Bessel Weighted Asymmetries as an experimental tool for the Future/present

QGD Evolution Workshop

Leonard Gamberg Penn State

Boer, LG,Musch,Prokudin JHEP 201I
Boer,LG,Musch,Prokudin in prep

Comments Importance of TMDs in studying partonic content of the nucleon

- Single inclusive hadron production in hadronic collisions largest/ oldest observed TSSAs
- From theory view notoriously challenging from partonic picture twist-3 power suppressed in hard scale (vs. w/ SIDIS, DY, $\mathrm{e}^{+} \mathrm{e}^{-}$)
- Connection w/ twist 2 "TMD" approach
- Operator level ETQS fnct I ${ }^{\text {st }}$ moment of Sivers

$$
\begin{aligned}
g T_{F}(x, x) & =-\int d^{2} k_{T} \frac{\left|k_{T}^{2}\right|}{M} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)+\quad " \mathbf{U V} " \ldots \\
& =-2 M f_{1 T}^{\perp(1)}(x) \quad \text { Boer Pijlman Mulders NPB -03 }
\end{aligned}
$$

$\tilde{f}_{1 T}^{\perp(1)}\left(x,\left|\boldsymbol{b}_{T}\right|\right)=\int d^{2} p_{T} \frac{\left|p_{T}\right|}{\left|\boldsymbol{b}_{T}\right| M^{2}} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|p_{T}\right|\right) f_{1 T}^{\perp}\left(x, p_{T}^{2}\right)$
Boer, LG, Musch, Prokudin JHEP-2011--arXiv:1107.529

Outline

- Review transverse spin Effects - TSSAs
- Transverse Spin Effects-twist 3 \& TMD twist 2
- Summary Elements Factorization-SIDIS
- Role color gauge Inv.- "T-odd" TMDs Gauge Links-"process dependence"
- Merit of Bessel Weighted Asymmetries (BWA) "S/T" pic of SIDIS
- Fourier Transformed SIDIS cross section \& "FT" TMDs
- Cancellation of the Soft \& Sudakov hard factor from BWA
- Conclusions

Partonic Structure of Nucleon

Belitsky, Ji , Yuan (2004 PRD)
[Meißner, Metz, Schlegel (2009 JHEP)]

Connection of twist 3 and twist 2 approach "overlap regime"

Ji,Qiu,Vogelsang, Yuan PRL 2006 ...
Bacchetta, Boer, Diehl, Mulders JHEP 2008

- Explore role parton model processes in twist-2\&3 approaches LG \& Z. Kang PLB 20II, D'Alesio, LG, Z. Kang, C.Pisano PLB 20II "exploring impact of Gauge Inv"

Two methods to account for SSA in QCD

- Depends on momentum of probe $q^{2}=-Q^{2}$ and momentum of produced hadron $\boldsymbol{P}_{h \perp}$ relative to hadronic scale $k_{T}^{2}\left(\equiv k_{\perp}^{2}\right) \sim \Lambda_{\mathrm{QCD}}^{2}$ and

- $k_{\perp}^{2} \sim P_{h \perp}^{2} \ll Q^{2}$ two scales-TMDs

$$
\Delta \sigma\left(P_{h}, S\right) \sim \Delta f_{a / A}^{\perp}\left(x, p_{\perp}\right) \otimes D_{h / c}\left(z, K_{\perp}\right) \otimes \hat{\sigma}_{\text {parton }}
$$

- $k_{\perp}^{2} \ll P_{h \perp}^{2} \sim Q^{2}$ twist 3 factorization-ETQSs

$$
\Delta \sigma\left(P_{h}, S\right) \sim \frac{1}{Q} f_{a / A}^{\perp}(x) \otimes f_{b / B}(x) \otimes D_{h / c}(z) \otimes \hat{\sigma}_{\text {parton }}
$$

Reaction Mechanism w/ Partonic Description

Collinear factorized QCD parton dynamics

$$
\begin{gathered}
\Delta \sigma^{p p^{\uparrow} \rightarrow \pi X} \sim f_{a} \otimes f_{b} \otimes \Delta \hat{\sigma} \\
\Delta \hat{\sigma} \equiv \hat{\sigma}^{\uparrow}-\hat{\sigma}^{\downarrow} \\
|\uparrow / \downarrow\rangle=(|+\rangle \pm i|-\rangle) \\
\hat{a}_{N}=\frac{\hat{\sigma}^{\uparrow}-\hat{\sigma}^{\downarrow}}{\hat{\sigma}^{\uparrow}+\hat{\sigma}^{\downarrow}} \sim \frac{\operatorname{Im}\left(\mathcal{M}^{+*} \mathcal{M}^{-}\right)}{\left|\mathcal{M}^{+}\right|^{2}+\left|\mathcal{M}^{-}\right|^{2}}
\end{gathered}
$$

Interference of helicity flip and non-flip amps

1) requires breaking of chiral symmetry m_{q} / E
2) relative phases require higher order corrections

Twist 3 ETQS approach-"Partonic Picture"

 $Q \sim P_{T} \gg \Lambda_{\mathrm{qcd}}$ One scale Collinear fact Twist 3
Phases in soft poles of prop hard processes Efremov \& Teryeev PLB 1982

$\Delta \sigma \sim f_{a} \otimes T_{F} \otimes H_{E T Q S} \otimes D^{q \rightarrow h}$

O Phases from interference of two-parton three-parton scattering amplitudes

Factorization and Pheno: Qiu, Sterman I99I,I999..., Koike et al, 2000, ... 20I0, Ji, Qiu,Vogelsang,Yuan, 2005 ... 2008 ..., Yuan, Zhou 2008, 2009, Kang, Qiu, 2008, 2009 ... Kouvaris Ji, Qiu,Vogelsang! 2006, Vogelsang and Yuan PRD 2007

TSSAs thru "T-odd" non-pertb. spin-orbit correlations.

