Sea (u, d, s) Quarks Contribution to Nucleon Electromagnetic Form Factors

Raza Sabbir Sufian
in collaboration with
Andrei Alexandru, Terrence Draper, Jian Liang, Keh-Fei Liu, Yi-Bo Yang

PRL 118, 042001 (2017) \&
arXiv:1705.05849

Strange Quark Contribution

* s - quark contribution arises from vacuum: sign and magnitude related to nonperturbative structure of nucleon
* Nonzero strange electric FF $G^{S}{ }_{E}$ at $Q^{2}>0$ implies different spatial distribution of s and \bar{s} quarks
* Background in $Q_{\text {weak }}$ experiment arises from magnetization of strange quark [strange magnetic $F F G^{S}{ }_{M}$]
* $\quad G^{S_{E, M}}\left(Q^{2}\right)$ essential for determination of neutral weak FFs | Models results: | $-0.5<G^{S} M(0)<0.3$ |
| :--- | :--- |
| | $-0.25<r_{s}<0.4 \mathrm{fm}$ |
* Experimental results (G0, HAPPEX, A4, SAMPLE) of $G^{S}{ }_{E, M}$ quite uncertain

Theory \& Experiment: $G_{E M}^{S}\left(Q^{2}\right)$

* Zel'dovich (1957): EM interaction with parity violation

$$
\begin{gathered}
\mathcal{M}_{\gamma}=-\frac{4 \pi \alpha}{Q^{2}} e_{i} l^{\mu} J_{\mu}^{\gamma} \\
\mathcal{M}_{Z}=\frac{G_{F}}{2 \sqrt{2}}\left(g_{V}^{i} l^{\mu}+g_{A}^{i} \mu^{\mu 5}\right)\left(J_{\mu}^{Z}++J_{\mu 5}^{Z}\right)
\end{gathered}
$$

* Kaplan, Manohar (88):
$G_{E, M}^{Z, p(n)}\left(Q^{2}\right)=\frac{1}{4}\left[\left(1-4 \sin ^{2} \theta_{W}\right)\left(1+R_{V}^{p(n)}\right) G_{E, M}^{\gamma, p(n)}\left(Q^{2}\right)-\left(1+R_{V}^{n(p)}\right) G_{E, M}^{\gamma, n(p)}\left(Q^{2}\right)-\left(1+R_{V}^{(0)}\right) G_{E, M}^{s}\left(Q^{2}\right)\right]$
* Mckeown and Beck (89):

$$
\begin{aligned}
A_{P V}^{p}= & -\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha} \frac{1}{\left[\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}\right]} \\
\times & \left\{\left(\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}\right)\left(1-4 \sin ^{2} \theta_{W}\right)\left(1+R_{V}^{p}\right)\right. \\
& -\left(\epsilon G_{E}^{p} G_{E}^{n}+\tau G_{M}^{p} G_{M}^{n}\right)\left(1+R_{V}^{n}\right) \\
& -\left(\epsilon G_{E}^{p} G_{E}^{s}+\tau G_{M}^{p} G_{M}^{s}\right)\left(1+R_{V}^{(0)}\right) \\
& \left.-\epsilon^{\prime}\left(1-4 \sin ^{2} \theta_{W}\right) G_{M}^{p} G_{A}^{e}\right\}
\end{aligned}
$$

Unknown

Theory \& Experiment: $G_{E M}^{s}\left(Q^{2}\right)$

For the first time obtained non-zero value of $G^{s_{E}}\left(Q^{2}\right)$

Light (u,d) Sea Quarks Contribution

* No calculation of sea u, d - quarks contribution to nucleon EMFF at physical point with controlled systematics
a) Negative contribution to proton charge radius - relevant to proton charge radius problem
b) Shifts neutron charge radius toward experimental value -lattice QCD estimate $<r_{n}>^{2}$ is much lower than $0.11 \mathrm{fm}^{2}$

