The spin-dependent quark beam function at two loops

Hongxi Xing

In collaboration with R. Boughezal, F. Petriello and U. Schubert arXiv: 1704.05457

NORTHWESTERN
QCD Evolution 2017, Jefferson Lab, May 22-26, 2017

Spin configuration of proton

- Proton helicity sum rule

$$
\begin{aligned}
& \qquad \frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g} \\
& \text { quark spin } \quad \Delta \sum=\int_{0}^{1} d x \Delta f_{q}(x) \\
& \text { gluon spin } \quad \Delta G=\int_{0}^{1} d x \Delta f_{g}(x)
\end{aligned}
$$

- Probes are used so far

DIS

SIDIS

pp (RHIC)

- QCD factorization for inclusive hadron production in pp

$$
d \Delta \sigma=\sum_{a, b, c} \Delta f_{a} \otimes \Delta f_{b} \otimes d \Delta \hat{\sigma}_{a b}^{c} \otimes D_{c}^{\pi}
$$

Global extraction of helicity PDFs

- Global fitting (GRV, DSSV, NNPDF ...)

- NLO predictions

Ringer and Vogelsang, PRD 2015

Hinderer, Schlegel, and Vogelsang, 1703.10872

- How to proceed to NNLO?

N -jettiness

- N-jettiness is a global event shape variable designed to veto final state jets

Stewart, Tackmann, Waalewijn 0910. 0467

$$
\tau_{N}=\sum_{k} \min _{i}\left\{\frac{2 p_{i} \cdot q_{k}}{Q_{i}}\right\}\left\{\begin{array}{l}
p_{i} \text { Momenta of initial state beams and final state jets } \\
q_{k} \text { Momenta of all final state partons } \\
Q_{i} \text { Measure of the jet hardness }
\end{array}\right.
$$

- Use N -jettiness to separate N jet event and more-than- N -jet event

- $\tau_{1}=0$ forces an 1-jet final state, q_{k} must be soft or collinear to one of p_{i}
- τ_{1} controls all the IR behaviors for 1-jet, which is universal for any physical IR safe measurement on 1 jets

N -jettiness subtraction

- Introduce $\tau_{N}^{c u t}$ to partition the phase space, identify IR behavior

$$
\begin{aligned}
\sigma_{N N L O}= & \int d \Phi_{N}\left|M_{N}\right|^{2}+\int d \Phi_{N+1}\left|M_{N+1}\right|^{2} \theta_{N}^{<}+\int d \Phi_{N+2}\left|M_{N+2}\right|^{2} \theta_{N}^{<} \\
& +\int d \Phi_{N+1}\left|M_{N+1}\right|^{2} \theta_{N}^{>}+\int d \Phi_{N+2}\left|M_{N+2}\right|^{2} \theta_{N}^{>} \\
\equiv & \sigma_{N N L O}\left(\tau_{N}<\tau_{N}^{c u t}\right)+\sigma_{N N L O}\left(\tau_{N}>\tau_{N}^{c u t}\right) \\
& \theta_{N}^{<}=\theta\left(\tau_{N}^{c u t}-\tau_{N}\right) \quad \theta_{N}^{>}=\theta\left(\tau_{N}-\tau_{N}^{c u t}\right)
\end{aligned}
$$

$\tau_{N}^{c u t}$ has to be small, so we can safely neglect power corrections
Boughezal, Focke, Liu, Petriello (2015); Gaunt, Stahlhofen, Tackmann, Walsh (2015)

- Achievements of NNLO N-jettiness subtraction for LHC physics

$$
\begin{array}{r}
\sigma_{N N L O}=\sigma_{N N L O}\left(\tau_{N}<\tau_{N}^{c u t}\right)+\sigma_{N N L O}\left(\tau_{N}>\tau_{N}^{c u t}\right) \\
\text { SCET } \quad \text { Fixed order NLO, MCFM }
\end{array}
$$

Boughezal, Liu, Petriello, 2016

Impact: reduce the Higgs cross section uncertainty from PDF by 30\%
Boughezal, Guffanti, Petriello, Ubiali, 2017

N -jettiness in polarized collisions

$$
\frac{d \sigma_{L U}}{d \tau_{N}}=\Delta H \otimes \Delta B_{a} \otimes B_{b} \otimes S \otimes\left[\prod_{n}^{N} J_{n}\right]+\cdots
$$

$$
\frac{d \sigma_{L L}}{d \tau_{N}}=\Delta H \otimes \Delta B \otimes S \otimes\left[\prod_{n}^{N} J_{n}\right]+\cdots
$$