Sensitivity to $p_{T} \sim \mathbf{k}_{T} \ll \sqrt{Q^{2}}$

- Sivers PRD: 1990 TSSA is associated $w /$ correlation transverse spin and momenta in initial state hadron

$$
\Delta \sigma^{p p^{\uparrow} \rightarrow \pi X} \sim \stackrel{\mathrm{~S}_{T}}{\sim} \otimes f \otimes \Delta f^{\perp} \otimes \hat{\sigma}_{B o r n} \Rightarrow
$$

$$
\boldsymbol{\Delta} \boldsymbol{f}^{\perp}\left(\boldsymbol{x}, \boldsymbol{k}_{\perp}\right)=\boldsymbol{i} \boldsymbol{S}_{\boldsymbol{T}} \cdot\left(\boldsymbol{P} \times \boldsymbol{k}_{\perp}\right) f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{\perp}\right)
$$

Factorization in Parton Model

Factorize

$\frac{d \sigma}{d x_{B} d y d \psi d z_{h} d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d\left|\boldsymbol{P}_{h \perp}\right|}=\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right) L_{\mu \nu} W^{\mu \nu}$,

Factorization P_{T} of hadron small sensitive to intrinsic transv. momentum of partons

$$
\begin{gathered}
W^{\mu \nu}\left(q, P, S, P_{h}\right)=\int \frac{d^{2} \mathbf{p}_{T}}{(2 \pi)^{2}} \int \frac{d^{2} \mathbf{k}_{T}}{(2 \pi)^{2}} \delta^{2}\left(\mathbf{p}_{T}-\frac{\mathbf{P}_{h \perp}}{z_{h}}-\mathbf{k}_{T}\right) \operatorname{Tr}\left[\Phi\left(x, \mathbf{p}_{T}\right) \gamma^{\mu} \Delta\left(z, \mathbf{k}_{T}\right) \gamma^{\nu}\right] \\
\Phi\left(x, \mathbf{p}_{T}\right)=\left.\int d p^{-} \Phi(p, P, S)\right|_{p^{+}=x_{B} P^{+}}, \quad \Delta\left(z, \mathbf{k}_{T}\right)=\left.\int d k^{-} \Delta\left(k, P_{h}\right)\right|_{k^{-}=\frac{P^{-}}{z_{h}}} \\
\text { Small transverse } \\
\text { momentum !!! }
\end{gathered}
$$

Minimal Requirement for PARTON MDL Factorization

Gauge link determined re-summing leading gluon interactions btwn soft and hard

Efremov,Radyushkin Theor. Math. Phys. 1981,Belitsky, Ji, Yuan NPB 2003,
Boer, Bomhof, Mulders Pijlman, et al. 2003-2008- NPB, PLB, PRD

$$
\Phi^{[\mathcal{U}[\mathcal{C}]]}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{2(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) \mathcal{U}_{[0, \xi]}^{[C]} \psi\left(\xi^{-}, \xi_{T}\right)|P\rangle\right|_{\xi^{+}=0}
$$

- The path $[C]$ is fixed by hard subprocess within hadronic process.

$$
W_{\mu \nu}\left(q, P, S, P_{h}\right)=\int d^{4} p d^{4} k \delta^{4}(p+q-k) \operatorname{Tr}\left[\Phi^{\mathcal{U}_{[\infty ; \xi]}^{[C]}}(p) H_{\mu}^{\dagger}(p, k) \Delta(k) H_{\nu}(p, k)\right]
$$

Gauge link determined re-summing leading gluon interactions btwn soft and hard Process Dependence break down of Universality

PDFs with SIDIS gauge link $\mathcal{P} e^{i g \int_{y}^{@} d \lambda \cdot A(\lambda)}$

\otimes 3...3
PDFs with DY gauge link
$\mathcal{P} e^{i g \int_{y}^{-\infty} d \lambda \cdot A(\lambda)}$

"Generalized Universality" Fund. Prediction of QCD Factorization

$$
f_{1 T_{s i d i s}}^{\perp}\left(x, k_{T}\right)=-f_{1 T_{D Y}}^{\perp}\left(x, k_{T}\right) \quad p_{T} \sim \mathbf{k}_{T} \ll \sqrt{Q^{2}}
$$

EIC conjunction with DY exp. E906-Fermi, RHIC II, Compass, JPARC
Process Dependence, Collins PLB 02, Brodsky et al. NPB 02, Boer Mulders Piilman Bomhoff $03,04 \ldots$

$$
d \sigma=L_{\mu \nu} \mathcal{W}^{\mu \nu} \Rightarrow
$$

P\&T

$$
\Phi^{[+] *}\left(x, p_{T}\right)=i \gamma^{1} \gamma^{3} \Phi^{[-]}\left(x, p_{T}\right) i \gamma^{1} \gamma^{3}
$$

Partonic picture Structure Functions CONVOLUTION

$$
\mathcal{C}[w f D]=x \sum_{\sim} e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right)
$$

$$
\begin{aligned}
& F_{U U, T}=\mathcal{C}\left[f_{1} D_{1}\right], \quad F_{L L}=\mathcal{C}\left[g_{1 L} D_{1}\right], \\
& F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M} f_{1 T}^{\perp} D_{1}\right], \quad F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}}{M_{h}} h_{1} H_{1}^{\perp}\right], \\
& F_{U L}^{\sin 2 \phi_{\boldsymbol{h}}}=\mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)-\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}}{M M_{h}} h_{1 L}^{\perp} H_{1}^{\perp}\right], F_{U U}^{\cos 2 \phi_{\boldsymbol{h}}}=\mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)-\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}}{M M_{h}} h_{1}^{\perp} H_{1}^{\perp}\right], \\
& F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}=\mathcal{C}\left[\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)\left(\boldsymbol{p}_{T} \cdot \boldsymbol{k}_{T}\right)+\boldsymbol{p}_{T}^{2}\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)-4\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)^{2}\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)}{2 M^{2} M_{h}} h_{1 T}^{\perp} H_{1}^{\perp}\right]
\end{aligned}
$$

SIDIS- CS model indpen. thru structure functions

$$
\frac{d \sigma}{d x_{B} d y d \psi d z_{h} d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.
$$

$$
+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}
$$

Kotzinian NPB 95, Mulders Tangermann NPB 96, Bacchetta et al JHEP 08

$$
\begin{aligned}
& +S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& +\quad S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& +\quad\left|S_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right. \\
& +\quad \varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \\
& \left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right] \\
& +\quad\left|S_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right. \\
& \left.\left.+\quad \sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\},
\end{aligned}
$$

Structure functions projected from cross section

$$
A_{X Y}^{\mathcal{F}} \equiv 2 \frac{\int d \phi_{h} d \phi_{S} \mathcal{F}\left(\phi_{h}, \phi_{S}\right)\left(d \sigma^{\uparrow}-d \sigma^{\downarrow}\right)}{\int d \phi_{h} d \phi_{S}\left(d \sigma^{\uparrow}+d \sigma^{\downarrow}\right)}, \quad \begin{array}{ll}
& X Y \text {-polarization e.g. } \\
\mathcal{F}\left(\phi_{h}, \phi_{S}\right)=\sin \left(\phi_{h}-\phi_{S}\right)
\end{array}
$$

