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Hadrons in Terms of Quarks and Gluons
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How to relate hadronic states |p, s)
to quark and gluon fields ¢(z1) , q(z2), ... ?

Standard way: use matrix elements
(0]da(z1) qs(22) | M(p),s) , (0|qa(z1) qa(22) ay(23)| B(p),s)

Meson—quark matrix element Baryon—quark matrix element

@ Can be interpreted as hadronic wave functions



.~ Light-cone formalism

GPDs & . .
phee @ Describe hadron by Fock components in

behavior . . .
infinite-momentum frame

|P) = |q(z1P, k11) q(x2P, koy ) q(x3P, k3, ))
+ 1999G) + |994d3q) + |q9aGG) +

@ z; : momentum fractions
D=1

i

@ £k, : transverse momenta

Zkzj_ =



Problems of LC Formalism
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@ In principle: Solving bound-state equation
H|P) = E|P)

one gets |P) which gives complete information about
hadron structure

@ In practice: Equation (involving infinite number of Fock
components) has not been solved and is unlikely to be
solved in near future

@ Experimentally: LC wave functions are not directly
accessible

@ Way out: Description of hadron structure in terms of
phenomenological functions



.~ Phenomenological Functions
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“Old” functions:

@ Form Factors
@ Usual Parton Densities
@ Distribution Amplitudes

Generalized
Parton Distributions
(GPDs)

GPDs = Hybrids of

Form Factors, Parton Densities and
Distribution Amplitudes

“Old” functions
are limiting cases of “new” functions




Form Factors

GPDs &
omaer | Form factors are defined through matrix elements
of electromagnetic and weak currents between hadronic states

Nucleon EM form factors:

(0, 8| T40) b, ) = (e, ) [PEL(E) + 302 Fo(t)] . 5)
(A=p-p,t=A2%

@ Electromagnetic current
TH(2) = 3 pravor €0s(2)7"0 4 (2)
@ Helicity non-flip form factor
Fi(t) = Xp esFug(t)
@ Helicity flip form factor
Fy(t) =3 epFos(t)



_~_» Usual Parton Densities
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Parton Densities are defined through

forward matrix elements

of quark/gluon fields separated by
lightlike distances

Unpolarized quarks case:

(p]%a(=2/2)7"a(2/2) | D)) 2
= 2ph fol [e=®2) f,(z) — (2 f; ()] dx

Momentum space

interpretation fa(a) () is
probability

to find a (@) quark
with momentum zp

= sum rule
Jo lfa(@) = fa(@) dz = N,
for valence quark
numbers




.~ Distribution Amplitudes
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-9 .
xp

Baryon DA q(xx,x ) ~ MesonDA ¢(xx)

DAs may be interpreted as
@ LC wave functions integrated over transverse momentum
@ Matrix elements (0|O|p) of LC operators

For pion (7 T):
(0] Pa(—2/2)957"bu(2/2) |75 ()] .o_,

1
:ip“fw/ e*ia(l’z)/2<p,r(a) dov
-1

witha =21 —zg0rz; = (1+a)/2, 22 = (1 —a)/2



Generalized Parton Distributions

C;Pez;e& Momentum fractions taken wrt average momentum P = (p + p’)/2
behavior

(x+8) P (-g) P 4 functions of z, ¢, t:
H,E,H,E
) . wrt hadron/parton helicity flip
(1+5)P (1-gPp A =4 A= =/=

@ Skeweness ¢ = AT/2PTis ¢ = xp;/(2 — zB;))
@ 3regions:

E<x<1 ~ quark distribution
—1<ax<—€¢ ~ antiquark distribution
<<€ ~ distribution amplitude for N — ggN’

(x+g)P/ /(E—x)P

(I+g)P (I-g)P



Definition of GPDs
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@ In scalar case, define GPD by
(P+71/2[¢(=2/2)9(2/2)|P —1/2)| 2,
1
:/ e P H (5, ¢t) da
—1
@ Invariant momentum transfer ¢t = 12

