Our paradigm: nucleon mass $\quad C(t)=\sum_{\vec{x}}\langle N(\vec{x}, t) \bar{N}(0)\rangle=\sum_{n}\left|A_{n}\right|^{2} e^{-E_{n} t}$
Noise:

$$
C_{\sigma^{2}}(t)=\sum\langle\bar{N} N(\vec{x}, t) \bar{N} N(0)\rangle \longrightarrow e^{-3 m_{\pi} t}
$$

whence

$$
C(t) / \sqrt{\vec{x}} \sqrt{C_{\sigma^{2}}(t)} \simeq e^{-\left(m_{N}-3 m_{\pi} / 2\right) t}
$$

Use local nucleon interpolating operators $\quad\left[u C \gamma_{5}\left(1 \pm \gamma_{4}\right) d\right] u$
Replace quark field by spatially extended (smeared) quark field
$\psi \longrightarrow\left(1-\sigma^{2} \nabla^{2} / 4 N\right)^{N} \psi$

Excited States: Smearing Radii

Yoon et al., Phys. Rev. D 93, 114506 (2016)

ID	Method	Analysis	Smearing Parameters	$t_{\text {sep }}$	LP	HP
R1	AMA	2-state	$\{5,60\}$	$10,12,14,16,18$	96	3
R2	LP	VAR	$\{3,22\},\{5,60\},\{7,118\}$	12	96	
R3	AMA	VAR	$\{5,46\},\{7,91\},\{9,150\}$	12	96	
R4	AMA	2-state	$\{9,150\}$	$10,12,14,16,18$	96	

Variational Method

Subleading terms \rightarrow Excited states

Construct matrix of correlators: different smearing radii

$$
C_{i j}(t)=\sum_{\vec{x}}\left\langle N_{i}(\vec{x}, t) \bar{N}_{j}(0)\right\rangle=\sum_{n} A_{n}^{i} A_{n}^{j \dagger} e^{-E_{n} t}
$$

Delineate contributions using variational method: solve

$$
\begin{aligned}
& C(t) v^{(N)}\left(t, t_{0}\right)=\lambda_{N}\left(t, t_{0}\right) C\left(t_{0}\right) v^{(N)}\left(t, t_{0}\right) \\
& \lambda_{N}\left(t, t_{0}\right) \rightarrow e^{-E_{N}\left(t-t_{0}\right)}\left(1+\mathcal{O}\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{aligned}
$$

Eigenvectors, with metric $C\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states

$$
v^{\left(N^{\prime}\right) \dagger} C\left(t_{0}\right) v^{(N)}=\delta_{N, N^{\prime}}
$$

Nucleon Mass - II

Variational Method

$$
\begin{aligned}
& \text { Fixed source smearing } \\
& C_{\Gamma}^{3 \mathrm{pt}}\left(t_{\text {sep }}, \tau\right)=\sum_{\vec{x}, \vec{y}}\left\langle N\left(\vec{x}, t_{\text {sep }}\right) \Gamma(\vec{y}, \tau) \bar{N}(0,0)\right\rangle \\
& =\left|A_{0}\right|^{2}\langle 0| \Gamma|0\rangle e^{-M_{0} t_{\text {sep }}}+ \\
& \left|A_{1}\right|^{2}\langle 1| \Gamma|1\rangle e^{-M_{1} t_{\mathrm{sep}}}+ \\
& A_{0} A_{1}^{*}\langle 0| \Gamma|1\rangle e^{-M_{0} \tau} e^{-M_{1}\left(t_{\text {sep }}-\tau\right)} \ldots \\
& \text { Grey Band : } t_{\text {sep }} \rightarrow \infty
\end{aligned}
$$