Thus 8 "LT" TMDs: Correlation Matrix Dirac space

$$
\begin{aligned}
& \Phi^{\left[\gamma^{+\jmath}\left(x, \boldsymbol{p}_{T}\right) \equiv f_{1}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{\epsilon_{T}^{i j} p_{T i} S_{T j}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)\right.} \\
& \Phi^{\left[\gamma^{+} \gamma_{5}\right]}\left(x, \boldsymbol{p}_{T}\right) \equiv \lambda g_{1 L}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{\boldsymbol{p}_{T} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}\left(x, \boldsymbol{p}_{T}^{2}\right) \\
& \Phi^{\left[i \sigma^{i+} \gamma_{5]}\right]}\left(x, \boldsymbol{p}_{T}\right) \equiv S_{T}^{i} h_{1 T}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{p_{T}^{i}}{M}\left(\lambda h_{1 L}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{\boldsymbol{p}_{T} \cdot \boldsymbol{S}_{T}}{M} h_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)\right) \\
& +\frac{\epsilon_{T}^{i j} p_{T}^{j}}{M} h_{1}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)
\end{aligned}
$$

Weighted asymmetries Model independent Deconvoltuion of CS in terms of moments of TMDs

Kotzinian, Mulders PLB 97, Boer, Mulders PRD 98

$$
A_{U T, T}^{w_{1} \sin \left(\phi_{h}-\phi_{S}\right)}=2 \frac{\int d\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{P}_{h \perp}\right| d \phi_{h} d \phi_{S} w_{1}\left(\left|\boldsymbol{P}_{h \perp}\right|\right) \sin \left(\phi_{h}-\phi_{S}\right)\left\{d \sigma\left(\phi_{h}, \phi_{S}\right)-d \sigma\left(\phi_{h}, \phi_{S}+\pi\right)\right\}}{\int d\left|\boldsymbol{P}_{h \perp}\right| d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d \phi_{S} w_{0}\left(\left|\boldsymbol{P}_{h \perp}\right|\right)\left\{d \sigma\left(\phi_{h}, \phi_{S}\right)+d \sigma\left(\phi_{h}, \phi_{S}+\pi\right)\right\}},
$$

$$
\text { e.g. } \quad \mathcal{W}_{\text {Sivers }}=\frac{\left|\boldsymbol{P}_{h \perp}\right|}{z M} \sin \left(\phi_{h}-\phi_{S}\right)
$$

$$
\begin{aligned}
& A_{U T}^{\frac{\left|P_{h \perp}\right|}{z_{h} M}} \sin \left(\phi_{h}-\phi_{s}\right) \\
& \quad \begin{array}{l}
\text { Undefined w/o regularization } \\
\text { to subtract infinite contribution at }
\end{array}
\end{aligned}
$$

large transverse momentum
Bacchetta et al. JHEP 08

Comments

- Propose generalize Bessel Weights-"BW"
- BW procedure has advantages
\star Structure functions become simple product $\mathcal{P}[$] rather than convolution $\mathcal{C}[\quad]$
\star CS has simpler S/T interpretation as a $b_{T}\left[\mathrm{GeV}^{-1}\right]$ multipole expansion in terms of conjugate to $\boldsymbol{P}_{h \perp}$
* Use Fourier Bessel tranforms
* The usefulness of Fourier-Bessel transforms in studying the factorization as well as the scale dependence of transverse momentum dependent cross section has been known for quite sometime Collins Soper (81), Ellis,Fleishon,Stirling (81), Ji,Ma,Yuan (05),Collins, Found. of PQCD, Cambridge University Press(11), Aybat Rogers PRD (11), Abyat, Collins, Qiu, Rogers arXiv(11), Aybat, Prokudin, Rogers arXiv (11), Anselminio, Bolglione, Melis arXiv (12)
- Introduces a free parameter $\mathcal{B}_{T}\left[\mathrm{GeV}^{-1}\right]$ Fourier conjugate to $\boldsymbol{P}_{h \perp}$
- Provides a regularization of infinite contributions at lg. transverse momentum when \mathcal{B}_{T}^{2} is non-zero for moments
- Addtnl. bonus soft factor eliminated from weighted asymmetries
- Cancellation of perturbative Sudakov Broadening (new)-mentioned by D. Boer
- Cancellation of hard cross section-new observation (new)
- Possible to compare observable at different scales.... could be useful for an EIC

Advantages of Bessel Weighting

1."Deconvolution"-CS-struct fncts simple product " P"

$$
\begin{aligned}
& W^{\mu \nu}\left(\boldsymbol{P}_{h \perp}\right) \equiv \int \frac{d^{2} \boldsymbol{b}_{T}}{(2 \pi)^{2}} e^{-i \boldsymbol{b}_{T} \cdot \boldsymbol{P}_{h \perp}} \tilde{W}^{\mu \nu}\left(\boldsymbol{b}_{T}\right), \\
& \tilde{\Phi}_{i j}\left(x, z \boldsymbol{b}_{T}\right) \equiv \int d^{2} \boldsymbol{p}_{T} e^{i z \boldsymbol{b}_{T} \cdot \boldsymbol{p}_{T}} \Phi_{i j}\left(x, \boldsymbol{p}_{T}\right) \\
& \tilde{\Delta}_{i j}\left(z, \boldsymbol{b}_{T}\right) \equiv \int d^{2} \boldsymbol{K}_{T} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{K}_{T}} \Delta_{i j}\left(z, \boldsymbol{K}_{T}\right) \\
& \frac{d \sigma}{d x_{B} d y d \psi d z_{h} d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d\left|\boldsymbol{P}_{h \perp}\right|}=\int \frac{d^{2} \boldsymbol{b}_{T}}{(2 \pi)^{2}} e^{-i \boldsymbol{b}_{T} \cdot \boldsymbol{P}_{h \perp}}\left\{\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right) L_{\mu \nu} \tilde{W}^{\mu \nu}\right\} . \\
& 2 M \tilde{W}^{\mu \nu}=\sum_{a} e_{a}^{2} \operatorname{Tr}\left(\tilde{\Phi}\left(x, z \boldsymbol{b}_{T}\right) \gamma^{\mu} \tilde{\Delta}\left(z, \boldsymbol{b}_{T}\right) \gamma^{\nu}\right)
\end{aligned}
$$

1."Deconvolution"-Sivers struct fnct simple product " P "

$$
\begin{aligned}
& F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M} f_{1 T}^{\perp} D_{1}\right], \quad \text { "dipole structure" } \\
& \mathcal{C}[w f D]=x \sum_{-} e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right) \\
& \hat{J} \quad F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=-x_{B} \sum_{a} e_{a}^{2} \int \frac{d\left|\boldsymbol{b}_{T}\right|}{(2 \pi)}\left|\boldsymbol{b}_{T}\right|^{2} \underbrace{I_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right)}) I z \tilde{f}_{1 T}^{\perp a(1)}\left(x, z^{2} \boldsymbol{b}_{T}^{2}\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}_{T}^{2}\right) \text {. }
\end{aligned}
$$

$\tilde{f}_{1}, \tilde{f}_{1 T}^{\perp(1)}$, and \tilde{D}_{1} are Fourier Transf. of TMDs/FFs and finite