- Hard function: two loop virtual corrections, done for DIS and DY!

$$
\Delta H=H^{+}-H^{-}
$$

- Soft function: remains the same as unpolarized (R. Boughezal, X. Liu, F. Petriello, 15)
- Jet function: remains the same as unpolarized (Becher, Neubert 06, Becher, Bell 11)
- Beam function: not available, the only missing ingredient

$$
\Delta B=B^{+}-B^{-}
$$

Polarized quark beam function

- Operator definition
$\Delta B_{q}(t, x, \mu)=\left\langle p_{n}\left(P^{-}\right),+\right| \theta(\omega) \bar{\chi}_{n}(0) \delta\left(t-\omega \hat{p}^{+}\right) \frac{\bar{n} \cdot \gamma \gamma_{5}}{2}\left[\delta\left(\omega-\overline{\mathcal{P}}_{n}\right) \chi_{n}(0)\right]\left|p_{n}\left(P^{-}\right),+\right\rangle$
Composite quark operator
Wilson line

$$
\chi_{n}(y)=W_{n}^{\dagger}(y) \xi_{n}(y) \quad W_{n}(y)=\left[\sum_{\text {perms }} \exp \left(-\frac{g}{\overline{\mathcal{P}}_{n}} \bar{n} \cdot A_{n}(y)\right)\right]
$$

- Renormalization and RGE (double log resummation)

$$
\begin{aligned}
\Delta B_{i}^{b a r e}(t, z) & =\int d t^{\prime} Z_{i}\left(t-t^{\prime}, \mu\right) \Delta B_{i}\left(t^{\prime}, z, \mu\right) \\
\mu \frac{d}{d \mu} \Delta B_{i}\left(t^{\prime}, z, \mu\right) & =\int d t^{\prime} \gamma_{B}^{i}\left(t-t^{\prime}, \mu\right) \Delta B_{i}\left(t^{\prime}, z, \mu\right)
\end{aligned}
$$

- anomalous dimension

$$
\begin{aligned}
& \gamma_{B}^{i}(t, \mu)=-\int d t^{\prime}\left(Z_{i}\right)^{-1}\left(t-t^{\prime}, \mu\right) \mu \frac{d}{d \mu} Z_{i}\left(t^{\prime}, \mu\right) \\
& \int d t^{\prime}\left(Z_{i}\right)^{-1}\left(t-t^{\prime}, \mu\right) Z_{i}\left(t^{\prime}, \mu\right)=\delta(t)
\end{aligned}
$$

Initial state radiation

- Single log resummation: DGLAP for polarized PDFs

$$
\frac{d}{d \ln \mu^{2}} \Delta f_{j}=\Delta P_{j k} \otimes \Delta f_{k}
$$

- Beam function matches to PDFs $t \gg \Lambda_{Q C D}^{2}$

$$
\Delta B_{i}(t, x, \mu)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} \Delta I_{i j}\left(t, \frac{x}{\xi}\right) \Delta f_{j}(\xi, \mu)
$$

t is the virtuality of the parton that enters the hard interaction

- Matching coefficient
$\Delta I_{i j}$ describes initial state radiation, can be computed perturbatively
- Calculate partonic beam function

$$
\Delta B_{i j}(t, z, \mu)=\sum_{k} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} \Delta \mathcal{I}_{i k}\left(t, z^{\prime}, \mu\right) \Delta f_{k j}\left(\frac{z}{z^{\prime}}\right)
$$

- Leading order

$$
\begin{aligned}
\Delta B_{q q}^{(0)}(t, z, \mu) & =\left\langle q_{n}(p),+\right| \theta(\omega) \bar{\chi}_{n}(0) \delta\left(t-\omega \hat{p}^{+}\right) \frac{\bar{n} \cdot \gamma \gamma_{5}}{2}\left[\delta\left(\omega-\overline{\mathcal{P}}_{n}\right) \chi_{n}(0)\right]\left|q_{n}(p),+\right\rangle \\
& =\delta(t) \delta\left(1-\omega / p^{-}\right)
\end{aligned}
$$

$$
\mathcal{I}_{q q}^{(0)}(t, z, \mu)=\mathcal{I}_{\bar{q} \bar{q}}^{(0)}(t, z, \mu)=\delta(t) \delta(1-z)
$$