@ Skeweness ¢ =t /2P
@ r = 0 = usual (forward) distribution

f(z) = H(z,§ = 0;t = 0)



Double Distributions
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behavior o +
perposition” of P

Like distribution function

mentum fluxes

+ -+
(L+ayrti2 ~(1-a)ri2
{.\
ri2 -2

Like distribution amplitude

Connection with GPDs

@y P P2 PP R
a+e)rt -8t Prarn Pt
GPD bp
H(xE;0) S(ap;y

Basic relation
between fractions




Parton distributions and matrix elements

GPDs & .
Regge @ For a scalar target, one may write

behavior
(P+7/21(0){u, --- Ou, }1(0)|P —1/2)
=Ano{Pu, - - Pu } + Apn{rpy - Tun }

n—1

+ Z Anl{PHl cee Pun—zrﬂn—z+1 . 'Tﬂn}
=1

@ r = 0 = usual (forward) distribution f(3) related to { = 0 moments
1
[ #6157 45 = 00 (1)
-1

@ P = 0= D-term D(«) related to | = n moments

1

/ D(a)(/2)" dav = Apn )

-1

@ D comes with r,, factors: it is invisible in DIS (then r = 0)
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Definition of DDs

@ Define Double Distribution (DD)

#W/QF(BA)/B"*ZOJ ddo = Ay

@ Support region 2 is given by rhombus |a] + 8] < 1
@ “DD parameterization” of the matrix element

(P —1/2[¢(=2/2)9(2/2)|P +1/2)| 2,
:/F(ﬁ,a) BP0/ g3 g,
Q

@ Usual (forward) distribution

@ D-term



- |solating D-term

GPDs & . .
Reg;e @ Using e~ PP2) — [eilE(Pz) —1]+1

behavior

@ split DD-integral into “plus” part
/[F(ﬁ,a)]+ e_ifB(Pz)—ia(rz)/2 dﬁ da
Q
@ and D-term part
1 .
/ D(a)e /2 da
-1

@ with
1—|«|
FE.l = FE.0-00) [ Faab
—1+|a|
@ “Plus” “+” D representation:

F(B,a) = [F (B, )]+ +6(8)D()



.~ Getting GPDs from DDs
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DDs live on rhombus
lal+ 18] <1

Integration line for

/£(B,0)~£(B)

e Hz,€) = /Q F(B,a)8(x — B — £a) dB da

fa(ﬁ:a;t) = fa(/Bv _avt)

Converting DDs into GPDs

Integration line
/x=B+Ea.
/ producing H(xfg )

GPDs H(z, &) are obtained

from DDs f(8, )

by scanning DDs
at ¢-dependent angles

= DD-tomography




_~_ |llustration of DD—GPD conversion
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behavior
(~ usual parton density in g-direction) ®
(~ distribution amplitude in a-direction)

Toy model for double distribution GPD H (z, ¢) resulting from toy DD

F(B,0) =3[ = BD? = a?]0(Jal + 18] < 1)

Models

@ For & = 0 reduces to usual parton density

(*] Corresponds to toy “forward” distribution @ For ¢ = 1 has shape like meson distribution
£8) =@ -18)° amplitude

4 v




.~ “DD plus D” Model for GPDs
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Regge @ Factorized Ansatz for DDs:
F(B,a) = f(B)ha(B, )

Guarantees forward limit

behavior

Normalization

1
/_ da f(B.0) = £(8)

Models
@ DD modeling misses terms invisible in the forward limit:

e Meson exchange contributions
e D-term, which can be interpreted as o exchange

@ Inclusion of D-term induces contribution confined to |z| < £ region

Hp(a,€) = E1| D(x/¢)



