3-Loop Corrections to Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering

J. Blümlein1, J. Ablinger2, A. Behring1, A. De Freitas1, A. Hasselhuhn2, A. von Manteuffel3, C. Raab1, M. Round1,2, C. Schneider2, F. Wißbrock1

1DESY, Zeuthen
2Johannes Kepler University, Linz
3MSU East Lansing, MI
Introduction

Unpolarized Deep–Inelastic Scattering (DIS):

\[Q^2 := -q^2, \quad x := \frac{Q^2}{2P.q} \quad \text{Bjorken–x} \]

\[\frac{d\sigma}{dQ^2 \, dx} \sim W_{\mu\nu} L^{\mu\nu} \]

\[W_{\mu\nu}(q, P, s) = \frac{1}{4\pi} \int d^4\xi \exp(iq\xi) \langle P, s \mid [J^{em}_\mu(\xi), J^{em}_\nu(0)] \mid P, s \rangle = \]

\[\frac{1}{2x} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right) F_L(x, Q^2) + \frac{2x}{Q^2} \left(P_\mu P_\nu + \frac{q_\mu P_\nu + q_\nu P_\mu}{2x} - \frac{Q^2}{4x^2 g_{\mu\nu}} \right) F_2(x, Q^2) . \]

Structure Functions: \(F_{2,L} \)

contain light and heavy quark contributions.
\[\Delta_{TH} \alpha_s = \alpha_s(N^3\text{LO}) - \alpha_s(\text{NNLO}) + \Delta_{HQ} = +0.0009 \pm 0.0006_{\text{HQ}} \]

NNLO accuracy is needed to analyze the world data. \(\Rightarrow \) NNLO HQ corrections needed.
Deep–Inelastic Scattering (DIS):

\[\sigma_{cc}^{\text{red}} \]

\[Q^2 = 2.5 \text{ GeV}^2 \]
\[5 \text{ GeV}^2 \]
\[7 \text{ GeV}^2 \]
\[12 \text{ GeV}^2 \]
\[18 \text{ GeV}^2 \]
\[32 \text{ GeV}^2 \]
\[60 \text{ GeV}^2 \]
\[120 \text{ GeV}^2 \]
\[200 \text{ GeV}^2 \]
\[350 \text{ GeV}^2 \]
\[650 \text{ GeV}^2 \]
\[2000 \text{ GeV}^2 \]

\[\alpha_s(M_Z) \]
\[m_c(m_c) = 1.252 \pm 0.018 (\text{exp}) +0.03 -0.02 (\text{scale}) +0.00 -0.07 (\text{thy}) \text{GeV} \]
\[m_b(m_b) = 3.84 \pm 0.12 \text{GeV} \]
\[m_t(m_t) = 160.9 \pm 1.1 \text{GeV} \]

Yet approximate NNLO treatment [Kawamura et al. [1205.5227]].

PS corrections are exact.
Factorization of the Structure Functions

At leading twist the structure functions factorize in terms of a Mellin convolution

\[F_{(2,L)}(x, Q^2) = \sum_j C_{j,(2,L)} \left(x, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) \otimes f_j(x, \mu^2) \]

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
\(\otimes \) denotes the Mellin convolution

\[f(x) \otimes g(x) \equiv \int_0^1 dy \int_0^1 dz \, \delta(x - yz)f(y)g(z) . \]

The subsequent calculations are performed in Mellin space, where \(\otimes \) reduces to a multiplication, due to the Mellin transformation

\[\hat{f}(N) = \int_0^1 dx \, x^{N-1} f(x) . \]
Wilson coefficients:

\[\mathcal{C}_{j,(2,L)} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) = C_{j,(2,L)} \left(N, \frac{Q^2}{\mu^2} \right) + H_{j,(2,L)} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) . \]

At \(Q^2 \gg m^2 \) the heavy flavor part

\[H_{j,(2,L)} \left(N, \frac{Q^2}{\mu^2}, \frac{m^2}{\mu^2} \right) = \sum_i C_{i,(2,L)} \left(N, \frac{Q^2}{\mu^2} \right) A_{ij} \left(\frac{m^2}{\mu^2}, N \right) \]

[Buza, Matiounine, Smith, van Neerven 1996 Nucl.Phys.B] factorizes into the light flavor Wilson coefficients \(C \) and the massive operator matrix elements (OMEs) of local operators \(O_i \) between partonic states \(j \)

\[A_{ij} \left(\frac{m^2}{\mu^2}, N \right) = \langle j | O_i | j \rangle . \]

→ additional Feynman rules with local operator insertions for partonic matrix elements.

