## OVERVIEW OF EXPERIMENTAL RESULTS FROM HERMES

Contalbrigo Marco INFN Ferrara

QCD Evolution Workshop May 14, 2011 JLab

### **Quantum Phase-space Distributions of Quarks**





#### **The HERMES Experiment**





#### Contalbrigo M.

#### QCD Evolution, 14th May 2012, JLab

## **Generalized parton distributions**



Encompass parton distributions and form factors

longitudinal momentum and transverse spatial position correlated information

Access OAM  $L_q = J_q - \frac{1}{2}\Delta\Sigma$  via Ji sum rule

 $J_q = \lim_{t \to 0} \int_{A} dx \, x \Big[ H_q(x,\xi,t) + E_q(x,\xi,t) \Big]$ 

- Sensitivity of different final states to different GPDs
- <u>For spin-1/2 target</u> 4 chiral-even
   leading-twist quark GPDs: H,E,H,E
- $H, \widetilde{H}$  conserve nucleon helicity,  $E, \widetilde{E}$  involve nucleon helicity flip
- DVCS  $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons  $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons  $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

#### The DVCS Landscape



 ${\mathcal H}$ 

#### The DVCS Landscape



Contalbrigo M.

QCD Evolution, 14th May 2012, JLab

 ${\mathcal H}$ 

### The Pure DVCS Sample

 ${\mathcal H}$ 



### Leading Twist TMDs



#### quark polarisation

#### Number density and helicity:

Focusing here in transverse momentum dependence

#### **Transversity:**

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

#### quark polarisation



#### **Off-diagonal elements:**

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

#### **T-odd elements:**

- sign change between DY and SIDIS
  - universality of TMDs

Strict prediction from TMDs + QCD !

#### The SIDIS Case

quark polarisation N/q U Т **SIDIS cross section** (transversely pol. target):  $h_1^{\perp}$   $\bullet$  -  $\circ$  $f_1$  • nucleon polarisation U Number **Boer-Mulders** Density TMD factorization for P<sub>h1</sub><<Q  $h_{1L}^{\perp}$  $g_1 \longrightarrow - \infty$ Helicity Worm-gear  $f \otimes D = \int_{a} e_{q}^{2} d^{2} p_{T} d^{2} k_{T} \dots w(k_{T}, p_{T}) f^{q}(x, k_{T}^{2}) D^{q}(z, p_{T}^{2})$  $f_{IT}^{\perp} \stackrel{\circ}{\bullet} - \underbrace{\circ}_{IT} \stackrel{\circ}{\bullet} - \underbrace{\circ}_{IT} \stackrel{h_{I}}{\bullet} - \underbrace{\circ}_{Transversity}$ Involved phenomenology due to the  $h_{IT}^{\perp}$   $\widehat{\rho}$  -  $\widehat{\sigma}$ **Sivers** Worm-gear convolution over transverse momentum  $h_1 \otimes H_1^\perp$ Pretzelosity  $\frac{d^{\circ}\sigma}{dx \, dy \, dz \, d\phi_{S} d\phi \, dP_{h\perp}^{2}} \overset{Leading}{\propto} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$ e'(E') e(E)  $h_{1T}^{\perp} \otimes H_1^{\perp}$  $f_{1T}^{\perp} \otimes D_1$ FF  $\sigma$  $+S_T \left\{ \varepsilon \sin(\phi + \phi_S) F_{UT}^{\sin(\phi + \phi_S)} + \varepsilon \sin(3\phi - \phi_S) F_{UT}^{\sin(3\phi - \phi_S)} \right\}$ X P-DF  $g_{1T}^{\perp} \otimes D_1$  $+S_T \lambda_e \left\{ \sqrt{1-\varepsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} \right\} + \dots$  $\sigma^{eq \rightarrow eq} \times FF$ 

#### **First TMD Evidences**

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$ 

2005: First evidence from HERMES measuring SIDIS on proton

A. Airapetian et al, Phys. Rev. Lett. 94 (2005) 012002

SIDIS:

ep→e'hX



Non-zero transversity !! Non-zero Collins function !!