Model for GPDs based on DDs

eps @ DD+D Ansatz: F(B,a) = f(B)ha(B, ) + 5(8)D(a)

behavior @ General form of model profile

__TE+20) [1-18)° —a®)
h(B,a) = 226+172(1+b) (1 —|B])2e+t

@ Power b is parameter of the model
@ b= oo gives h(f, o) = 6(er) and H(z, &) = f(x) + D(x/€)/[¢]

DD + D-term model

Meson and D-term terms
x+gPtl 'T/E—UP weortl |eear
.«Auemm v
Cxp <« Generalized DA

Wt
’

Models

PITS .
POENG L/ R e N AN

Meson exchange contribution Structure of D~term contribution




.~ Model with Regge behavior of f(/3)

GPDs & @ PDFs f(3) are known to b=1 DD with Regge PDFs

Regge be singular for small 5

behavior hx, &)
@ f(B)~pB(1-p)?° 2
@ o =(z+6)/(1+¢) lf
® u =(-8/(1-¢ os [N
@ ~ |z — &> “+const i
behavior 02 04 06 08 1

for @ ~ & £=0.2,0.3,0.5,0.7,0.9

@ Model H(x,&) = [, dB f(8) ho(B, ) 6(x — B — £a) with b = 1

Models

H(@, Eljalze = 513 (1 - 1) {[(2 —a){(1 - x)(wi_a + xQ__“)
- <f - Wi ‘- w"i*“ﬂ 0(z) - (= — —)}

— (m—)—x)}



.~ §pin-1/2 quarks: two-DD representation

GPDs &
Regge @ For a (pseudo)scalar target

behavior
<P_T/QW(_Z/Z)’YM//‘(Z/?)‘P'F7"/2>|cwist72
= 2Puf((Pz), (rz), z2) + r#g((Pz), (rz), 22)
@ Two-DD parametrization
2P — /2| (=2/2)yup(2/2)| P +7/2)| .,

- / e~ BPI=ia(r2)/2 |9(PR(B, ) + (r2)G(B, )| dB da
Models @
@ Not unique: invariant under transformation

F(B,a) = F(B,a) + 0x(B, a)/0a
G(B,a) = G(B,a) — Ox(B, ) /0B,

@ “DD+D” form corresponds to “gauge” in which one has

2(Pz)Fp (B, a) + (rz)6(8)D(e)



.~ Spin-1/2 quarks: single-DD representation

C;PDS & . . ) . . . .
NESoo Note: in [ocal t\{VlSt-Z operators Y{Vu Opy --- Dp, JY index p is
symmetrized with y; indices that produce 8P, + ar,, /2

@ =y also produces SP, + ar, /2, i.e.
2(P2)F(B,a) + (rz)G(B, o) = [2B(Pz) + a(r2)|f(8, @)

® Or F(B,a) = Bf(B,a) and G(B, ) = af (B, @)
@ GPD in two-DD parametrization

1(2.9) = [ [F(8.0) +G(5.0)]8(z — f— o) dB da
@ GPD in single-DD formulation
H(z,€) = /Q(/s +£0)f(B,0) 8(z — B — £a) dB da

::c/ F(B,a)8(z — B — €a) df da
Q




.~ Single-DD formulation

GPDs & . .
Regge @ D-term in the single-DD case

behavior

@ Separating D-term

1(8,0) = [f(8,a)] +5(8) L) @

@ Forward distribution
Models 1—|z| 1—|z|
f(x) :/ F(m,a)da:x/ flz,a)da
—1t|a| —1+[e|
@ Suggests factorized model

(6.0) = X206, )

@ = Reconstructing DDs/GPDs from f(z)/x:
very singular ~ z~*®~! for small z !



.~ Diagrammatic model
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p—r

@ Quark-hadron scattering amplitude is modeled by

Models 1 1

et (mF — (k+r)2)m+ (m3 — (k — r)2)"2+1T((p —k)?)