The unpolarized light flavor Wilson coefficients are known up to NNLO [Moch, Vermaseren, Vogt, 2005 Nucl.Phys.B].

For \(F_2(x, Q^2) : \) at \(Q^2 \gtrsim 10m^2 \) the asymptotic representation holds at the 1% level.
Status of OME calculations

Next-to-Leading Order:
[Laenen, van Neerven, Riemersma, Smith 1993]

\(Q^2 \gg m^2 \): via IBP [Buza, Matiounine, Smith, Migneron, van Neerven 1996]

Compact results via \(pF_q \)'s [Bierenbaum, Blümlein, Klein, 2007]

\(O(\alpha_s^2 \varepsilon) \) (for general \(N \)) [Bierenbaum, Blümlein, Klein 2008, 2009]

Next-to-Next-to-Leading Order: \(Q^2 \gg m^2 \)

- Moments for \(F_2 \): \(N = 2...10(14) \) [Bierenbaum, Blümlein, Klein 2009]
- mapping large expressions to [MATAD, Steinhauser 2000]
- Contributions to transversity: \(N = 1...13 \) [Blümlein, Klein, Tödtli 2009]
- Two masses \(m_1 \neq m_2 \) \(\rightarrow \) Moments \(N = 2, 4, 6 \) [JB, Wißbrock 2011]

At 3-loop order for general values of \(N \):

- All OMEs: terms \(O(n_f T_F^2 C_{A/F}) \) to \(F_2 \) [Ablinger et al. 2011, 2012]
- First contributions to \(O(T_F^2 C_{A/F}) A_{gg, Q} \) [Ablinger et al. 2014]
The Wilson Coefficients at large Q^2