Non-zero Sivers function !!

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$ 

 $\propto h_1 \otimes H_1^{\perp}$ 

## Leading Twist TMDs



# NUMBER DENSITY





## **The Hadron Multiplicities**

#### LO interpretation:

$$M_N^h = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}$$

SIDIS data constrain fragmentation at low c.m. energy and bring enhanced flavor sensitivity

Proton-deuteron asymmetry:

$$A_{d-p}^{h} = \frac{M_d^h - M_p^h}{M_d^h + M_p^h}$$

Reflects different flavor content Correlated systematics cancels



 $f_1 \cdot D_1$ 

## The $P_h$ -unintegrated Multiplicities $f_1 \otimes D_1$

Disentanglement of z and  $P_{h \perp}$ : access to the transverse intrinsic quark  $k_T$  and fragmentation  $p_T$ .

i.e. from gaussian anstaz

$$\langle P_{h\perp}^2 \rangle = z^2 \langle k_T^2 \rangle + \langle p_T^2 \rangle$$



### **The Evolution**



QCD Evolution, 14<sup>th</sup> May 2012, JLab

 $f_1 \otimes D_1$ 

# HELICITY





### A<sub>1</sub> Double-spin Asymmetry

Refined studies extending the standard approach published *in Phys. Rev. Lett.* 92 (2004) 012005

 $A_1(\mathbf{X}, P_{h\perp})$ 2D - dependence  $A_{1,p}^{\pi^+}$  $A_{1,d}^{K^+}$  $A_{1,d}^{\pi^+}$ 0.6 0.6 0.6 △ 0.023 < x < 0.055 **HERMES** Preliminary ♦ 0.055 < x < 0.100</p> 0.4 □ 0.100 < x < 0.600 0.4 0.4  $A_{1}^{\text{Fit}}(\mathbf{X}, \mathbf{p}_{h_{\perp}}) = C_{1} + C_{2} \mathbf{X}$ 0.2 0.2 0.2 0.0 0.0 0.0 -0.2 -0.2 -0.2  $\chi^2/16\text{DF} = 1.85$  $\chi^2/16\text{DF} = 2.48$  $v^2/16DF = 0.717$  $p_{h_{\perp}}$ p<sub>h⊥</sub> 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.0  $A_{1,d}^{K^-}$  $A_{1,p}^{\pi^{-}}$  $A_{1.d}^{\pi^{-}}$ 0.6 0.6 0.6 0.4 0.4 0.4 ģ 0.2 0.2 0.2 0.0 0.0 0.0 -0.2 -0.2 -0.2  $v^2/16DF = 0.881$  $\chi^2/16\text{DF} = 1.84$ p<sub>h⊥</sub> *p*<sub>h⊥</sub> 0.8 0.6 0.8 0.0 0.2 0.6 0.8 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.4

Sensitive to differences in transverse momentum dependence of  $g_1$  and  $f_1$ 

 $g_1 \otimes D_1$ 

No significant  $P_{h\perp}$  dependence observed

Contalbrigo M.

#### QCD Evolution, 14th May 2012, JLab

## The A<sup>cos(2φ)</sup> Asymmetry



 $g_{1L} \otimes D_1$ 

# TRANSVERSITY





# (THE COLLINEAR MISSING PIECE)

## **The Collins Amplitude**

#### Pion signals fulfill isospin symmetry



#### Clear & opposite signals for charged pions:

With u-dominance:  $\pi^+(u\overline{d}) = \pi^-(\overline{u}d)$  opposite sign for favored and unfavored Collins

Not in contradiction with Collins at BELLE



Not enough statistics to exclude twist-4



## **The Collins Amplitude**



K<sup>+</sup> signal larger than  $π^+$ role of sea quarks k<sub>T</sub> dependence in FFs higher twists effects

#### Peculiar K<sup>-</sup>

no valence quark in common with proton



### **The Collins Amplitude**





Contalbrigo M.