@ Dirac structure v, k" is necessary to provide EM gauge
invariance of DVCS amplitude

@ Modified propagators soften quark-hadron vertices



2 Implanting Regge behavior of f(5)
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Regge .
behavior Model is based on

§(z —kt/PT)d'k
H(x,&) PT ~ /k+ (2 — Ok 727 md — (k= r)

< | dooto) { —r k)‘é}

@ First line: modified propagators providing softer quark-hadron
vertices (eventually N; = No = N) can be obtained by (d/dm?)™

Models @ Second line: quark-hadron scattering amplitude in dispersion
representation subtracted at (P — k)% =0

@ Choosing p(o) to get Regge ~ s behavior in s = (P — k)?
@ NOTE: quark-parton amplitude T'(p, k) is subtracted at
(P—k)3?=0,ie. T(P—k)*=0)=0
@ In general, one can take T((P — k)?> = 0) = Tp
= additional contribution of D-term type



GPD in softened model

GPDs &
Regge @ In GPD variables 8P + art = 2P*

behavior
- B)? "
Hiz,¢ 22”“ / do plo / dﬁ/uﬁ BU-F 1 — B)m?)2ntl

{5-5-a0 - 2f=58}

(1-p)?
@ Usual (forward) parton distribution corresponds to £ = 0
T oo 1 1-8 [(1 _ ﬁ)Q _ a2]n do
Models H(z,§£=0) _W/O dUp(U)/O as s (Bo + (1 — Bym2)zn+1

o8- 755 )

@ Note: z6(z) = 0, thus

_ (n!)? _ p)@ntt o0 do p(o)
1@ =gy (1= 2) +/O CEE RS e




GPD in softened model, contd.

GPDs &
Regge @ Substituting o-integral by forward distribution gives for GPD

behavior
(2 + o?]" f(B)
H(z,¢) = 2279f+1 n / /1+5 1 _5)2n+1 3

«{oe—s-a0 - T

@ Normalized profile function:

1 @2n+D![(1-75)°2-a2"
Mods he($0) = g e e

e[ [

e

@ Result:




DD in softened model
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@ Result may be written in DD representation form

z 1 1-8
@:/O dg _H_ﬁda(;(xfﬁfaf)
1—|of o
x {f(/ﬁ,a) —4(B) /0 dy ({(1’7))2 }

with
Models

f(B,0) = hn(B,0) f(B) /B

@ This representation includes D-term

D(a) = a/OHa‘ a5 17 (s, ) {1 - ﬁ}



.~ Results for n = 1 profile ~ (1 — 3)? — o
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Models

70:5 0.1 02 03 &7m
o D(z/¢€)

£€=05




2 Ambiguity in DD
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@ If quark-parton amplitude T'(P, k) equals nonzero Ty at
(P — k)? = 0, there is extra contribution to D-term
< 1)

Z

Do(@/¢) = 22anIn (|s|) (1 %) ’ < ¢

3

Models
@ = D-term contains extra information



.~ GPD sum rules and analytic regularization
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behavior 1
/ H(z,z) — H(z,0) 0) D(a) o

@ Note: both H(z,0)/x and H(z,z)/x are even functions of =
= cannot use principle value prescription for x = 0 singularity

@ Analyticity assumption (D. Mueller et al.): Mellin moments

@(j)z/_ xj[H(x,m)fH(x,())]dx (4)

Models 1

can be analytically continued to the point j = —1
@ Equivalent to regularization prescription

Y@ g [V M@) = A0) —aX(0)
/( d /O d

0) :L,a+1 1}0‘+1

Vg v d
+ A(o)/ =+ A’(O)/ =4
(0) ¥ (o) *




Analytic regularization
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@ Analytic regularization results in unambiguous D-term

D(« =l X8, @) — A0, a A0, «
i)”[/o e <1(—|a)|>a]

d,Bfa

Models -10 05 03 o
2|
4| :

@ But: no first principle reason for analytic regularization to hold
@ Need to extract D-term experimentally




Summary
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