$$
\mathcal{I}_{q g}^{(0)}(t, z, \mu)=\mathcal{I}_{g q}^{(0)}(t, z, \mu)=0
$$

Next-to-leading order

$\left(\frac{\alpha_{s}}{4 \pi}\right) \Delta B_{q q}^{b a r e(1)}(t, z)=\frac{g^{2}}{N_{c}}\left(\frac{\mu^{2} e^{\gamma_{E}}}{4 \pi}\right)^{\epsilon} \int d \operatorname{PS}^{(1)} \operatorname{Tr}\left[\frac{\bar{n} \cdot \gamma \gamma 5}{2} \ell \cdot \gamma \gamma^{\rho} \mathcal{P}_{R} \rho^{\prime} \cdot \gamma \gamma^{\sigma} \ell \cdot \gamma\right] d \rho \sigma(k) \frac{1}{\ell^{2}} \frac{1}{\ell^{2}} \operatorname{Tr}\left[\operatorname{T}^{\mathrm{a}} \mathrm{T}^{\mathrm{a}}\right]$

- γ_{5} in d-dimension - HVBM scheme

$$
\gamma_{5} \equiv \frac{i}{4!} \epsilon^{\mu \nu \rho \sigma} \gamma_{\mu} \gamma_{\nu} \gamma_{\sigma} \gamma_{\rho} \quad \Longrightarrow\left\{\gamma_{5}, \tilde{\gamma}_{\mu}\right\}=0, \quad\left[\gamma_{5}, \hat{\gamma}_{\mu}\right]=0
$$

Maintain the four-dimension definition
anticommute in 4-dimension commute in d-4 dimension

- Final state phase

$$
\begin{aligned}
\int d \mathrm{PS}^{(1)} & =\int \frac{d^{d} k}{(2 \pi)^{d-1}} d^{d} \ell \delta\left(k^{2}\right) \delta\left(\omega-\ell^{-}\right) \delta\left(t-\omega k^{+}\right) \delta^{d}(p-k-\ell) \\
& =\frac{1}{(4 \pi)^{2-\epsilon}} \frac{1}{\Gamma(-\epsilon)} \frac{1}{\omega} \int_{0}^{t \frac{1-z}{z}} d \hat{k}_{\perp}^{2}\left(\hat{k}_{\perp}^{2}\right)^{-1-\epsilon} \longleftarrow \mathrm{d}-4 \text { dimension momentum }
\end{aligned}
$$

- Bare quark beam function at NLO

$$
\begin{aligned}
\Delta B_{q q}^{\text {bare }(1)}(t, z)= & \begin{array}{l}
\frac{4}{\epsilon^{2}} C_{F} \delta(t) \delta(1-z)-\frac{4}{\epsilon} C_{F} \frac{1}{\mu^{2}} \mathcal{L}_{0}\left(\frac{t}{\mu^{2}}\right) \delta(1-z)+\frac{3}{\epsilon} C_{F} \delta(t) \delta(1-z) \\
\\
\\
+4 C_{F} \frac{1}{\mu^{2}} \mathcal{L}_{1}\left(\frac{t}{\mu^{2}}\right) \delta(1-z)+2 C_{F} \frac{1}{\mu^{2}} \mathcal{L}_{0}\left(\frac{t}{\mu^{2}}\right) C_{F} \delta(t) \Delta P_{q q}^{(0)}(1-z)\left(1+z^{2}\right) \\
\\
\end{array}+2 C_{F} \delta(t)\left[\mathcal{L}_{1}(1-z)\left(1+z^{2}\right)-\frac{1+z^{2}}{1-z} \ln z-3(1-z)-\frac{\pi^{2}}{6} \delta(1-z)\right]
\end{aligned}
$$

- renormalized quark beam function at NLO

$$
\begin{aligned}
\Delta B_{q q}^{(1)}\left(t, z, \mu^{2}\right)= & -\frac{2}{\epsilon} \delta(t) \Delta P_{q q}^{(0)}(z)+4 C_{F} \frac{1}{\mu^{2}} \mathcal{L}_{1}\left(\frac{t}{\mu^{2}}\right) \delta(1-z)+2 C_{F} \frac{1}{\mu^{2}} \mathcal{L}_{0}\left(\frac{t}{\mu^{2}}\right) \mathcal{L}_{0}(1-z)\left(1+z^{2}\right) \\
& +2 C_{F} \delta(t)\left[\mathcal{L}_{1}(1-z)\left(1+z^{2}\right)-\frac{1+z^{2}}{1-z} \ln z-3(1-z)-\frac{\pi^{2}}{6} \delta(1-z)\right]
\end{aligned}
$$