Variational Comparison - II

Variational - III

Renormalized Charges

Yoon et al., Phys. Rev. D 95, 074508 (2017)							g_{S}^{u-d}	g_{T}^{u-d}	g_{V}^{u-d}
ID	Lattice Theory			$a \mathrm{fm}$	$M_{\pi}(\mathrm{MeV})$	g_{A}^{a-d}			
a127m285		1 clover-on-	clover	0.127(2)	285(6)	1.249(28)	0.89(5)	1.023(21)	1.014(2¢
a12m310		+1 clover-o	-HISQ	0.121(1)	310(3)	$1.229(14)$	0.84(4)	$1.055(36)$	0.969(2)
a094m280		1 clover-on-	lover	0.094(1)	278(3)	1.208(33)	0.99(9)	0.973(36)	0.998(2f
$a 09 \mathrm{~m} 310$		+1 clover-o	HISQ	0.089(1)	313(3)	1.231(33)	0.84(10)	1.024(42)	0.975(3)
a091m170		1 clover-on-	clover	0.091(1)	166(2)	1.210(19)	0.86(9)	0.996(23)	1.012(2]
a09m220		+1 clover-o	-HISQ	0.087(1)	226(2)	1.249(35)	0.80(12)	1.039(36)	0.969(3،
a09m130		+1 clover-o	HISQ	0.087(1)	138(1)	1.230 (29)	0.90(11)	0.975(38)	0.971(36
Consistency between different actions									
ID	Type	$\langle 0\| \mathcal{O}_{A}\|1\rangle$	$\langle 0\| \mathcal{O}_{S}\|1\rangle$	$\langle 0\| \mathcal{O}_{T}\|1\rangle$	$\langle 0\| \mathcal{O}_{V}\|1\rangle$	$\langle 1\| \mathcal{O}_{A}\|1\rangle$	$\underline{1}\left\|\mathcal{O}_{S}\right\| 1$	$\langle 1\| \mathcal{O}_{T}\|1\rangle$	$\langle 1\| \mathcal{O}_{V}\|1\rangle$
a127m285	$S_{5} S_{5}$	-0.179(21)		0.182(16)		-0.9(2.4)		-0.2(1.2)	
			-0.35(4)		-0.014(2)		0.6(1.1)		0.80(34)
		-0.172(18)	-0.37(4)	0.210(15)	-0.015(2)	0.75(48)	0.8(9)	0.42(27)	0.87(28)
		-0.295(58)	$-0.45(15)$	0.167 (40)	-0.014(6)	1.5(3.0)	1.8(1.4)	0.54(86)	0.86(55)
		-0.295(57)	-0.45(15)	0.166(47)	-0.014(6)	1.46(54)		0.54(41)	0.86(28)

Feynman-Hellman Method proceeds through looking at variation of a spectral function w.r.t external current.

$$
\frac{\partial E_{n}}{\partial \lambda}=\langle n| H_{\lambda}|n\rangle \text { where } H=H_{0}+\lambda H_{\lambda} \quad \text { See talk by к. Orginos }
$$

Nucleon Charge Radius

Bouchard, Chang, Orginos, Richards, PoS LATTICE2016 (2016) 170

Proton EM form factors

- Nucleon Pauli and Dirac Form Factors described in terms of matrix element of vector current

$$
\langle N| V_{\mu}|N\rangle(\vec{q})=\bar{u}\left(\vec{p}_{f}\right)\left[F_{q}\left(q^{2}\right) \gamma_{\mu}+\sigma_{\mu \nu} q_{\nu} \frac{F_{2}\left(q^{2}\right)}{2 m_{N}}\right] u\left(\vec{p}_{i}\right)
$$

- Alternatively, Sach's form factors determined in experiment

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 M^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{aligned}
$$

Charge radius is slope at $Q^{2}=0$

$$
\left.\frac{\partial G_{E}\left(Q^{2}\right)}{\partial Q^{2}}\right|_{Q^{2}=0}=-\frac{1}{6}\left\langle r^{2}\right\rangle=\left.\frac{\partial F_{1}\left(Q^{2}\right)}{\partial Q^{2}}\right|_{Q^{2}=0}-\frac{F_{2}(0)}{4 M^{2}}
$$

EM Form factors

Approved expt E12-07-109

$$
Q^{2} \lesssim 8.2 \mathrm{GeV}^{2} \quad Q^{2} \lesssim 4.1 \mathrm{GeV}^{2}
$$