- Transversity and Collins

$$
\begin{aligned}
& F_{U T}^{\sin \left(3 \phi_{\boldsymbol{h}}-\phi_{S}\right)}=\mathcal{C}\left[\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)\left(\boldsymbol{p}_{T} \cdot \boldsymbol{k}_{T}\right)+\boldsymbol{p}_{T}^{2}\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)-4\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)^{2}\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)}{2 M^{2} M_{h}} h_{1 T}^{\perp} H_{1}^{\perp}\right] \\
& \begin{array}{c}
\text { write out in cylindrical polar-- } \\
\text { traceless tensor irreducible } \\
\text { tensor no mixture of Bessels " } J_{3} \text { " }
\end{array} \\
& F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}=x_{B} \sum_{a} e_{a}^{2} \int \frac{d\left|\boldsymbol{b}_{T}\right|}{(2 \pi)}\left|\boldsymbol{b}_{T}\right|^{4} \underbrace{\left(J _ { 3 } \left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right| l \mid\right.\right.})^{M^{2} M_{h} z^{3}} \tilde{h}_{1 T}^{\perp a(2)}\left(x, z^{2} \boldsymbol{b}_{T}^{2}\right) \tilde{H}_{1}^{\perp a(1)}\left(z, \boldsymbol{b}_{T}^{2}\right) . \\
& \text { Simple product " } \boldsymbol{\mathcal { P }} \text { " }
\end{aligned}
$$

TMDs in "config" space--Bessel MOMENTS

a) F.T. SIDIS cross section w/ following Bessel moments

$$
\begin{aligned}
\tilde{f}\left(x, \boldsymbol{b}_{T}^{2}\right) & \equiv \int d^{2} \boldsymbol{p}_{T} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{p}_{T}} f\left(x, \boldsymbol{p}_{T}^{2}\right) \\
& =2 \pi \int d\left|\boldsymbol{p}_{T}\right|\left|\boldsymbol{p}_{T}\right| J_{0}\left(\left|\boldsymbol{b}_{T} \| \boldsymbol{p}_{T}\right|\right) f^{a}\left(x, \boldsymbol{p}_{T}^{2}\right), \\
\tilde{f}^{(n)}\left(x, \boldsymbol{b}_{T}^{2}\right) & \equiv n!\left(-\frac{2}{M^{2}} \partial_{b_{T}^{2}}\right)^{n} \tilde{f}\left(x, \boldsymbol{b}_{T}^{2}\right) \\
& =\frac{2 \pi n!}{\left(M^{2}\right)^{n}} \int d\left|\boldsymbol{p}_{T} \|\left|\boldsymbol{p}_{T}\right|\left(\frac{\left|\boldsymbol{p}_{T}\right|}{\left|\boldsymbol{b}_{T}\right|}\right)^{n} J_{n}\left(\left|\boldsymbol{b}_{T} \| \boldsymbol{p}_{T}\right|\right) f\left(x, \boldsymbol{p}_{T}^{2}\right),\right.
\end{aligned}
$$

b) n.b. connection to p_{T} moments

$$
\tilde{f}^{(n)}(x, 0)=\int d^{2} \boldsymbol{p}_{T}\left(\frac{\boldsymbol{p}_{T}^{2}}{2 M^{2}}\right)^{n} f\left(x, \boldsymbol{p}_{T}^{2}\right) \equiv f^{(n)}(x)
$$

* CS has simpler S/T interpretation--multipole expansion in terms of $b_{T}\left[\mathrm{GeV}^{-1}\right]$ conjugate to $\boldsymbol{P}_{h \perp}$

$$
\overline{d x_{B} d y d \phi_{S} d z_{h} d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d\left|\boldsymbol{P}_{h \perp}\right|}=
$$

$$
\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right) \int \frac{d\left|\boldsymbol{b}_{T}\right|}{(2 \pi)}\left|\boldsymbol{b}_{T}\right|\left\{J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U, T}+\varepsilon J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U, L}\right.
$$

$$
+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U}^{\cos \left(2 \phi_{h}\right)}
$$

$$
+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L U}^{\sin \phi_{h}}
$$

$$
+\quad S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U L}^{\sin 2 \phi_{h}}\right]
$$

$$
+S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L L}^{\cos \phi_{h}}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right)\left(\mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon \mathcal{F}_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right.
$$

$$
+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}
$$

$$
+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) J_{3}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \mathcal{F}_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}=\frac{1}{4} \mathcal{P}\left[\tilde{h}_{1 T}^{\perp(2)} \tilde{H}_{1}^{\perp(1)}\right]
$$

$$
+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \phi_{S}}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]
$$

$$
+\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right.
$$

$$
+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \phi_{S}}
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

Structure Functions become

$$
\begin{aligned}
& \mathcal{F}_{U U, T}=\mathcal{P}\left[\tilde{f}_{1}^{(0)} \tilde{D}_{1}^{(0)}\right], \\
& \mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=-\mathcal{P}\left[\tilde{f}_{1 T}^{\perp(1)} \tilde{D}_{1}^{(0)}\right], \\
& \mathcal{F}_{L L}=\mathcal{P}\left[\tilde{g}_{1 L}^{(0)} \tilde{D}_{1}^{(0)}\right], \\
& \mathcal{F}_{L T}^{\cos \left(\phi_{h}-\phi_{s}\right)}=\mathcal{P}\left[\tilde{g}_{1 T}^{(1)}\right. \\
&\left.\tilde{D}_{1}^{(0)}\right], \\
& \mathcal{F}_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}=\mathcal{P}\left[\tilde{h}_{1}^{(0)} \tilde{H}_{1}^{\perp(1)}\right], \\
& \mathcal{F}_{U U}^{\cos \left(2 \phi_{h}\right)}=\mathcal{P}\left[\tilde{h}_{1}^{\perp(1)} \tilde{H}_{1}^{\perp(1)}\right], \\
& \mathcal{F}_{U L}^{\sin \left(2 \phi_{h}\right)}=\mathcal{P}\left[\tilde{h}_{1 L}^{\perp(1)} \tilde{H}_{1}^{\perp(1)}\right], \\
& \mathcal{F}_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}=\frac{1}{4} \mathcal{P}\left[\tilde{h}_{1 T}^{\perp(2)} \tilde{H}_{1}^{\perp(1)}\right] . \\
& \mathcal{P}\left[\tilde{f}^{(n)} \tilde{D}^{(m)}\right] \equiv x_{B} \sum e_{a}^{2}\left(z M\left|b_{T}\right|\right)^{n}\left(z M_{h}\left|b_{T}\right|\right)^{m} \tilde{f}^{(\alpha(n)}\left(x, z^{2} b_{T}^{2}\right) \tilde{D}^{\alpha(m)}\left(z, b_{T}^{2}\right):
\end{aligned}
$$