- Matching coefficient at NLO

$$
\Delta \tilde{I}_{q q}^{(1)}(z)=2 C_{F}\left[\mathcal{L}_{1}(1-z)\left(1+z^{2}\right)-\frac{1+z^{2}}{1-z} \ln z-3(1-z)-\frac{\pi^{2}}{6} \delta(1-z)\right] \quad \text { Finite! }
$$

NNLO

- q' -> q as an example

$$
\begin{gathered}
B_{q q^{\prime}}^{\text {bare,(2) }}(t, z)=\sum_{i} c_{i}^{\prime} \mathcal{I}_{i} \\
\mathcal{I}_{i}=\mathcal{I}_{i}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}\right)=C \int \frac{d^{d} k_{1}}{(2 \pi)^{(d-3)}} \frac{d^{d} k_{2}}{(2 \pi)^{(d-3)}} \frac{1}{D_{1}^{i_{1}} D_{2}^{i_{2}} D_{3}^{i_{3}} D_{4}^{i_{4}} D_{5}^{i_{5}} D_{6}^{i_{6}} D_{7}^{i_{7}}}
\end{gathered}
$$

- IBP reduction

$$
\Delta B_{q q^{\prime}}^{b a r e(2)}(t, z)=C_{F} T_{R}\left(\frac{\mu^{2} e^{\gamma_{E}}}{4 \pi}\right)^{2 \epsilon} \sum_{i=1}^{4} C_{i}(t, z, \epsilon) I_{i}^{R R}
$$

- master integrals

$$
\begin{aligned}
& I_{1}^{R R}=\int d \mathrm{PS}^{(2)} \times 1=4 \frac{(16 \pi)^{-3+2 \epsilon}}{\omega \Gamma\left(\frac{3}{2}-\epsilon\right)^{2}} t^{1-2 \epsilon}\left(\frac{1-z}{z}\right)^{1-2 \epsilon}, \\
& I_{2}^{R R}=\int d \mathrm{PS}^{(2)} \times \frac{1}{\bar{n} \cdot\left(p-k_{1}\right)}=4 \frac{(16 \pi)^{-3+2 \epsilon}}{\omega^{2} \Gamma\left(\frac{3}{2}-\epsilon\right)^{2}} t^{1-2 \epsilon}(1-z)^{1-2 \epsilon} z^{2 \epsilon}{ }_{2} F_{1}(1,1-\epsilon ; 2-2 \epsilon ; 1-z), \\
& I_{3}^{R R}=\int d \mathrm{PS}^{(2)} \times \frac{1}{\left(p-k_{1}-k_{2}\right)^{2}}=-4 \frac{(16 \pi)^{-3+2 \epsilon}}{\omega \Gamma\left(\frac{3}{2}-\epsilon\right)^{2}} t^{-2 \epsilon}(1-z)^{1-2 \epsilon} z^{2 \epsilon}{ }_{2} F_{1}(1,1-\epsilon ; 2-2 \epsilon ; 1-z), \\
& I_{4}^{R R}=\int d \mathrm{PS}^{(2)} \times \frac{1}{\left(p-k_{1}-k_{2}\right)^{2}} \frac{1}{\bar{n} \cdot\left(p-k_{1}\right)}=-4 \frac{(16 \pi)^{-3+2 \epsilon}}{\omega^{2} \Gamma\left(\frac{3}{2}-\epsilon\right)^{2}} t^{-2 \epsilon}(1-z)^{1-2 \epsilon} z^{1+2 \epsilon}{ }_{2} F_{1}(1,1-\epsilon ; 2-2 \epsilon ; 1-z .
\end{aligned}
$$

NNLO

- q^{\prime}-> q as an example

$$
\begin{gathered}
B_{q q^{\prime}}^{\text {bare }(2)}(t, z)=\sum_{i} c_{i}^{\prime} \mathcal{I}_{i} \\
\mathcal{I}_{i}=\mathcal{I}_{i}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}\right)=C \int \frac{d^{d} k_{1}}{(2 \pi)^{(d-3)}} \frac{d^{d} k_{2}}{(2 \pi)^{(d-3)}} \frac{1}{D_{1}^{i_{1}} D_{2}^{i_{2}} D_{3}^{i_{3}} D_{4}^{i_{4}} D_{5}^{i_{5}} D_{6}^{i_{6}} D_{7}^{i_{7}}}
\end{gathered}
$$