QCD Evolution, 14th May 2012, JLab

#### **Two Hadron Asymmetries**



 $h_1 \otimes H_1^{\triangleleft}$ 

## **Transversity Signals**



# CAHN & BOER-MULDERS



Naïve-T-odd Chirally-odd Spin effect in unpolarized reactions

(THE NEGLECTED EFFECTS)

#### **The Azimuthal Modulation**



Contalbrigo M.

dơ/d∲<sub>h</sub> (arbitrary units)

QCD Evolution, 14<sup>th</sup> May 2012, JLab

 $h_1^{\perp} \otimes H_1^{\perp}$ 

## **Unpolarized Cross-section**



### **Unpolarized Cross-section**



Contalbrigo M.

QCD Evolution, 14th May 2012, JLab

#### Difference in pion charge



#### **Proton vs Deuteron Target**



Quark d vs u contribution ? DATA support Boer-Mulders of same sign for u and d

#### **Kaon Signals**

Striking difference versus pions !

 $2\left<\cos(2\phi_{h}
ight>_{UU}$ 

 $2\left<\cos(2\phi_{h}
ight)_{UU}$ 

- Role of the sea
- Strange Collins
- Sub-leading twists





Unpolarized cross-section: any precision measurement should account for these effects

Х

#### The SIDIS cos2¢ Dependence



Contalbrigo M.

 $h_1^{\perp} \otimes H_1^{\perp}$ 

#### 



 $f_1 \otimes D_1$ 



(THE TMD CHALLENGE)

#### **The Sivers Amplitude**

#### Pion electro-production on proton:

- $\checkmark\,$  Clear singal for  $\pi^{+}$  and for pion difference
- Isospin symmetry fulfilled





## **The Sivers Signals**



QCD Evolution, 14th May 2012, JLab

 $f_{1T}^{\perp} \otimes D_1$ 

## **The Sivers Challenges**



QCD Evolution, 14<sup>th</sup> May 2012, JLab

 $f_{1T}^{\perp} \otimes D_1$ 

#### The Inclusive Hadron SSA



Contalbrigo M.

QCD Evolution, 14<sup>th</sup> May 2012, JLab

#### **Inclusive Hadron SSA in SIDIS**



Contalbrigo M.

PRETZELOSITY



Sensitive to the D-wave component and the non spherical shape of the nucleon

(THE D-WAVE)

## **The Pretzelosity**



Contalbrigo M.

QCD Evolution, 14th May 2012, JLab

 $h_{1T}^{\perp} \otimes H_1^{\perp}$ 

# WORM GEAR



(THE STANDARD OAM EFFECT)

## The A<sup>cos(φ-φ<sub>s</sub>)</sup> Asymmetry





#### Hint of non-zero signals

Statistics not enough to investigate relations supported by many theoretical models:

 $g_{1T}^q = -h_{1L}^{\perp q}$  (supported by Lattice QCD and first data)  $g_{1T}^{q(1)}(x) \stackrel{WW-type}{\approx} x \int \frac{dy}{v} g_1^q(y)$ 

(Wandura-Wilczek type approximation)



 $g_{1T}^{\perp} \otimes D_1$ 

## The A<sup>sin(2φ)</sup> Asymmetry



#### Statistics not enough to investigate relations supported by many theoretical models:

 $g_{1T}^q = -h_{1T}^{\perp q}$  (supported by Lattice QCD and first data)

 $h_{1L}^{q(1)}(x) \approx -x^2 \int \frac{dy}{v^2} h_1^q(y)$  (Wandura-Wilczek type approximation)

 $h_{1L}^{\perp} \otimes H_1^{\perp}$ 



## The A<sup>sin(\phi)</sup> Asymmetry



Non zero

Negligible contribution from transverse target spin (w.r.t. virtual photon):

$$F_{UL}^{\sin(\phi)} \propto \left[h_{1L}^{\perp} \otimes H_1^{\perp} + g_{1L} \otimes H_1^{\perp} + \ldots\right] / Q$$

(Wandura-Wilczek type approximation)



Contalbrigo M.