This work: Overlap fermion on RBC/UKQCD DWF gauge configurations

Ensemble	$L^{3} \times T$	$\mathrm{a}(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	$N_{\text {config }}$
24I	$24^{3} \times 64$	$0.1105(3)$	330	203
32I	$32^{3} \times 64$	$0.0828(3)$	300	309
48I	$48^{3} \times 96$	$0.1141(2)$	139	81
32ID	$32^{3} \times 64$	$0.1431(7)$	171	200

RSS, Yang, Alexandru, Draper, Liang, and Liu , PRL 118, 042001 (2017)

Reviewed by Ross Young Nature 544, 419-420

$\bar{s} \gamma_{\mu} s$

Ratio of nucleon 3pt/2pt correlation function

$$
\begin{aligned}
& R_{\mu=i}\left(\Gamma_{k}\right) \xrightarrow{\left(t_{2}-t_{1}\right) \gg 1 / \Delta m, t_{1} \gg 1 / \Delta m} \frac{\epsilon_{i j k} q_{j}}{E_{q}+m_{N}} G_{M}^{s}\left(Q^{2}\right) \\
& R_{\mu=4}\left(\Gamma_{e}\right) \xrightarrow{\left(t_{2}-t_{1}\right) \gg 1 / \Delta m, t_{1} \gg 1 / \Delta m} G_{E}^{s}\left(Q^{2}\right)
\end{aligned}
$$

2-states combined correlated fit

48I, m_pi $=207 \mathrm{MeV}, G^{S}\left(Q^{2}=0.05 \mathrm{GeV}^{2}\right)=-0.029(9)$

$321, m _p i=300 \mathrm{MeV}, G_{M}$ light-sea $\left(Q^{2}=0.22 \mathrm{GeV}^{2}\right)=-0.036(9)$

Q^{2}-Extrapolation

* z-expansion, R. Hill, et al. (2010)

$$
G_{M}^{s, z-\exp }\left(Q^{2}\right)=\sum_{k=0}^{k_{\max }} a_{k} z^{k}, z=\frac{\sqrt{t_{\mathrm{cut}}+Q^{2}}-\sqrt{t_{\mathrm{cut}}}}{\sqrt{t_{\mathrm{cut}}+Q^{2}}+\sqrt{t_{\mathrm{cut}}}}
$$

*Keep first 3 terms and include $4^{\text {th }}$ term in systematics

$Q^{2-E x t r a p o l a t i o n}$

Continuum Extrapolation

*Global fit (s-quark magnetic moment)

$$
\begin{aligned}
& G_{M}^{s}\left(0 ; m_{\pi}, m_{\pi, v s}, m_{K}, a, L\right)=A_{0}+A_{1} m_{\pi}+A_{2} m_{K} \\
& +A_{3} m_{\pi, v s}^{2}+A_{4} a^{2}+A_{5} m_{\pi}\left(1-\frac{2}{m_{\pi} L}\right) e^{-m_{\pi} L}
\end{aligned}
$$

partially quenched pion mass

Chiral interpolation - Musolf, et. al. (97); Hemmert et. al (99).
Finite volume correction - S. Beane (04)

Correlated fit

$$
\mathrm{G}^{s_{M}(0)} \text { Iphysical = - 0.064(14)(09) }
$$

$$
\begin{aligned}
& A_{1}=0.61(16) \\
& A_{2}=-2.26(49) \\
& A_{3}=0.31(12) \\
& A_{4}=0.015(16) \\
& A_{5}=-4.0(2.4)
\end{aligned}
$$

*Global fit (light (u,d) quark magnetic moment)

$$
\begin{aligned}
G_{M}^{\text {light-sea }}\left(Q^{2}=\right. & \left.0, m_{\pi}, m_{K}, m_{\pi, v s}, a, L\right)=A_{0}+A_{1} m_{\pi}+A_{2} m_{K} \\
& +A_{3} a^{2}+A_{4} m_{\pi}\left(1-\frac{2}{m_{\pi} L}\right) e^{-m_{\pi} L}
\end{aligned}
$$

Chiral extrapolation Manohar, Savage, Jenkins, Luke PL B 302:482-490, 1993

First calculation of disconnected u,d - quarks contribution at physical point
arXiv:1705.05849
RSS, Yang, Liang, Draper, Liu