- IBP reduction

$$
\Delta B_{q q^{\prime}}^{b a r e(2)}(t, z)=C_{F} T_{R}\left(\frac{\mu^{2} e^{\gamma_{E}}}{4 \pi}\right)^{2 \epsilon} \sum_{i=1}^{4} C_{i}(t, z, \epsilon) I_{i}^{R R}
$$

- No UV divergence
- IR divergence

$$
-\frac{2}{\epsilon^{2}} \delta(t) \Delta P_{q g}^{(0)}(z) \otimes \Delta P_{g q^{\prime}}^{(0)}(z)+\frac{2}{\epsilon} \delta(t) \Delta P_{q q^{\prime}}^{(1)}(z)+\frac{2}{\epsilon} \Delta \mathcal{I}_{q g}^{(1)}(t, z, \mu) \otimes \Delta P_{g q^{\prime}}^{(0)}(z)
$$

- Finite matching coefficient

gluon -> quark

- Real-real

- Real-virtual

- virtual-virtual: scaleless and vanish
- UV divergence 1: alphas renormalization

$$
\begin{aligned}
& Z_{\alpha}=1-\frac{\alpha_{s}}{4 \pi} \frac{\beta_{0}}{\epsilon}+\mathcal{O}\left(\alpha_{g}^{2}\right) \\
& \Delta B_{q g}^{\text {bare }(2)}(t, z)=\Delta B_{q g}^{\text {bare }(2)}\left(\alpha_{g}^{(0)}, t, z\right)-\frac{\beta_{0}}{\epsilon} \Delta B_{q g}^{\text {bare }(1)}\left(\alpha_{s}^{(0)}, t, z\right)
\end{aligned}
$$

- UV divergence 2: beam function renormalization

$$
\Delta B_{q g}^{(2)}(t, z, \mu)=\Delta B_{q g}^{\text {bare }(2)}(t, z)-\int d t^{\prime} Z_{q}^{(1)}\left(t-t^{\prime}, \mu\right) \Delta B_{q g}^{(1)}\left(t^{\prime}, z, \mu\right)
$$

- IR divergence cancels with PDFs

$$
\begin{aligned}
\Delta \mathcal{I}_{q g}^{(2)}(t, z, \mu) & =\Delta B_{q g}^{(2)}(t, z, \mu)-4 \delta(t) \Delta f_{q g}^{(2)}(z)-2 \Delta \mathcal{I}_{q q}^{(1)}(t, z, \mu) \otimes \Delta f_{q g}^{(1)}(z)-2 \Delta \mathcal{I}_{q g}^{(1)}\left(t, z^{\prime}, \mu\right) \otimes \Delta f_{g g}^{(1)}(z) \\
\Delta f_{i j}^{(1)}(z) & =-\frac{1}{\epsilon} \Delta P_{i j}^{(0)}(z), \\
\Delta f_{i j}^{(2)}(z) & =\frac{1}{2 \epsilon^{2}} \sum_{k} \Delta P_{i k}^{(0)}(z) \otimes \Delta P_{k j}^{(0)}(z)+\frac{\beta_{0}}{4 \epsilon^{2}} \Delta P_{i j}^{(0)}(z)-\frac{1}{2 \epsilon} \Delta P_{i j}^{(1)}(z)
\end{aligned}
$$

- Finite matching coefficient

quark -> quark

One more renormalization: scheme transformation

- helicity conservation requires $\Delta I_{q q}^{(1)}=I_{q q}^{(1)}$

However, in our naïve calculation by using HV scheme

$$
\Delta \tilde{I}_{q q}^{(1)} \neq I_{q q}^{(1)}
$$

- Drawback of HV scheme: Violation of helicity conservation

Due to the broken of anti-commutativity of gamma 5 and Dirac matrix in d-dimension

$$
\left\{\gamma_{5}, \tilde{\gamma}_{\mu}\right\}=0, \quad\left[\gamma_{5}, \hat{\gamma}_{\mu}\right]=0
$$