\[
\begin{align*}
2014 \quad & L^\text{NS}_{q,(2,L)}(N_F+1) = a_s^2 \left[A^{(2),\text{NS}}_{qg,Q} (N_F + 1) \delta_2 + \tilde{C}^{(2),\text{NS}}_{q,(2,L)}(N_F) \right] \\
+ & a_s^3 \left[A^{(3),\text{NS}}_{qg,Q} (N_F + 1) \delta_2 + A^{(2),\text{NS}}_{gq,Q} (N_F + 1)C^{(1),\text{NS}}_{q,(2,L)}(N_F + 1) + \tilde{C}^{(3),\text{NS}}_{q,(2,L)}(N_F) \right] \\
2010 \quad & L^\text{PS}_{q,(2,L)}(N_F+1) = a_s^3 \left[A^{(3),\text{PS}}_{qg,Q} (N_F + 1) \delta_2 + A^{(2),\text{PS}}_{gq,Q} (N_F + 1) F_N \tilde{c}^{(1)}_{q,(2,L)}(N_F + 1) + N_F \tilde{c}^{(3),\text{PS}}_{q,(2,L)}(N_F) \right] \\
+ & A^{(1),\text{PS}}_{qg,Q} (N_F + 1) F_N \tilde{c}^{(2)}_{g,(2,L)}(N_F + 1) + \tilde{C}^{(3),\text{PS}}_{q,(2,L)}(N_F + 1) \\
2010 \quad & L^\text{S}_{g,(2,L)}(N_F+1) = a_s^2 \left[A^{(1)}_{gq,Q} (N_F + 1) N_F \tilde{c}^{(1)}_{g,(2,L)}(N_F + 1) + a_s^3 \left[A^{(3),\text{PS}}_{gq,Q} (N_F + 1) \delta_2 \\
+ & A^{(1)}_{gq,Q} (N_F + 1) N_F \tilde{c}^{(2)}_{g,(2,L)}(N_F + 1) + A^{(2),\text{PS}}_{gq,Q} (N_F + 1) F_N \tilde{c}^{(1)}_{g,(2,L)}(N_F + 1) \\
+ & A^{(1),\text{PS}}_{qg,Q} (N_F + 1) \tilde{C}^{(2),\text{PS}}_{q,(2,L)}(N_F + 1) + A^{(2),\text{PS}}_{qg,Q} (N_F + 1) \tilde{C}^{(1),\text{NS}}_{g,(2,L)}(N_F + 1) \right] \\
2014 \quad & H^\text{PS}_{q,(2,L)}(N_F+1) = a_s^2 \left[A^{(2),\text{PS}}_{qg,Q} (N_F + 1) \delta_2 + \tilde{C}^{(2),\text{PS}}_{q,(2,L)}(N_F + 1) \right] + a_s^3 \left[A^{(3),\text{PS}}_{qg,Q} (N_F + 1) \delta_2 \\
+ & A^{(1),\text{PS}}_{qg,Q} (N_F + 1) \tilde{C}^{(1),\text{NS}}_{q,(2,L)}(N_F + 1) + A^{(1),\text{PS}}_{gq,Q} (N_F + 1) \tilde{C}^{(1),\text{NS}}_{g,(2,L)}(N_F + 1) \\
+ & A^{(2),\text{PS}}_{gq,Q} (N_F + 1) \tilde{c}^{(1)}_{g,(2,L)}(N_F + 1) + \tilde{C}^{(2),\text{PS}}_{q,(2,L)}(N_F + 1) \right] + a_s^3 \left[A^{(3),\text{PS}}_{qg,Q} (N_F + 1) \delta_2 + A^{(2),\text{PS}}_{qg,Q} (N_F + 1) C^{(1),\text{NS}}_{q,(2,L)}(N_F + 1) \\
+ & A^{(1),\text{PS}}_{gq,Q} (N_F + 1) \tilde{C}^{(1),\text{NS}}_{g,(2,L)}(N_F + 1) + A^{(1),\text{PS}}_{qg,Q} (N_F + 1) \tilde{C}^{(2),\text{NS}}_{q,(2,L)}(N_F + 1) \\
+ & \tilde{C}^{(2),\text{PS}}_{q,(2,L)}(N_F + 1) \right] + A^{(1),\text{PS}}_{gq,Q} (N_F + 1) \tilde{C}^{(2),\text{PS}}_{g,(2,L)}(N_F + 1) + \tilde{C}^{(3),\text{PS}}_{g,(2,L)}(N_F + 1)
\end{align*}
\]

All logarithmic corrections are known.

[Ablinger et al. 2010, Ablinger et al., 2014a, Ablinger et al., 2014b]
Variable Flavor Number Scheme

\[f_k(n_f + 1, \mu^2) + f_{\bar{k}}(n_f + 1, \mu^2) = A^{NS}_{qq,Q}(n_f, \frac{\mu^2}{m^2}) \otimes [f_k(n_f, \mu^2) + f_{\bar{k}}(n_f, \mu^2)] + A^{PS}_{qq,Q}(n_f, \frac{\mu^2}{m^2}) \otimes \Sigma(n_f, \mu^2) + \tilde{A}^{S}_{ag,Q}(n_f, \frac{\mu^2}{m^2}) \otimes G(n_f, \mu^2) \]

\[f_{Q+\bar{Q}}(n_f + 1, \mu^2) = \tilde{A}^{PS}_{Qq}(n_f, \frac{\mu^2}{m^2}) \otimes \Sigma(n_f, \mu^2) + \tilde{A}^{S}_{Qg}(n_f, \frac{\mu^2}{m^2}) \otimes G(n_f, \mu^2) \]

\[G(n_f + 1, \mu^2) = A^{S}_{ag,Q}(n_f, \frac{\mu^2}{m^2}) \otimes \Sigma(n_f, \mu^2) + A^{S}_{gg,Q}(n_f, \frac{\mu^2}{m^2}) \otimes G(n_f, \mu^2) \]

