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n QCD factorization: collinear .vs. TMD
n Concepts: evolution, resummation, and their connection
n Collinear factorization: DGLAP evolution = resummation of single 

logarithms
n TMD factorization: QCD evolution and resummation

n Evolution of TMDs = resummation of double logarithms
n Illustration of unpolarized TMDs

n Evolution of Sivers function
n Difference between SIDIS and DY regarding sign change
n Perturbative Y-term

n Phenomenology (preliminary)
n Summary
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Outline: whenever there is a evolution, there is a resummation
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QCD factorization: a way to probe hadron structure

n We want to understand hadron structure in terms of quarks and 
gluons
n longitudinal momentum distribution: collinear PDFs
n transverse momentum distribution: TMDs

n To extract information on hadron structure, we send a probe and 
measure the outcome of the collisions
n in order to trace back what’s inside hadron from the outcome of the collisions, 

we rely on QCD factorization

n QCD factorization
n collinear factorization: pp→h+X at high pt
n TMD factorization: SIDIS, DY, e+e-→h1h2+X
n They are closely related to each other
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DIS as an example

n Deep Inelastic Scattering (DIS)

n Hadronic tensor in perturbative expansion

n Leading order factorization: parton model
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QCD dynamics beyond leading order

n Radiative corrections
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v                     intermediate quark is on-shell
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Factorization: separation of short- from long-distance
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Scale-dependence of PDFs

n Logarithmic contributions into parton distributions

n Going to even higher orders: QCD resummation of single logs
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DGLAP evolution = resummation of single logs

n Evolution = Resum all the gluon radiation

n By solving the evolution equation, one resums all the single 
logarithms of 
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Similar single logs for evolution of twist-3 correlation functions
n Qiu-Sterman function: first kt-moment of Sivers function

n Another twist-3 correlation function: first kt-moment of Boer-Mulders 
function
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splitting kernel for unpolarized PDFs

splitting kernel for transversity

Kang-Qiu, arXiv: 1205.1019
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TMD factorization

n Example: SIDIS (two scales - Q and qt)
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Ji-Ma-Yuan, 2005
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Evolution of TMDs follow Collins-Soper evolution

n Evolution of collinear PDFs follow the usual DGLAP-type evolution 
equation, which is equivalent to resum the single-logarithmic 
contributions to all order

n Evolution of TMDs follow Collins-Soper-type evolution equation, which 
is equivalent to resum the double-logarithmic contributions to all 
order, which is usually more difficult
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SIDIS cross section

n in momentum space:

n in b-space:

n TMD quark distribution and fragmentation functions contain double logarithms, 
others contain only single logarithms
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Evolution of TMDs 

n Since one now needs to resum double logarithms, typically it involves 
two steps:
n Energy evolution of the unpolarized PDFs

n Since it contains double logarithms, the kernel still contains single logarithms

n Solving these two equations, equivalently one resums the double logs
n First for the evolution equation of K and G

n Then feed the solution back to the energy evolution equation

13

µ
d

dµ
K(µ, b) = −γK = −µ

d

dµ
G(µ, ζ)

Idilbi-Ji-Ma-Yuan, 2004



May 14, 2012 Zhongbo Kang, LANL

The formalism contains all the evolutions

n Similar for the unpolarized fragmentation function

n Hard function and Soft function contain only single logs

n Eventually collect all the terms
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Final step

n Once all the logs are resummed, the rest of b-dependent PDFs and 
FFs can be expanded as collinear PDFs and FFs

n All the large logarithms are resummed to the Sudakov exponential 
term
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Evolution of Sivers function

n The Collins-Soper energy evolution is really for the whole correlator

n So for Sivers function, it really is                   that evolves as a whole
n in b-space, it is

n it follows the same energy evolution equation

n Thus one should get a very similar resummation formalism
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The Sivers effect for SIDIS

n The resummation formalism (consistent with experimental 
convention)

n spin-dependent structure function

n only soft-gluonic pole Qiu-Sterman function appears in this part
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Similar form for DY production

n Unpolarized DY production at low qt

n Single transverse spin dependent DY production at low qt
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Comments on SIDIS and DY

n The only difference comes from so-called coefficient function
n leading order

n at next-leading-order: well-known difference due to Q2>0 (<0)

n Thus in the full perturbative QCD region, Sivers between SIDIS and DY is not 
just a sign: it is interesting to study the consequence
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Coefficients for Sivers and unpolarized PDFs is different

n When expanded Sivers function in terms of Qiu-Sterman function at 
small b, only soft-gluon pole contributes to the coefficient function (ε-
term in dimensional regularization)

n In b-space, we found a extra collinear divergence which is supposed 
to absorbed into the evolution of Qiu-Sterman function. We know 
there is this -N_c term issue.
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What is Y-term?

n So-far concentrate on the resumed term, which is most relevant when 
qt<<Q. When qt gets relatively large, the conventional NLO 
perturbative contribution becomes important
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Y-term
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Y term can be easily extracted

n Y term can be easily extracted/derived from existing calculations
n For the DY production, in the paper of unified picture of Sivers effect

n Perturbative term:

n Asymptotic term (take the limit qt<<Q):

n Y-term = perturbative-term - Asymptotic-term
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Ji-Qiu-Vogelsang-Yuan, PRD73, 2006
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Phenomenological studies

n Only at small b-region (corresponds to large momentum), one can 
calculate the relevant coefficients perturbatively.

n However, in order to Fourier transform back to qt-space, we need the 
whole b-region. Since large b-region will be non-perturbative, we 
need a non-perturbative input. This part should be universal if QCD 
factorization holds for the process.
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Phenomenological study: concentrate on small qt part

n For small qt region, we could use the resumed formalism. Don’t need 
to worry about Y-term.

n Only at small b-region (corresponds to large momentum), one can 
calculate the relevant coefficients perturbatively.

n However, in order to Fourier transform back to qt-space, we need the 
whole b-region. Since large b-region will be non-perturbative, we 
need a non-perturbative input. This part should be universal if QCD 
factorization holds for the process.
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The parametrizations for the non-perturbative function 

n Different approaches for the non-perturbative functions

n Parametrize the full b-space function

n function form (through extrapolation): 
n fitted form directly from experiments: 
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The Sudakov knows to A(1) and B(1)

n For Sivers effect, so far we only calculate A(1) and B(1) for the Sudakov 
exponent

n They are exactly the same as those in the unpolarized pp collision
n Thus for consistency, we will also use A(1) and B(1) for the unpolarized DY 

production

n As the whole perturbative Sudakov term (up to the order we have 
calculated) is the same, we will only assume the non-perturbative 
function is the same for the Sivers effect
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Using A(1) and B(1) still describes data reasonably well

n E288 and E605 
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Sivers effect of DY production at RHIC

n Blue curve: bare parton model (using Torino TMD with Gaussian 
ansatz from SIDIS)

n Red curve: resummed formalism (using Torino TMD to calculate TF(x, 
x) as the initial input function, then evolve)

n caution: non-perturbative part could be different for Sivers asymmetry
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Summary

n QCD factorization is a useful tool to probe and understand hadron 
structure

n QCD evolution and resummation is closely related to each other
n whenever there is an evolution, there is a resummation

n Scaling violation (QCD evolution of collinear unpolarized PDFs) has 
played a very important role in establishing QCD factorization 
formalism

n QCD evolution for collinear twist-3 function and TMDs will be 
extremely important in understanding hadron structure
n Evolution makes Sivers asymmetry smaller

29
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