QCD Evolution, 14<sup>th</sup> May 2012, JLab

## The A<sup>sin(\phi)</sup> Asymmetry



Non zero

Negligible contribution from transverse target spin (w.r.t. virtual photon):

$$F_{UL}^{\sin(\phi)} \stackrel{WW}{\propto} \Big[ e \otimes H_1^{\perp} + \ldots \Big] / Q$$

(Wandura-Wilczek type approximation)



 $e \otimes H_1^{\perp}$ 

The A<sup>sin(φ<sub>s</sub>)</sup> Asymmetry



Non zero

Higher-twist term with manifest Q<sup>2</sup> dependence:

$$F_{UL}^{\sin(\phi)} \propto \left[ h_1 \otimes H_1^{\perp} + \ldots \right] / Q$$

(Wandura-Wilczek type approximation)



Contalbrigo M.

QCD Evolution, 14th May 2012, JLab

## The SIDIS Cross-section

$$\frac{d^{6}\sigma}{dx \, dy \, dz \, d\phi_{S} d\phi \, dP_{h\perp}^{2}} \propto \left\{ F_{UU,T} + \varepsilon F_{UU,L} \right\}$$

+ 
$$\left\{\sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi)F_{UU}^{\cos(\phi)} + \varepsilon\cos(2\phi)F_{UU}^{\cos(2\phi)}\right\} + \lambda_{\ell}\left\{\sin(\phi)F_{LU}^{\sin(\phi)}\right\}$$

$$S_T \left\{ \sin(\phi - \phi_S) (F_{UT,T}^{\sin(\phi - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi - \phi_S)}) + \varepsilon \sin(\phi + \phi_S) F_{UT}^{\sin(\phi + \phi_S)} + \varepsilon \sin(3\phi - \phi_S) F_{UT}^{\sin(3\phi - \phi_S)} \right\} + \varepsilon \sin(\phi - \phi_S) F_{UT}^{\sin(\phi - \phi_S)}$$

$$S_{T}\left\{\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi_{S})F_{UT}^{\sin(\phi_{S})}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi-\phi_{S})F_{UT}^{\sin(2\phi-\phi_{S})}\right\}+$$

$$S_{T}\lambda_{e}\left\{\sqrt{1-\varepsilon^{2}}\cos(\phi - \phi_{S})F_{LT}^{\cos(\phi - \phi_{S})} + \left(\sqrt{2\varepsilon(1-\varepsilon)}\cos(\phi_{S})F_{LT}^{\cos(\phi_{S})} + \cos(2\phi - \phi_{S})F_{LT}^{\cos(2\phi - \phi_{S})}\right)\right\}$$

$$+ S_{L} \left\{ \sqrt{2\varepsilon(1+\varepsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} + \varepsilon \sin(2\phi) F_{UL}^{\sin(2\phi)} \right\} + S_{L} \lambda_{\ell} \left\{ \sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos(\phi) F_{LL}^{\cos(\phi)} \right\}$$

## The Leading Terms

$$\frac{d^{6}\sigma}{dx \, dy \, dz \, d\phi_{s}d\phi \, dP_{h\perp}^{2}} \propto \left\{F_{UU,T} + \varepsilon F_{UU,L}\right\}$$

$$+ \left\{\sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi)F_{UU}^{\cos(\phi)} + \varepsilon\cos(2\phi)F_{UU}^{\cos(2\phi)}\right\} + \lambda_{\ell}\left\{\sin(\phi)F_{LU}^{\sin(\phi)}\right\}$$

$$S_{T}\left\{\sin(\phi-\phi_{S})(F_{UT,T}^{\sin(\phi-\phi_{S})}+\varepsilon F_{UT,L}^{\sin(\phi-\phi_{S})})+\varepsilon \sin(\phi+\phi_{S})F_{UT}^{\sin(\phi+\phi_{S})}+\varepsilon \sin(3\phi-\phi_{S})F_{UT}^{\sin(3\phi-\phi_{S})}\right\}+$$

$$f_{1T}^{\perp}\otimes D_{1}$$

$$S_{T}\left\{\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi_{S})F_{UT}^{\sin(\phi_{S})}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi-\phi_{S})F_{UT}^{\sin(2\phi-\phi_{S})}\right\}+$$