\[\Sigma(n_f + 1, \mu^2) = \sum_{k=1}^{n_f+1} [f_k(n_f + 1, \mu^2) + f_{\bar{k}}(n_f + 1, \mu^2)] \]

\[= A^{NS}_{qq,Q}(n_f, \frac{\mu^2}{m^2}) + n_f A^{PS}_{qq,Q}(n_f, \frac{\mu^2}{m^2}) + \tilde{A}^{PS}_{Qq}(n_f, \frac{\mu^2}{m^2}) \otimes \Sigma(n_f, \mu^2) \]

\[+ n_f \tilde{A}^{S}_{ag,Q}(n_f, \frac{\mu^2}{m^2}) + \tilde{A}^{S}_{Qg}(n_f, \frac{\mu^2}{m^2}) \otimes G(n_f, \mu^2) \]

All master integrals for \(A^{(3)}_{gg} \) have been completed (June 2015).
Calculation of the 3-loop operator matrix elements

The OMEs are calculated using the QCD Feynman rules together with the following operator insertion Feynman rules:

\[\delta^{ij} \Delta \gamma \Delta \cdot p \cdot N \geq 1 \]

\[g^{\alpha \beta} \Delta \gamma \sum_{j=0}^{N-2} (\Delta \cdot p_1)^j (\Delta \cdot p_2)^{N-2-j} , \ N \geq 2 \]

\[g^{3} \Delta \gamma \Delta \gamma \sum_{j=0}^{N-3} \sum_{i=1}^{N-2-j} (\Delta \cdot p_1)^i (\Delta \cdot p_1)^{N-3-j} \]

\[f_{abc} f_{\mu \nu \lambda} \left(p_1, p_2, p_3, p_4 \right) \]

\[O_{\mu \nu \lambda} \left(p_1, p_2, p_3, p_4 \right) = \Delta \cdot p_1 \left\{ -g_{\mu \nu} (\Delta \cdot p_3 + \Delta \cdot p_4) \right\} \]

\[+ p_{4, \mu} g_{\mu \nu} \sum_{i=0}^{N-3} (\Delta \cdot p_3 + \Delta \cdot p_4)^i (\Delta \cdot p_3 + \Delta \cdot p_4)^{N-3-i} \]

\[- p_{1, \mu} g_{\mu \nu} \sum_{i=0}^{N-3} (\Delta \cdot p_1 + \Delta \cdot p_4)^i (\Delta \cdot p_3 + \Delta \cdot p_4)^{N-3-i} \]

\[+ [\Delta \cdot p_1 \Delta \cdot p_4 g_{\mu \nu} + p_1 \cdot p_4 \Delta \cdot p_3 - \Delta \cdot p_1 \Delta \cdot p_4 - \Delta \cdot p_4 \Delta \cdot p_1] \]

\[\sum_{i=0}^{N-4} \sum_{j=0}^{N-4-i} (\Delta \cdot p_3 + \Delta \cdot p_4)^i (\Delta \cdot p_3 + \Delta \cdot p_4)^{N-4-i} \]

\[\left\{ p_{1, \mu} p_{2, \mu} \right\} + \left\{ p_{1, \mu} p_{3, \mu} \right\} + \left\{ p_{1, \mu} p_{4, \mu} \right\} , \ N \geq 2 \]

<table>
<thead>
<tr>
<th></th>
<th>$A^{(3)\text{NS}}_{qq,Q}$</th>
<th>$A^{(3)\text{NS}}_{gq,Q}$</th>
<th>$A^{(3)\text{PS}}_{Qq}$</th>
<th>$A^{(3)\text{NS}}_{gg,Q}$</th>
<th>$A^{(3)\text{NS}}_{Qg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. diagrams</td>
<td>110</td>
<td>86</td>
<td>125</td>
<td>642</td>
<td>1233</td>
</tr>
</tbody>
</table>

A FORM [Vermaseren 2000] program was written in order to perform the γ-matrix algebra in the numerator of all diagrams, which are then expressed as a linear combination of scalar integrals.