Correlator w/ explicit spin orbit correlations

$$
\begin{aligned}
\tilde{\Phi}^{\left[\gamma^{+}\right]}\left(x, \boldsymbol{b}_{T}\right)= & \tilde{f}_{1}\left(x, \boldsymbol{b}_{T}^{2}\right)-i \epsilon_{T}^{\rho \sigma} b_{T \rho} S_{T \sigma} M \tilde{f}_{1 T}^{\perp(1)}\left(x, \boldsymbol{b}_{T}^{2}\right) . \\
\tilde{\Phi}^{\left[\gamma^{+} \gamma^{5}\right]}\left(x, \boldsymbol{b}_{T}\right)= & S_{L} \tilde{g}_{1 L}\left(x, \boldsymbol{b}_{T}^{2}\right)+i \boldsymbol{b}_{T} \cdot \boldsymbol{S}_{T} M \tilde{g}_{1 T}^{(1)}\left(x, \boldsymbol{b}_{T}^{2}\right) \\
\tilde{\Phi}^{\left[i \sigma^{\alpha+} \gamma^{5}\right]}\left(x, \boldsymbol{b}_{T}\right)= & S_{T}^{\alpha} \tilde{h}_{1}\left(x, \boldsymbol{b}_{T}^{2}\right)+i S_{L} b_{T}^{\alpha} M \tilde{h}_{1 L}^{\perp(1)}\left(x, \boldsymbol{b}_{T}^{2}\right) \\
& +\frac{1}{2}\left(b_{T}^{\alpha} b_{T}^{\rho}+\frac{1}{2} \boldsymbol{b}_{T}^{2} g_{T}^{\alpha \rho}\right) M^{2} S_{T \rho} \tilde{h}_{1 T}^{\perp(2)}\left(x, \boldsymbol{b}_{T}^{2}\right) \\
& -i \epsilon_{T}^{\alpha \rho} b_{T \rho} M \tilde{h}_{1}^{\perp(1)}\left(x, \boldsymbol{b}_{T}^{2}\right)
\end{aligned}
$$

- Extra divergences at one loop and higher
- Various strategies to address them
- Extra variables needed to regulate divergences
- Modifies convolution integral by introduction soft factor
-Will show cancels in Bessel weighted asymmetries

Comments on Soft factor

- Collective effect soft gluons not associated with distribution frag function-factorizes into a matrix of Wilson lines in QCD vacuum
- Subtracts soft divergences from TMD pdf and FF
- Considered to be universal in hard processes
(Collins \& Metz PRL 04, Ji, Ma, Yuan PRD 05)
- At tree level (zeroth order α_{s}) unity-parton model
- Absent tree level pheno analyses of experimental data (e.g. Anselmino et al PRD 05 \& 07, Efremov et al PRD 07)

- Potentially, results of analyses can be difficult to compare at different energies issue for EIC
- Correct description of energy scale dependence of cross section and asymmetries in TMD picture, soft factor must be included (Ji, Ma, Yuan 2005, Collins Oxford Press 2011, Abyat, Collins, Rogers PRD 2011)
- However, possible to consider observables where it cancels e.g. weighted asymmetries Boer, LG, Musch, Prokudin JHEP 2011

Momentum space convolution

Adilbi, Ji, Ma, Yuan PRD 05

$$
\begin{aligned}
& \text { Hard } \underset{\mathcal{C}[H ; w f S D]}{ } \equiv x_{x_{B} H\left(Q^{2}, \mu^{2}, \rho\right)} \sum_{a} e_{a}^{2} \int d^{2} p_{T} d^{2} K_{T} d^{2} \ell_{T} \delta^{(2)}\left(z p_{T}+K_{T}+\ell_{T}-P_{h \perp}\right) w\left(p_{T},-\frac{K_{T}}{z}\right) \\
& \text { TMD } \overbrace{\text { Soft }}^{\times f^{a}\left(x, p_{T}^{2}, \mu^{2}, x \zeta, \rho\right)}{ }^{S\left(\ell_{T}^{2}, \mu^{2}, \rho\right)} D^{a}\left(z, K_{T}^{2}, \mu^{2}, \hat{\zeta} / z, \rho\right)<\mathrm{FF}
\end{aligned}
$$

Crucial property of Soft Factor-SIDIS

Soft factor formed from vacuum expt. value of Wilson lines involving both v and \tilde{v} thus depends on relative orientation of directions $\rho=\sqrt{v^{-} \tilde{v}^{+} / v^{+} \tilde{v}^{-}}$ $\tilde{S}^{+}\left(\boldsymbol{b}_{T}, \rho, \mu\right)$ is invariant under rotations of the \boldsymbol{b}_{T}-vector (provided $b \cdot v=0$).

Since for TMDs we always consider the case $b^{+}=0$, we have $\boldsymbol{b}_{T}^{L}=-b^{2}$,

$$
\longrightarrow \tilde{S}^{+}\left(b^{2}, \rho, \mu\right)
$$

Subtracted correlator off light cone

$v=\left(v^{-}, v^{+}, 0\right) \quad \mathbf{w} /$ lightlike directions $n=(1,0,0), \bar{n}=(0,1,0)$.

Again consider JMY framework

$$
\begin{aligned}
\Phi^{(+)[\Gamma]}\left(x, \boldsymbol{p}_{T}, P, S, \mu^{2}, \zeta, \rho\right)= & \int \frac{d b^{-}}{(2 \pi)} e^{i x b^{-} P^{+}} \int \frac{d^{2} \boldsymbol{b}_{T}}{(2 \pi)^{2}} e^{-i \boldsymbol{p}_{T} \cdot \boldsymbol{b}_{T}} \\
& \times \underbrace{\frac{1}{2}\langle P, S| \bar{\psi}(0) \mathcal{U}\left[\mathcal{C}_{b}\right] \Gamma \psi(b)|P, S\rangle}_{\widetilde{\Phi}_{\text {unsub }}^{[\Gamma]}\left(b, P, S ; v, \mu^{2}\right)} /\left.\widetilde{S}^{(+)}\left(\boldsymbol{b}_{T}^{2}, \mu^{2}, \rho\right)\right|_{b^{+}=0},
\end{aligned}
$$

First summarize what we know about correlator off light cone

$v=\left(v^{-}, v^{+}, 0\right) \quad \mathbf{W} /$ lightlike directions $n=(1,0,0), \bar{n}=(0,1,0)$. is slightly off light-cone direction $n \& \quad b \cdot v=0$

Wilson lines starting at infinity running along a direction given by the four-vector v to an endpoint a are denoted $\mathcal{L}_{v}(\infty ; a)$

Direction defined in LI way $\zeta^{2}=(2 P \cdot v)^{2} / v^{2} \quad$ scales arising from Direction defined in LI way $\hat{\zeta}^{2}=\left(2 P_{h} \cdot \tilde{v}\right)^{2} / \tilde{v}^{2}$ regulating LC div angle between $v \quad$ and $\quad \tilde{v} \quad \rho=\sqrt{v^{-} \tilde{v}^{+} / v^{+} \tilde{v}^{-}}$gluon rap. cutoff