Boosted interpolating operators

Green et al, arXiv:1404.40

Direct calculation of charge radius through coordinatespace moments

Bali et al., Phys. Rev. D 93, 094515 (2016)
LHPC, Syritsyn, Gambhir, Orginos et al, Lattice 2016

UKQCD, Lellouch, Richards et al., NPB444 (1995) 401

Isgur-Wise Function and CKM matrix

UKQCD, L. Lellouch et al., Nucl. Phys.
B444, 401 (1995), hep-lat/9410013

Moment Methods

- Introduce three-momentum projected three-point function

$$
C^{3 p t}\left(t, t^{\prime}\right)=\sum_{\vec{x}, \vec{x}^{\prime}}\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle e^{-i k x_{z}^{\prime}}
$$

- Now take derivative w.r.t. k^{2}
whence

$$
C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right)=\sum_{\vec{x}, \vec{x}^{\prime}} \frac{-x_{z}^{\prime}}{2 k} \sin \left(k x_{z}^{\prime}\right)\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle
$$

$$
\lim _{k^{2} \rightarrow 0} C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right)=\sum_{\vec{x}, \vec{x}^{\prime}} \frac{-x_{z}^{\prime 2}}{2}\left\langle N_{t, \vec{x}}^{a} \Gamma_{t^{\prime}, \vec{x}^{\prime}} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle .
$$

Odd moments vanish by symmetry

Moment Methods - II

- Analogous expressions for two-point functions:

$$
\begin{aligned}
& C_{2 \mathrm{pt}}(t)=\sum_{\vec{x}}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle e^{-i k x_{z}} \\
& C_{2 \mathrm{pt}}^{\prime}(t)=\sum_{\vec{x}} \frac{-x_{z}}{2 k} \sin \left(k x_{z}\right)\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle \\
& \lim _{k^{2} \rightarrow 0} C_{2 \mathrm{pt}}^{\prime}(t)=\sum_{\vec{x}} \frac{-x_{z}^{2}}{2}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle .
\end{aligned}
$$

Lowest coordinate-space moment \Leftrightarrow slope at zero momentum

Moment Methods - II

- Analogous expressions for two-point functions:

$$
\begin{aligned}
& C_{2 \mathrm{pt}}(t)=\sum_{\vec{x}}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle e^{-i k x_{z}} \\
& C_{2 \mathrm{pt}}^{\prime}(t)=\sum_{\vec{x}} \frac{-x_{z}}{2 k} \sin \left(k x_{z}\right)\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle \\
& \lim _{k^{2} \rightarrow 0} C_{2 \mathrm{pt}}^{\prime}(t)=\sum_{\vec{x}} \frac{-x_{z}^{2}}{2}\left\langle N_{t, \vec{x}}^{b} \bar{N}_{0, \overrightarrow{0}}^{b}\right\rangle .
\end{aligned}
$$

Lowest coordinate-space moment \Leftrightarrow slope at zero momentum

Lattice Details

- Two degenerate light-quark flavors, and strange quark set to its physical value

$$
\begin{aligned}
a & \simeq 0.12 \mathrm{fm} \\
m_{\pi} & \simeq 400 \mathrm{MeV} \\
\text { Lattice Size } & : 24^{3} \times 64
\end{aligned}
$$

- To gain control over finite-volume effects, replicate in z direction: $\quad 24 \times 24 \times 48 \times 64$

Two-point correlator

"Effective mass"
$\ln C_{2 \mathrm{pt}}\left(t, x_{z}\right) / C_{2 \mathrm{pt}}\left(t, x_{z}+1\right)$

$$
\ln \left[C_{2 \mathrm{pt}}\left(t, x_{z}\right)\right]
$$

Any polynomial moment in x_{z} converges

Three-point correlator

$\ln \left[C_{3 \mathrm{pt}}\left(t^{\prime}, x_{z}^{\prime}\right)\right]$

- Spatial moments push the peak of the correlator away from origin
- Larger finite volume corrections compared to regular correlators