$A^{(3)\text{NS}}_{qq,Q} \rightarrow 7426$ scalar integrals.

$A^{(3)\text{NS}}_{gq,Q} \rightarrow 12529$ scalar integrals.

$A^{(3)\text{NS}}_{Qq} \rightarrow 5470$ scalar integrals.

\Rightarrow Need to use integration by parts identities.

\Rightarrow The reduction for all OMEs has been completed.

\Rightarrow Use special computers: 12 units with overall 3.2 TB RAM, 97 TB fast disc, hundreds of mathematica lic.; IBP: several TB of final relations.
Integration by parts

We use Reduze [A. von Manteuffel, C. Studerus, 2012] to express all scalar integrals required in the calculation in terms of a small(er) set of master integrals.

Reduze is a C++ program based on Laporta’s algorithm.

\[
(\Delta \cdot k)^N \to \sum_{N=0}^{\infty} x^N (\Delta \cdot k)^N = \frac{1}{1 - x\Delta \cdot k}
\]

\[\implies\] additional propagator.

Number of master integrals:

\[
A^{(3),\text{NS}}_{qq,Q} \to 35 \text{ master integrals } \checkmark.
\]
\[
A^{(3)}_{gq,Q} \to 41 \text{ master integrals } \checkmark.
\]
\[
A^{(3),\text{PS}}_{Qq} \to 66 \text{ master integrals } \checkmark.
\]
\[
A^{(3)}_{gg,Q} \to 205 \text{ master integrals } \checkmark.
\]
\[
A^{(3)}_{Qg} \to 340 \text{ master integrals. (224 done by June 2015.)}
\]

116 master integrals to be done \[\implies\] CIS-type

24 integral families are required and implemented in Reduze.
Calculation of the master integrals

For the calculation of the master integrals we use a wide variety of tools:

▶ Hypergeometric functions.
▶ Summation methods based on difference fields, implemented in the Mathematica program Sigma [C. Schneider, 2005–].
 ▶ Reduction of the sums to a small number of key sums.
 ▶ Expansion the summands in ε.
 ▶ Simplification by symbolic summation algorithms based on $\Pi\Sigma$-fields [Karr 1981 J. ACM, Schneider 2005–].
 ▶ Harmonic sums, polylogarithms and their various generalizations are algebraically reduced using the package HarmonicSums [Ablinger 2010, 2013, Ablinger, Blümlein, Schneider 2011,2013].
▶ Mellin-Barnes representations.
▶ In the case of convergent massive 3-loop Feynman integrals, they can be performed in terms of Hyperlogarithms [Generalization of a method by F. Brown, 2008, to non-vanishing masses and local operators].
▶ Systems of Differential Equations.
▶ Almkvist-Zeilberger Theorem as Integration Method.
Emergence of new nested sums:

\[\sum_{i=1}^{N} \binom{2i}{i} (-2)^i \sum_{j=1}^{i} \frac{1}{i(2j)} S_{1,2} \left(\frac{1}{2}, -1; j\right)\]

\[= \int_0^1 dx \frac{x^N - 1}{x - 1} \sqrt{\frac{x}{8 + x}} \left[H^*_{w_{17}}, -1, 0(x) - 2H^*_{w_{18}}, -1, 0(x)\right] + \frac{\zeta_2}{2} \int_0^1 dx \frac{(-x)^N - 1}{x + 1} \sqrt{\frac{x}{8 + x}} [H^*_{12}(x) - 2H^*_{13}(x)] + c_3 \int_0^1 dx \frac{(-8x)^N - 1}{x + \frac{1}{8}} \sqrt{\frac{x}{1 - x}},\]

\[w_{12} = \frac{1}{\sqrt{x(8 - x)}},\quad w_{13} = \frac{1}{(2 - x)\sqrt{x(8 - x)}},\]

\[w_{17} = \frac{1}{\sqrt{x(8 + x)}},\quad w_{18} = \frac{1}{(2 + x)\sqrt{x(8 + x)}}.\]
Non-iterative Iterative Integrals

The live after iterative integrals and/or differential equations factorizing completely to 1st order:

• Iterative integrals/nested sums in QFT have been very well understood during the last 19 years since 1998. [J. Vermaseren, E. Remiddi, JB];
• Now even general alphabets (including up to root valued letters).
• Even single-scale Feynman integrals lead beyond that [Sabry’s kite, 1962]
• Currently worked out by the community. [Ablinger, Adams, Ananthanarayan, Behring, Bijnes, JB, Bloch, Bogner, Brown, DeFreitas, Gangl, Ghosh, Hebbar, Hoeij, Imamoglu, Laporta, Levin, Müller-Stach, Remiddi, Schneider, Schweitzer, Tancredi, Vidunna, Weinzierl, Zagier, Zayadeh, ...]

\[\int_a^b \cdots \int_{a_m}^{b_m} \, \cdots \int_{a_q}^{b_q} \, f(x_1, \ldots, x_q) \, dx_1 \cdots dx_q \]

CIS-series; In some cases: complete elliptic integrals at very special rational arguments. Highly precise numerical representations already available. On the structural side: Relations to elliptic polylogarithms [in the elliptic case].
• Have to handle branch-points in case.
• Relations due to shuffle algebras.
• Further relations due to triangle group; Important relations between different solutions of the homogeneous equations.

Most of the master integrals infected by the new CIS solutions are iterated integrals over a few of the former ones.

• We have identified the whole respective tree in case of our project.
• It would be interesting to view the corresponding situation in case of $\sigma(pp \rightarrow t\bar{t})(\hat{s})$.
Spill-Off:
New Mathematical Function Classes and Algebras

- 1998: Harmonic Sums [Vermaseren; JB]
- 1999: Harmonic Polylogarithms [Remiddi, Vermaseren]
- 2001: Generalized Harmonic Sums [Moch, Uwer, Weinzierl]
- 2004: Infinite harmonic (inverse) binomial sums [Davydychev, Kalmykov; Weinzierl]
- 2011: (generalized) Cyclotomic Harmonic Sums, polylogarithms and numbers [Ablinger, JB, Schneider]
- 2013: Systematic Theory of Generalized Harmonic Sums, polylogarithms and numbers [Ablinger, JB, Schneider]
- 2016: Elliptic integrals with (involved) rational arguments appear in part of the functions of our project already as base cases. They stem from Heun equations. [since April 2016.] [Ablinger, Behring, JB, De Freitas, van Hoeij, Raab, Schneider, DESY16-147].

Particle Physics Generates NEW Mathematics.
Numerical Results: $L_{g,2}^S$ and $L_{q,2}^{PS}$
$L_{q,2}^{\text{NS}}$

Contribution to $F_2(x, Q^2)$

VFNS matching
NS corrections to $g_{1(2)}(x, Q^2)$ and $xF_3^{W^+ + W^-}$

$$g_1(x, Q^2)$$

$$xF_3^{W^+ + W^-}(x, Q^2)$$

The corrections to $g_2(x, Q^2)$ are obtained using the Wandzura-Wilczek relation.
NS corrections to $F_{1}^{W^+ - W^-}$ and $F_{2}^{W^+ - W^-}$

$F_{1}^{W^+ - W^-}(x, Q^2)$

$F_{2}^{W^+ - W^-}(x, Q^2)$

The massless corrections are due to Davies, Vogt, Moch, Vermaseren, LT-1084.

$O(\alpha_s^2)$ Complete NS corrections

Note the negative corrections at low Q^2!
Already for charm it takes quite a while to become massless.

The leading small x approximation corresponding to CCH, 1991, departs from the physical result everywhere except for $x = 1$.
The present NC corrections to $F_2(x, Q^2)$