Soft factor in deconvoluted Fourier Bessel rep of CS

\mathcal{P} versus \mathcal{C}

- flavor blind
- factors in \mathcal{P}

$$
+\varepsilon \cos \left(2 \phi_{h}\right) J_{2}\left(\left|b_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{P}\left[\tilde{h}_{1}^{\perp(1)} \tilde{H}_{1}^{\perp(1)}\right]
$$

- Universal

$$
+\ldots 15 \text { more structure functions }
$$

Products in terms of " \boldsymbol{b}_{T} moments "

$$
\begin{gathered}
\mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=H_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}, \mu^{2}, \rho\right) \tilde{S}^{(+)}\left(\boldsymbol{b}_{T}^{2}, \mu^{2}, \rho\right) \mathcal{P}\left[\tilde{f}_{1 T}^{(1)} \tilde{D}_{1}^{(0)}\right]+\tilde{Y}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}, \boldsymbol{b}_{T}^{2}\right) . \\
\mathcal{P}\left[\tilde{f}^{(n)} \tilde{D}^{(m)}\right] \equiv x_{B} \sum e_{a}^{2}\left(z M\left|\boldsymbol{b}_{T}\right|\right)^{n}\left(z M_{h}\left|\boldsymbol{b}_{T}\right|\right)^{m} \tilde{f}^{a(n)}\left(x, z^{2} \boldsymbol{b}_{T}^{2}, \mu^{2}, \zeta, \rho\right) \tilde{D}^{a(m)}\left(z, \boldsymbol{b}_{T}^{2}, \mu^{2}, \hat{\zeta}, \rho\right)
\end{gathered}
$$

2. Bessel Weighting \& cancellation of soft factor

Bessel weighting-projecting out Sivers

 using orthogonality of Bessel Fncts.$$
\begin{gathered}
\frac{\mathcal{J}_{1}^{\mathcal{B}_{T}}\left(\left|\boldsymbol{P}_{h T}\right|\right)}{z M}=\frac{2 J_{1}\left(\left|\boldsymbol{P}_{h T}\right| \mathcal{B}_{T}\right)}{z M \mathcal{B}_{T}} \\
A_{U T}^{{\frac{\mathcal{J}_{1}}{\mathcal{B}_{T}\left(\left|\boldsymbol{P}_{h T}\right|\right)}}^{z_{M}} \sin \left(\phi_{h}-\phi_{S}\right)}\left(\mathcal{B}_{T}\right)= \\
2 \frac{\int d\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{P}_{h \perp}\right| d \phi_{h} d \phi_{S} \frac{\mathcal{J}_{1}^{\mathcal{B}_{T}}\left(\left|\boldsymbol{P}_{h T}\right|\right)}{z M} \sin \left(\phi_{h}-\phi_{S}\right)\left(d \sigma^{\uparrow}-d \sigma^{\downarrow}\right)}{\int d\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{P}_{h \perp}\right| d \phi_{h} d \phi_{S} \mathcal{J}_{0}^{\mathcal{B}_{T}}\left(\left|\boldsymbol{P}_{h T}\right|\right)\left(d \sigma^{\uparrow}+d \sigma^{\downarrow}\right)}
\end{gathered}
$$

$A_{U T} \frac{\mathcal{J}^{\mathcal{B}_{T}\left(\left|P_{h T}\right|\right)}}{} \sin \left(\phi_{h}-\phi_{s}\right)\left(\mathcal{B}_{T}\right)=$

$$
-2 \frac{\tilde{S}\left(\mathcal{B}^{2} \text { T}\right) H_{U T T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}\right) \sum_{a} e_{a}^{2} \tilde{f}_{1 T}^{\perp(1) a}\left(x, z^{2} \mathcal{B}_{T}^{2}\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2}\right)}{\tilde{S}\left(\mathcal{B}_{T}^{2}\right) H_{U U, T}\left(Q^{2}\right) \sum_{a} e_{a}^{2} \tilde{f}_{1}^{a}\left(x, z^{2} \mathcal{B}_{T}^{2}\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2}\right)}
$$

Sivers asymmetry with full dependences

$$
\begin{aligned}
& A_{U T}^{\frac{\mathcal{J}_{1}^{\mathcal{B}_{T}\left(\left|\boldsymbol{P}_{h T}\right|\right)}}{z M}} \sin \left(\phi_{h}-\phi_{s}\right) \\
& \left(\mathcal{B}_{T}\right)= \\
& \quad-2 \frac{\tilde{S}\left(\mathcal{B}_{\mathcal{Z}}^{2}, \mu^{2}, \rho^{2}\right) H_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}, \mu^{2}, \rho\right) \sum_{a} e_{a}^{2} \tilde{f}_{1 T}^{\perp(1) a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta, \rho\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}, \rho\right)}{\tilde{S}\left(\mathcal{B}_{T}^{2},{\not h^{2}}^{2}, \rho^{2}\right) H_{U U, T}\left(Q^{2}, \mu^{2}, \rho\right) \sum_{a} e_{a}^{2} \tilde{f}_{1}^{a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta, \rho\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}, \rho\right)}
\end{aligned}
$$

3. Circumvents the problem of ill-defined \boldsymbol{p}_{T} moments

$$
\begin{aligned}
& A_{U T}^{\frac{\mathcal{J}_{1} T\left(\left|P_{h T}\right|\right)}{\mathcal{B}^{z M}} \sin \left(\phi_{h}-\phi_{s}\right)}\left(\mathcal{B}_{T}\right)= \\
& \quad-2 \frac{\tilde{S}\left(\mathcal{B}_{\nless}^{2}, \mu^{2}, \rho^{2}\right) H_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(Q^{2}, \mu^{2}, \rho\right) \sum_{a} e_{a}^{2} \tilde{f}_{1 T}^{\perp(1) a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta, \rho\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}, \rho\right)}{\tilde{S}\left(\mathcal{B}_{T}^{2}, \not \mathcal{L}^{2}, \rho^{2}\right) H_{U U, T}\left(Q^{2}, \mu^{2}, \rho\right) \sum_{a} e_{a}^{2} \tilde{f}_{1}^{a}\left(x, z^{2} \mathcal{B}_{T}^{2} ; \mu^{2}, \zeta, \rho\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2} ; \mu^{2}, \hat{\zeta}, \rho\right)}
\end{aligned}
$$