$$g_{1T}^{\perp}\otimes D_{1}$$

$$S_{T}\lambda_{e}\left\{\sqrt{1-\varepsilon^{2}}\cos(\phi-\phi_{S})F_{LT}^{\cos(\phi-\phi_{S})}+\left(\sqrt{2\varepsilon(1-\varepsilon)}\cos(\phi_{S})F_{LT}^{\cos(\phi_{S})}+\cos(2\phi-\phi_{S})F_{LT}^{\cos(2\phi-\phi_{S})}\right)\right\}$$

$$h_{1L}^{\perp}\otimes H_{1}^{\perp}$$

$$+S_{L}\left\{\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi)F_{UL}^{\sin(\phi)}+\varepsilon\sin(2\phi)F_{UL}^{\sin(2\phi)}\right\}+S_{L}\lambda_{e}\left\{\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos(\phi)F_{LL}^{\cos(\phi)}\right\}$$

## **The Higher-twist Terms**

$$\frac{d^{6}\sigma}{dx \, dy \, dz \, d\phi_{S} d\phi \, dP_{h\perp}^{2}} \propto \left\{ F_{UU,T} + \varepsilon F_{UU,L} \right\}$$

$$f_{1} \otimes D_{1} \dots \qquad f_{1} \otimes D_{1} \dots \qquad e \otimes H_{1}^{\perp} \dots$$

$$+ \left\{ \sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi)F_{UU}^{\cos(\phi)} + \varepsilon\cos(2\phi)F_{UU}^{\cos(2\phi)} \right\} + \lambda_{\ell} \left\{ \sin(\phi)F_{LU}^{\sin(\phi)} \right\}$$

$$S_T \left\{ \sin(\phi - \phi_S) (F_{UT,T}^{\sin(\phi - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi - \phi_S)}) + \varepsilon \sin(\phi + \phi_S) F_{UT}^{\sin(\phi + \phi_S)} + \varepsilon \sin(3\phi - \phi_S) F_{UT}^{\sin(3\phi - \phi_S)} \right\} + \varepsilon \sin(\phi - \phi_S) F_{UT}^{\sin(\phi - \phi_S)} + \varepsilon \cos(\phi - \phi$$

$$S_{T}\left\{\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi_{S})F_{UT}^{\sin(\phi_{S})} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi - \phi_{S})F_{UT}^{\sin(2\phi - \phi_{S})}\right\} + h_{1} \otimes H_{1}^{\perp} \dots$$
$$S_{T}\lambda_{e}\left\{\sqrt{1-\varepsilon^{2}}\cos(\phi - \phi_{S})F_{LT}^{\cos(\phi - \phi_{S})} + \left(\sqrt{2\varepsilon(1-\varepsilon)}\cos(\phi_{S})F_{LT}^{\cos(\phi_{S})} + \cos(2\phi - \phi_{S})F_{LT}^{\cos(2\phi - \phi_{S})}\right)\right\}$$

$$+S_{L}\left\{\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi)F_{UL}^{\sin(\phi)}+\varepsilon\sin(2\phi)F_{UL}^{\sin(2\phi)}\right\}+S_{L}\lambda_{\ell}\left\{\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos(\phi)F_{LL}^{\cos(\phi)}\right\}$$



- HERMES has been a precursor experiment for TMDs and GPDs
- Many innovative results in both fields
- Data analysis still ongoing
- Several preliminary results close to be published
- New results on queque
  - beam spin asymmetry in the semi-inclusive kaon sector
  - semi-inclusive di-hadron analysis
  - exclusive reactions



#### Hard Exclusive $\rho^0$ Meson Production



QCD Evolution, 14<sup>th</sup> May 2012, JLab

#### Hard Exclusive $\rho^0$ Meson Production



$$A_{UT}^{\gamma^*}(\phi,\phi_s) = rac{{
m Im}\,n_{00}^{00}}{u_{00}^{00}}$$



SDME values

QCD Evolution, 14th May 2012, JLab