$Q^2 = 100\text{GeV}^2$ [\(H_{g,2}^S\) scaled down by a factor 20.]
\[a^{(3)}_{gg,Q} = \frac{1 + (-1)^{N}}{2} \left\{ c_F^2 T_F \left[\frac{16(N^2 + N + 2)}{N^2(N + 1)^2} \sum_{i=1}^{N} \frac{(2i)}{4^i (i+1)^2} \left(\sum_{j=1}^{i} \frac{4^j S_1(j-1)}{(2j)!} j^2 \right) - 7\zeta_3 \right] - \frac{4P_{69} S_1^2}{3(N-1)N^4(N+1)^4(N+2)} \right\} \\
+ 3^{(0)}_{gg} \left[\frac{128(S_{-4} - S_{-3}S_1 + S_{-3,1} + 2S_{-2,2})}{3N(N+1)(N+2)} + \frac{4(5N^2 + 5N - 22)S_1^2 S_2}{3N(N+1)(N+2)} + \cdots \right] + \cdots \right\] \\
+ C_{A} C_F T_F \left[\frac{16P_{42}}{3(N-1)N^2(N+1)^2(N+2)} \sum_{i=1}^{N} \frac{(2i)}{4^i (i+1)^2} \left(\sum_{j=1}^{i} \frac{4^j S_1(j-1)}{(2j)!} j^2 \right) - 7\zeta_3 \right] + \frac{32P_{2} S_{-2,2}}{(N-1)N^2(N+1)^2(N+2)} + \cdots \right\] \\
+ C_{A}^2 T_F \left[-\frac{4P_{46}}{3(N-1)N^2(N+1)^2(N+2)} \sum_{i=1}^{N} \frac{(2i)}{4^i (i+1)^2} \left(\sum_{j=1}^{i} \frac{4^j S_1(j-1)}{(2j)!} j^2 \right) - 7\zeta_3 \right] + \frac{256P_{5} S_{-2,2}}{9(N-1)N^2(N+1)^2(N+2)} + \cdots \right\] \\
+ C_{A}^2 T_F \left[\frac{32P_{30} S_{-2,1,1} + 16P_{35} S_{-3,1} + 16P_{44} S_{-4}}{9(N-1)N^2(N+1)^2(N+2)} + \frac{16P_{52} S_{-2}}{27(N-1)N^2(N+1)^2(N+2)} + \frac{8P_{36} S_{2}^2}{9(N-1)N^2(N+1)^2} + \cdots \right] \\
+ C_F T_F^2 \left[-\frac{16P_{48}}{3(N-1)N(N+1)^2(N+2)(2N-3)(2N+1)} \left(\sum_{i=1}^{N} \frac{4^i S_1(i-1)}{(2i)!} i^2 \right) - 7\zeta_3 \right] - \frac{32P_{86} S_1}{81(N-1)N^4(N+1)^4(N+2)(2N-3)(2N+1)} \right\] \\
+ \frac{16P_{45} S_{1}^2}{27(N-1)N^3(N+1)^3(N+2)} - \frac{16P_{45} S_{2}}{9(N-1)N^3(N+1)^3(N+2)} + \cdots \right\} + \cdots \right\} \\
(1) \right\}

Also, with this calculation we were able to re-derive the three loop anomalous dimension \(\gamma_{gg}^{(3)} \) for the terms \(T_F \), and obtained agreement with the literature.
Moments for graphs with two massive lines \((m_1 \neq m_2)\)