Traditional weighted asymmetry recovered but UV divergent

$$
\lim _{\mathcal{B}_{T} \rightarrow 0} w_{1}=2 J_{1}\left(\left|\boldsymbol{P}_{h \perp}\right| \mathcal{B}_{T}\right) / z M \mathcal{B}_{T} \longrightarrow\left|\boldsymbol{P}_{h \perp}\right| / z M
$$

$$
A_{U T}^{\frac{\left|P_{h \perp}\right|}{z_{h}^{M}} \sin \left(\phi_{h}-\phi_{s}\right)}=-2 \frac{\sum_{a} e_{a}^{2} f_{1 T}^{\perp(1)}(x) D_{1}^{a(0)}(z)}{\sum_{a} e_{a}^{2} f_{1}^{a(0)}(x) D_{1}^{a(0)}(z)}
$$

CS resummation 81

When $\quad \Lambda_{Q C D}^{2} \ll P_{h \perp}^{2} \ll Q^{2}$ get large double logs talks of Qiu, Kang, Idilbi, Scimemi, Guzi

$$
\begin{aligned}
\mathcal{F}_{U T}\left(x, z, b, Q^{2}\right)=\tilde{f}_{1 T}^{\perp(1)}\left(x, z^{2} \boldsymbol{b}^{2}\right. & \left., \mu_{L}^{2}, \mu_{L}^{2} / C_{2}, \rho\right) \tilde{D}_{1}\left(z_{h}, \boldsymbol{b}^{2}, \mu_{L}^{2}, \mu_{L}^{2} / C_{2}, \rho\right) \\
& \times \tilde{S}\left(b_{T}^{2}, \mu_{L}^{2}, \rho\right) \tilde{H}_{U T}\left(1 / C_{2}^{2} \rho, \rho\right) e^{-S_{\text {hard }}} e^{-S_{U T}^{N P}}
\end{aligned}
$$

Evolution of TMDs

- Needs to resum double logarithms, typically it involves two steps:
- Energy evolution of the unpolarized PDFs Idilbi-Ji-Ma-Yuan, 2004

$$
\zeta \frac{\partial}{\partial \zeta} q\left(x, b, \mu^{2}, x \zeta, \rho\right)=(K(\mu, b)+G(\mu, x \zeta)) q\left(x, b, \mu^{2}, x \zeta, \rho\right)
$$

- Since it contains double logarithms, the kernel still contains single logarithms

$$
\mu \frac{d}{d \mu} K(\mu, b)=-\gamma_{K}=-\mu \frac{d}{d \mu} G(\mu, \zeta)
$$

- Solving two equations--equivalently one resums the double logs
- First for the evolution equation of K and G

$$
K(b, \mu)+G(x \zeta, \mu)=K\left(b, \mu_{L}\right)+G\left(x \zeta, \mu_{H}\right)-\int_{\mu_{L}}^{\mu_{H}} \frac{d \tilde{\mu}}{\tilde{\mu}} \gamma_{K}(\alpha(\tilde{\mu}))
$$

- Then feed the solution back to the energy evolution equation

$$
\begin{aligned}
q(x, b, \mu, x \zeta, \rho)= & \exp \left\{-\int_{\mu_{L}}^{C_{2} x \zeta} \frac{d \mu}{\mu}\left[\ln \left(\frac{C_{2} x \zeta}{\mu}\right) \gamma_{K}(\alpha(\mu))-K\left(b, \mu_{L}\right)-G\left(\mu / C_{2}, \mu\right)\right]\right\} \\
& \times q\left(x, b, \mu, x \zeta_{0}=\mu_{L} / C_{2}, \rho\right),
\end{aligned}
$$

The formalism contains all the evolutions

- Similar for the unpolarized fragmentation function

$$
\begin{aligned}
\hat{q}(z, b, \mu, \hat{\zeta} / z, \rho)= & \exp \left\{-\int_{\mu_{L}}^{C_{2} \hat{\zeta} / z} \frac{d \mu}{\mu}\left[\ln \left(\frac{C_{2} \hat{\zeta}}{z \mu}\right) \gamma_{K}(\alpha(\mu))-K\left(b, \mu_{L}\right)-G\left(\mu / C_{2}, \mu\right)\right]\right\} \\
& \times \hat{q}\left(z, b, \mu, \hat{\zeta}_{0} / z=\mu_{L} / C_{2}, \rho\right) .
\end{aligned}
$$

- Hard function and Soft function contain only single logs

$$
\begin{aligned}
& \mu \frac{\partial S\left(\vec{b}_{\perp}, \mu^{2}, \rho\right)}{\partial \mu}=\gamma_{S}(\rho) S\left(\vec{b}_{\perp}, \mu^{2}, \rho\right) \\
& \mu \frac{d H\left(Q^{2} / \mu^{2}, \rho\right)}{d \mu}=-\left(4 \gamma_{F}-\gamma_{S}(\rho)\right) H\left(Q^{2} / \mu^{2}, \rho\right)
\end{aligned}
$$

- Eventually collect all the terms

$$
\begin{aligned}
& F\left(x_{B}, z_{h}, b, Q^{2}\right)=q\left(x_{B}, z_{h} b, \mu_{L}^{2}, \mu_{L} / C_{2}, \rho\right) \hat{q}\left(z_{h}, b, \mu_{L}^{2}, \mu_{L} / C_{2}, \rho\right) S\left(b, \mu_{L}^{2}, \rho\right) H\left(1 / C_{2}^{2} \rho, \rho\right) \\
& \times \exp \left\{-2 \int_{\mu_{L}}^{C_{2} Q \sqrt{\rho}} \frac{d \mu}{\mu}\left[\ln \left(\frac{C_{2} Q \sqrt{\rho}}{\mu}\right) \gamma_{K}(\alpha(\mu))-K\left(b, \mu_{L}\right)\right.\right. \\
&\left.\left.-G\left(\mu / C_{2}, \mu\right)-2 \gamma_{F}+\frac{1}{2} \gamma_{S}(\rho)\right]\right\},
\end{aligned}
$$

Further Cancellation of Sudakov and hard CS

When $\quad \Lambda_{Q C D}^{2} \ll P_{h}^{2} \ll Q^{2} \quad$ get large DL talks of Qiu, Kang, Idilbi, and Scimemi ...
maybe
still a staliling effect from derivative

$e^{-S(b, Q)}=$ Sudakov form factor due to resummation large logs

$$
\mathcal{A}_{U T}\left(x, z, b, Q^{2}\right)=\frac{\tilde{f}_{1 T}^{\perp(1)}\left(x, z^{2} \boldsymbol{b}^{2}, \mu_{L}^{2}, \mu_{L}^{2} / C_{2}, \rho\right) \tilde{D}_{1}\left(z_{h}, \boldsymbol{b}^{2}, \mu_{L}^{2}, \mu_{L}^{2} / C_{2}, \rho\right) e^{-S_{U}^{N P} P ? ?}}{\tilde{f}_{1}\left(x, z^{2} \boldsymbol{b}^{2}, \mu_{L}^{2}, \mu_{L}^{2} / C_{2}, \rho\right) \tilde{D}_{1}\left(z_{h}, \boldsymbol{b}^{2}, \mu_{L}^{2}, \mu_{L}^{2} / C_{2}, \rho\right) e^{-S_{U U ? ?}^{N P}}}
$$