Results : Light and strange $G_{M}(0)$

$$
\begin{array}{cc}
\mathrm{G}^{\mathrm{S}}(0) \text { Iphysical } & =-0.064(14)(09) \\
\mathrm{G}_{\mathrm{M}}{ }^{\text {IGhiseas}(0) ~ I p h y s i c a l ~} & =-0.129(30)(22)
\end{array}
$$

Most precise and accurate estimates of $\mathrm{G}^{\mathrm{S}} \mathrm{M}$

(*include charge factors*)

$$
\mu_{M}(\mathrm{DI})=-0.022(11)(09) \mu_{N}
$$

Strange \& light-sea quarks electric

form factor

* Electromagnetic current C-odd
*Sensitive to difference between contributions from s and \bar{s}
* Requires mechanisms beyond simple $g \rightarrow s \bar{s}$ fluctuations

Charge Radii : Continuum Extrapolation

Charge radius

$$
\left\langle r^{2}\right\rangle_{E} \equiv-\left.6 \frac{d G_{E}}{d Q^{2}}\right|_{Q^{2}=0}
$$

Global fit formula

$$
\begin{aligned}
& \left\langle r_{s}^{2}\right\rangle_{E}\left(m_{\pi}, m_{\pi, v s}, m_{K}, a, L\right)=A_{0}+A_{1} \log \left(m_{K}\right) \\
& +A_{2} m_{\pi}^{2}+A_{3} m_{\pi, v s}^{2}+A_{4} a^{2}+A_{5} \sqrt{L} e^{-m_{\pi} L}
\end{aligned}
$$

*Chiral Extrapolation - Hemmert, et. al. (99); Hall (2012)
*Volume Correction - Tiburzi (14)

$-0.0043(16)(14) \mathrm{fm}^{2}$

$-0.061(16)(15) \mathrm{fm}^{2}$

An Estimate: Proton Charge Radii

*Include charge factors of u,d,s quarks

$$
\begin{gathered}
\left\langle r_{\mathrm{s}}^{2}\right\rangle_{E}=0.0014(05)(05) \mathrm{fm}^{2}, \\
\left\langle r_{\text {lightsesea }}^{2}\right\rangle_{E}=-0.0203(53)(49) \mathrm{fm}^{2} .
\end{gathered}
$$

$\xrightarrow{\text { Total }}\left\langle r^{2}\right\rangle_{E}(\mathrm{DI})=-0.019(05)(05) \mathrm{fm}^{2}$

Proton charge radius puzzle
$\left\{\begin{array}{|c|c|}\hline \text { Nucleon radii } & \text { Experimental values } \\ \hline\left\langle r_{E}^{p}\right\rangle^{2} & 0.77 \mathrm{fm}^{2}(e p \text { CODATA }) \\ \hline\left\langle r_{E}^{p}\right\rangle^{2} & 0.707062 \mathrm{fm}^{2}(\mu p \text { Lamb shift }) \\ \hline\end{array}\right.$

An Estimate : Neutron Charge Radii

$$
\begin{array}{l|l}
\left\langle r_{E}^{n}\right\rangle^{2} & -0.1161 \mathrm{fm}^{2}
\end{array}
$$

$$
\left\langle r^{2}\right\rangle_{E}(\mathrm{DI})=-0.019(05)(05) \mathrm{fm}^{2}
$$

Experiment

Lattice QCD (DI)
16.3(6.1)\% of
Experimental Value

Connected Insertion Only

ETMC Collaboration arXiv:1612.04644 [hep-lat]

Disconnected light and strange quarks contribution to nucleon EMFF

(*charge factors
included*)

SUMMARY

*Most precise estimates of strange quark magnetic moment and charge radius

* Nonzero strange and light-sea quarks $G^{(D)_{E, M}\left(Q^{2}\right) \text { up to } 0.5 \mathrm{GeV}^{2} .}$
*Negative contribution from disconnected $\mathrm{u}, \mathrm{d}, \mathrm{s}$ quarks to nucleon mean square charge radius
*Disconnected quarks contribution cannot be ignored in Lattice QCD calculation of nucleon EMFF

Thank You