\[
a^{(3)}_{Q_9}(N = 6) = \frac{1}{2} \left\{ T^2_{\mu} C_A \left(\frac{69882273800453}{3675690900000} - \frac{395296}{19845} \zeta_3 + \frac{1316809}{39690} \zeta_2 + \frac{832369820129}{14586075000} x + \frac{1511074426112}{624023544375} x^2 - \frac{84840004938801319}{690973782403905000} x^3 \right) \\
+ \ln \left(\frac{m_2^2}{\mu^2} \right) \left[\frac{11771644229}{194481000} + \frac{78496}{2205} \zeta_2 - \frac{1406143531}{69457500} x - \frac{105157957}{180093375} x^2 + \frac{2287164970759}{7669816654500} x^3 \right] \\
+ \ln^2 \left(\frac{m_2^2}{\mu^2} \right) \left[\frac{2668087}{79380} + \frac{112669}{661500} x - \frac{49373}{51975} x^2 - \frac{31340489}{34054020} x^3 \right] + \ln^3 \left(\frac{m_2^2}{\mu^2} \right) \left[\frac{324148}{19845} + \ln^2 \left(\frac{m_2^2}{\mu^2} \right) \ln \left(\frac{m_2^2}{\mu^2} \right) \frac{156992}{6615} \right] \\
+ \ln \left(\frac{m_2^2}{\mu^2} \right) \ln \left(\frac{m_2^2}{\mu^2} \right) \ln \left(\frac{m_2^2}{\mu^2} \right) \left[\frac{128234}{3969} - \frac{112669}{330750} x + \frac{98746}{51975} x^2 - \frac{31340489}{34054020} x^3 \right] + \ln \left(\frac{m_2^2}{\mu^2} \right) \ln \left(\frac{m_2^2}{\mu^2} \right) \frac{68332}{6615} \\
+ \ln \left(\frac{m_2^2}{\mu^2} \right) \ln \left(\frac{m_2^2}{\mu^2} \right) \ln \left(\frac{m_2^2}{\mu^2} \right) \left[\frac{1980566069882672}{26/30} + \frac{19845}{2205} \zeta_2 - \frac{19845}{2205} \zeta_2 + \frac{19845}{2205} \zeta_2 \right] + 64855635472 + 105157957 - 39690 x \\
\right\}

\to q2e/exp \ [\text{Harlander, Seidensticker, Steinhauser 1999}] \ x = \frac{m_1^2}{m_2^2}
Moments for graphs with two massive lines \((m_1 \neq m_2)\)

Analytic general N results are available for \(A_{qq,Q}^{NS}, A_{Qq}^{PS}\) and the scalar integrals of \(A_{gg,Q}\).
Conclusions

▶ 2009: 10-14 Mellin Moments for all massive 3-loop OMEs, WC.
2010: Wilson Coefficients $L_{q}^{(3),PS}(N)$, $L_{g}^{(3),S}(N)$.

▶ 2013: Ladder, V-Graph and Benz-topologies for graphs, with no singularities in ε can be systematically calculated for general N.

▶ Here new functions occur (including a larger number of root-letters in iterated integrals).

▶ 2014 $L_{q}^{NS,(3)}$, $A_{gq,Q}^{S,(3)}$, $A_{qq,Q}^{NS,TR(3)}$, $H_{2,q}^{PS(3)}$ and $A_{Qq}^{PS(3)}$ were completed.

▶ A method for the calculation of graphs with two massive lines of equal masses and operator insertions has been developed and applied $A_{gg,Q}^{(3)}$.

▶ The method can be generalized to the case of unequal masses. Here the moments for $N = 2, 4, 6$ for all graphs with two quark lines of unequal masses are now known [→ extended renormalization]; for some OMEs the complete 2-mass structure has been computed.

New VFNS relations!

▶ The $O(\alpha_s^2)$ charged current Wilson coefficients have been completed.
Conclusions

▶ All corresponding 3-loop anomalous dimensions were computed, those for transversity for the first time ab initio; those for the PS- and the qg-case independently for the first time.

▶ In all NS-cases [NC and CC] we also computed all power corrections at $O(a_s^2)$ and the associated sum rules in the inclusive case improving an earlier result by JB & W. van Neerven.

▶ All master integrals based on iterative integrals over whatsoever alphabet for $A_{gg,Q}^{(3)}$ and $A_{Qg}^{(3)}$ have been computed and $A_{gg,Q}^{(3)}$ is known for any even integer moment $N \geq 2$. Here all the topologies, including the ladder- and V-topologies have been solved.

▶ We have all the principal means to reconstruct $A_{Qg}^{(3)}$ systematically at very high accuracy. The full analytic solution will request more mathematical efforts.

▶ Different new computer-algebra and mathematical technologies were developed. These efforts will continue. The technologies are certainly useful for various present and upcoming calculations for the LHC and ILC.
Publications: Physics

J. Ablinger et al., DESY-17-062, arXiv:1705.01508
J. Ablinger et al. arXiv:1705.07030

Publications: Mathematics

J. Ablinger, JB, 1304.7071 [Contr. to a Book: Springer, Wien]
A. Ablinger et al., DESY 16-147.