In prep. Boer, LG, Prokudin, Musch

Conclusions

- Propose generalize Bessel Weights
- Theoretical weighting procedure- advantages
- Introduces a free parameter $\mathcal{B}_{T}\left[\mathrm{GeV}^{-1}\right]$ that is Fourier conjugate to $\boldsymbol{P}_{h \perp}$
- Provides a regularization of infinite contributions at lg. transverse momentum when \mathcal{B}_{T}^{2} is non-zero
- Soft factor, pertb-Sudakov, and Hard CS eliminated from weighted asymmetries
- Possible to compare observables at different scales.... could be useful for an EIC

Extracting TMD contribution to Asymmetries More sensitive to low $\boldsymbol{P}_{h \perp}$ region

\mathcal{B}_{T} can serve as a lever arm to enhance the low $\boldsymbol{P}_{h \perp}$ description and possibly dampen Ig. momentum tail of cross section. We can use it to scan the cross section

$$
\boldsymbol{P}_{h \perp}
$$

TMD frameworks have been designed to give a good description of the cross section at low transverse momentum, i.e., for $\left|\boldsymbol{P}_{h \perp}\right| / z \ll Q$. However, in weighted asymmetries we integrate over the whole range of $\left|\boldsymbol{P}_{h \perp}\right|$. The contributions from high $\left|\boldsymbol{P}_{h \perp}\right|$ thus lead to theoretical errors in the results if one does not have a description of the cross section that is valid there, even when one restricts to the region $z\left|\boldsymbol{b}_{T}\right| \gg 1 / Q$.

- The Y term in principle included to eliminate errors but its $\mathbb{F T}$ expected to be power suppressed in region $\boldsymbol{b}_{T} \gg 1 / Q$ since was shown to be power suppressed at small
- Thus dropping Y means we approximate the full result by the large $\boldsymbol{P}_{h \perp}$ tail of the TMD expression---is this a bad approx?
- In addition extending integrals to arbitrarily large transverse momentum ignores that the physical cross section should vanish above a certain max trans. momentum

Bound the error in neglecting Y term

Y term sig btwn scale $\Lambda_{\text {TMD }}$ and $\left|\boldsymbol{P}_{h \perp}\right|_{\text {max }}$

$$
\begin{aligned}
\tilde{Y}_{X Y, Z}^{\sin / \cos \left(N \phi_{h}+\ldots\right)}\left(Q^{2}, \boldsymbol{b}_{T}^{2}\right) \quad & \approx \int_{\Lambda_{\mathrm{TMD}}}^{\left|\boldsymbol{P}_{h \perp}\right| \max } d\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{P}_{h \perp}\right| 2 \pi J_{N}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) Y_{X Y, Z}^{\sin / \cos \left(N \phi_{h}+\ldots\right)}\left(Q^{2}, \boldsymbol{P}_{h \perp}^{2}\right) \\
& \lesssim\left(\left|\boldsymbol{P}_{h \perp}\right|_{\max }-\Lambda_{\mathrm{TMD}}\right) 2 \sqrt{\frac{2 \pi}{\left|\boldsymbol{b}_{T}\right| \Lambda_{\mathrm{TMD}}}}\left|Y_{X Y, Z}^{\sin / \cos \left(N \phi_{h}+\ldots\right)}\right|_{\max }
\end{aligned}
$$

Error in extending TMD expression into perturbative regime

$\delta \mathcal{F}_{X Y, Z}^{\sin / \cos \left(N \phi_{h}+\ldots\right)}\left(x, \boldsymbol{b}_{T}^{2}\right)$

- Studies on Bessel Weighting being performed by H.Avakian M.A Aghasyan , LG, Prokudin ...

Cancellation of Soft Factor on level of the Matrix elements (summarize)

- So far we get ratios of moments of TMDs and FFs that are free of soft factor
- It was not necessary to specify explicit def. of TMDs and FFs
- We also analyze ratio of moments of TMDs directly on level of matrix elements of TMDs \& FFs
- Again we find cancellation of soft factors in ratio
- Impact for Lattice calculation of moments of TMDS,

Musch, Ph. Hagler, M. Engelhardt, J.W. Negele,A. Schafer arXiv 20II

Generalized av. quark trans. momentum shift Soft Factor cancels

$$
\begin{aligned}
\left\langle\boldsymbol{p}_{y}\right\rangle_{T U}:= & \text { average quark momentum in } \\
& \text { transverse } y \text {-direction } \\
& \text { measured in a proton polarized } \\
& \text { in transverse } x \text {-direction. }
\end{aligned}
$$

"dipole moment", "shift"
attention divergences from high- \boldsymbol{p}_{T}-tails!

$$
\left\langle p_{y}(x)\right\rangle_{T U}^{\mathcal{B}_{T}} \equiv \frac{\int d\left|\boldsymbol{p}_{T}\right|\left|\boldsymbol{p}_{T}\right| \int d \phi_{p} \frac{2 J_{1}\left(\left|\boldsymbol{p}_{T}\right| \mathcal{B}_{T}\right)}{\mathcal{B}_{T}} \sin \left(\phi_{p}-\phi_{S}\right) \Phi^{(+)\left[\gamma^{+}\right]}\left(x, \boldsymbol{p}_{T}, P, S, \mu^{2}, \zeta, \rho\right)}{\int d\left|\boldsymbol{p}_{T}\right|\left|\boldsymbol{p}_{T}\right| \int d \phi_{p} J_{0}\left(\left|\boldsymbol{p}_{T}\right| \mathcal{B}_{T}\right)} \Phi^{(+)\left[\gamma^{+}\right]}\left(x, \boldsymbol{p}_{T}, P, S, \mu^{2}, \zeta, \rho\right)| |_{\left|\boldsymbol{S}_{T}\right|=1}
$$

$$
\left\langle\boldsymbol{p}_{y}\right\rangle_{T U}\left(\mathcal{B}_{T}\right) \equiv M \frac{\int d x \tilde{f}_{1 T}^{\perp(1)}\left(x, \mathcal{B}_{T}^{2}\right)}{\int d x \tilde{f}_{1}^{(0)}\left(x, \mathcal{B}_{T}^{2}\right)}=\frac{\tilde{S}\left(\mathcal{B}_{\Gamma}^{2}, \ldots\right) \tilde{A}_{12 B}\left(\mathcal{B}_{T}^{2}, 0,0, \tilde{\zeta}, \mu\right)}{\tilde{S}\left(\mathcal{B}_{T}^{2}, \ldots\right) \tilde{A}_{2 B}\left(\mathcal{B}_{T}^{2}, 0,0, \tilde{\zeta}, \mu\right)}
$$