- Fixed by extra renormalization constant Z^{5}

$$
\begin{aligned}
& \Delta B=\left(\Delta \tilde{I} \otimes \bar{Z}^{5}\right) \otimes\left(Z^{5} \otimes \Delta \tilde{f}\right)=\Delta I \otimes \Delta f \\
& \Delta I^{(1)}=\Delta \tilde{I}^{(1)} \otimes \bar{Z}^{5}=\Delta \tilde{I}^{(1)}-z_{q q}^{(1)}=I^{(1)}
\end{aligned}
$$

$$
z_{q q}^{(1)}=-8 C_{F}(1-z)
$$

NNLO scheme transformation

- helicity conservation requires $\Delta I_{q \bar{q}}^{(V, 2)}=-I_{q q}^{(V, 2)}$

Again, not true in naïve calculation

- Scheme transformation - splitting functions
$\Delta P_{q q}^{(1)}=\Delta \tilde{P}_{q q}^{(1)}-\frac{1}{4} \beta_{0} z_{q q}^{(1)}$
$\Delta P_{q g}^{(1)}=\Delta \tilde{P}_{q g}^{(1)}+\frac{1}{2} z_{q q}^{(1)} \otimes \Delta \tilde{P}_{q g}^{(0)}$
- Scheme transformation - matching coefficient

$$
\begin{array}{rlr}
\Delta I_{q q}^{(2, V)}=\Delta \tilde{I}_{q q}^{(2, V)}-\Delta \tilde{I}_{q q}^{(1)} \otimes z_{q q}^{(1)}+z_{q q}^{(1)} \otimes z_{q q}^{(1)}-z_{q q}^{(2, V)} \\
\Delta I_{q \bar{q}}^{(2, V)}=\Delta \tilde{I}_{q \bar{q}}^{(2, V)}-z_{q \bar{q}}^{(2, V)} & \Delta I_{q_{i} q_{j}}^{(2)}=\delta_{i j} \Delta I_{q q}^{(2, V)}+\Delta I_{q q}^{(2, S)}
\end{array}
$$

$$
\Delta I_{q q}^{(2, S)}=\Delta \tilde{I}_{q q}^{(2, S)}-z_{q q}^{(2, S)}
$$

DIS NLO

- Above cut $\quad \theta_{N}^{>}=\theta\left(\tau_{N}-\tau_{N}^{c u t}\right)$
- Only real radiation contributes, the radiated gluon/quark is resolved, this region of phase space contains the tree diagram to the 2 jet process.
- Tree level calcualtion
- Below cut $\theta_{N}^{<}=\theta\left(\tau_{N}^{c u t}-\tau_{N}\right)$
- Virtual: τ_{N} is zero
- Real: the radiated gluon/quark is unresolved. Purely IR divergent region
- Calculate this part from SCET

$$
\frac{d \sigma_{L L}}{d \tau_{N}}=\Delta H \otimes \Delta B \otimes S \otimes\left[\prod_{n}^{N} J_{n}\right]+\cdots
$$

DIS NNLO

- Above cut $\quad \theta_{N}^{>}=\theta\left(\tau_{N}-\tau_{N}^{c u t}\right)$
- In RR: at lease one of the two additional radiations that appear is resolved, this region of phase space contains the NLO correction to the 2 jet process.
- In RV: the radiation has to be hard, this is NLO virtual correction to 2 jet production.
- Recycle this part from available NLO tool.
- Below cut $\theta_{N}^{<}=\theta\left(\tau_{N}^{c u t}-\tau_{N}\right)$
- $\mathrm{VV}: \tau_{N}$ is zero
- RV and RR: both additional radiations are unresolved. Purely IR divergent region
- two loop, soft and collinear radiation
- Calculate this part from SCET

Summary

- We calculated the matching coefficients between the polarized quark beam function and PDF at two-loop order.
- Our results are an important ingredient for high order calculations in using N -jettiness subtraction scheme, as well as for the resummation for observables such as global event shape.
- Several by-products: independent check on unpolarized quark beam function; two-loop polarized quark splitting function; two loop Z^{5} renormalization factor in HV scheme.
- More phenomenological results will come soon, stay tuned.

Summary

- We calculated the matching coefficients between the polarized quark beam function and PDF at two-loop order.
- Our results are an important ingredient for high order calculations in using N -jettiness subtraction scheme, as well as for the resummation for observables such as global event shape.
- Several by-products: independent check on unpolarized quark beam function; two-loop polarized quark splitting function; two loop Z^{5} renormalization factor in HV scheme.
- More phenomenological results will come soon, stay tuned.