Fitting the data...

$$
\begin{aligned}
& C^{3 \mathrm{pt}}\left(t, t^{\prime}\right)=\sum_{n, m} \frac{Z_{n}^{\dagger a}(0) \Gamma_{n m}\left(k^{2}\right) Z_{m}^{b}\left(k^{2}\right)}{4 M_{n}(0) E_{m}\left(k^{2}\right)} e^{-M_{n}(0)\left(t-t^{\prime}\right)} e^{-E_{m}\left(k^{2}\right) t^{\prime}} \\
& C_{2 \mathrm{pt}}(t)=\sum_{m} \frac{Z_{m}^{b \dagger}\left(k^{2}\right) Z_{m}^{b}\left(k^{2}\right)}{2 E_{m}\left(k^{2}\right)} e^{-E_{m}\left(k^{2}\right) t}
\end{aligned}
$$

where

$$
\begin{aligned}
Z_{n}^{\dagger a}(0) & \equiv\langle\Omega| N^{a}\left|n, p_{i}=(0,0,0)\right\rangle \\
Z_{m}^{b}\left(k^{2}\right) & \equiv\left\langle m, p_{i}=(0,0, k)\right| \bar{N}^{b}|\Omega\rangle \\
\Gamma_{n m}\left(k^{2}\right) & \equiv\left\langle n, p_{i}=(0,0,0)\right| \Gamma\left|m, p_{i}=(0,0, k)\right\rangle
\end{aligned}
$$

Allow for multi-state contributions in the fit

Fitting - II

- Now look at the functional form of derivatives:

$$
\begin{aligned}
& C_{2 \mathrm{pt}}^{\prime}(t)=\sum_{m} C_{m}^{2 \mathrm{pt}}(t)\left(\frac{2 Z_{m}^{b \prime}\left(k^{2}\right)}{Z_{m}^{b}\left(k^{2}\right)}-\frac{1}{2\left[E_{m}\left(k^{2}\right)\right]^{2}}-\frac{t}{2 E_{m}\left(k^{2}\right)}\right) \\
& C_{3 \mathrm{pt}}^{\prime}\left(t, t^{\prime}\right)=\sum_{n, m} C_{n m}^{3 \mathrm{pt}}\left(t, t^{\prime}\right) \\
&\underbrace{\Gamma_{n m}^{\prime}\left(k^{2}\right)}_{n m m})\left.\begin{array}{l}
Z_{m}^{b \prime}\left(k^{2}\right) \\
Z_{m}^{b}\left(k^{2}\right) \\
\Gamma_{n}^{\prime}
\end{array} \frac{1}{2\left[E_{m}\left(k^{2}\right)\right]^{2}}-\frac{t^{\prime}}{2 E_{m}\left(k^{2}\right)}\right\} \\
& \text { spatially extended } \begin{array}{l}
\text { sources } \\
\text { Second distance } \\
\text { scale }
\end{array}
\end{aligned}
$$

Fitting - III

In practice we use multiexponential, Bayesian fits

F1 Form Factor

Outlook

- Controlling the contribution from excited states in study of hadron structure is a crucial for precise and accurate calculations
- The approach of the variational method is a powerful way of addressing systematic uncertainties due to excited state
- Current basis of operators based on quasi-local sources. Exploring basis that admits non-zero orbital structure

$$
\begin{array}{ll}
\text { Starting point } & B=\left(\mathcal{F}_{\Sigma_{\mathbf{F}}} \otimes \mathcal{S}_{\Sigma_{\mathrm{S}}} \otimes \mathcal{D}_{\Sigma_{\mathrm{D}}}\right)\left\{\psi_{1} \psi_{2} \psi_{3}\right\} \\
\text { Introduce circular basis: } & \overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right) \\
N^{\star} & \overleftrightarrow{D}_{m=0}=i \overleftrightarrow{D}_{z}
\end{array}
$$

[^0]
[^0]: - Structure of Excited States - Raul Briceno

