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• Single inclusive hadron production  in hadronic                               
collisions largest/ oldest observed  TSSAs  

• From theory view notoriously challenging from partonic picture                                   
twist-3 power suppressed in hard scale  (vs. w/ SIDIS, DY, e+e-) 

• Connection w/ twist 2 “TMD” approach    

• Operator level ETQS fnct 1st moment of Sivers            

Comments Importance of TMDs in studying partonic 
content of the nucleon 

+   “UV” ...

Boer, LG, Musch, Prokudin  JHEP-2011--arXiv:1107.529      
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• Review transverse spin Effects - TSSAs

• Transverse Spin Effects-twist 3 & TMD twist 2 

• Summary Elements Factorization-SIDIS

• Role color gauge Inv.- “T-odd” TMDs                              
Gauge Links-“process dependence” 

• Merit of Bessel Weighted Asymmetries (BWA) “S/T” pic of SIDIS

• Fourier Transformed SIDIS cross section & “FT”  TMDs

• Cancellation of the Soft & Sudakov hard factor from  BWA 

• Conclusions 
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• Same mechanism in both approaches ISI/FSI

• Explore role parton model processes in twist-2&3  approaches      
LG & Z. Kang PLB 2011, D’Alesio, LG, Z. Kang, C.Pisano PLB 2011                     
“exploring impact of Gauge Inv”  

Q! QT ! ΛQCD

Q,QT ! ΛQCD

Feb 07, 2011 Zhongbo Kang, RBRC/BNL

A unified picture for Drell-Yan (leading QT/Q)

7

QT

QT Q!QCD <<<<

TMD Collinear/twist-3

Q! QT ! ΛQCD

Intermediate QT

Monday, February 7, 2011

Ji,Qiu,Vogelsang, Yuan PRL 2006 ...
Bacchetta, Boer, Diehl, Mulders JHEP 2008

Connection of twist 3  and twist 2 approach “overlap regime”



Two methods to account for SSA in QCD

• Depends on momentum of probe                 and 
momentum of  produced hadron         relative to 
hadronic scale                               and 

•                          two scales-TMDs                

•                             twist 3 factorization-ETQSs
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∆σ(Ph, S) ∼ ∆f⊥
a/A(x, p⊥)⊗Dh/c(z,K⊥)⊗ σ̂parton

∆σ(Ph, S) ∼ 1
Q f⊥

a/A(x) ⊗ fb/B(x)⊗Dh/c(z)⊗ σ̂parton



    Reaction Mechanism w/ Partonic Description

âN =
σ̂↑ − σ̂↓

σ̂↑ + σ̂↓
∼

Im
(
M+∗M−)

|M+|2 + |M−|2

| ↑ / ↓〉 = (|+〉± i|−〉)
D

f

M∗

f

M

∆σpp↑→πX ∼ fa ⊗ fb ⊗∆σ̂ ⊗Dq→π

Collinear factorized QCD parton dynamics

∆σ̂ ≡ σ̂↑ − σ̂↓

Interference of helicity flip and non-flip amps
1) requires breaking of chiral symmetry mq /E
2) relative phases require higher order corrections



Transverse SPIN Observables SSA (TSSA) p↑ p → πX

1
xs±iε = P



 1
xs



 ∓ iπδ(xs)

$P⊥π

−$P⊥π

P

ST

−P

π

π

• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π

T )

• Correlation in Transverse Momentum PT & Transverse SPIN ST

quark-gluon-quark
correlator

+ −

+ +

                             One scale Collinear fact  Twist 3Q ∼ PT >> Λqcd

Phases in soft poles of prop hard processes Efremov & Teryaev PLB 1982

Phases from interference of two-parton three-parton scattering amplitudes 

Factorization and Pheno: Qiu, Sterman 1991,1999...,  Koike et al, 2000, ... 2010,  Ji, Qiu, Vogelsang, Yuan, 2005 ... 2008 ...,   
Yuan, Zhou 2008, 2009, Kang, Qiu, 2008, 2009 ...  Kouvaris Ji,  Qiu,Vogelsang! 2006,  Vogelsang and Yuan PRD 2007

⊗

1
xs + iε

= P
(

1
xs

)
± iπδ(xs)

 Twist 3 ETQS approach-”Partonic Picture”

∆σ ∼ fa ⊗ TF ⊗HETQS ⊗Dq→h



Sensitivity to pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

∆σep↑→eπX ∼ ∆D⊥ ⊗ δf ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)
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Sensitivity to pT ∼ k⊥ <<
√

Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron
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Explanation, pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is “T -odd” correlation transverse spin and
momenta

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993

∆σep↑→eπX ∼ ∆D⊥ ⊗ f ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)
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∆f⊥(x, k⊥) = iST · (P × k⊥)

TSSAs thru “T-odd” non-pertb. spin-orbit correlations....

pT ∼ kT <<
√

Q2Sensitivity to 

May 11, 2011 Zhongbo Kang, RBRC/BNL

Sivers function are process-dependent

! Existence of the Sivers function relies on the interaction between the 

active parton and the remnant of the hadron (process-dependent)

! SIDIS: final-state interaction

! Drell-Yan: initial-state interaction
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Factorization in Parton Model

Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998
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PX

∆

Φ

P

Ph

q

p

k

Parton model & DIS kinematics 

zh =
P · Ph

P · q
≈

P−h
q−

xB =
Q2

2P · q

Factorize

Figure 1. Kinematics of the SIDIS process, compare Refs. [8, 22].

consider x moments of TMD PDFs and introduce a method to study Fourier transformed

moments in lattice QCD and compare with experiment. Our conclusions are presented in

Section 7.

2 The SIDIS cross section in Fourier space at tree level

2.1 Elements of the SIDIS cross section

The lepton-hadron cross section of SIDIS !(l)+N(P, S) → !(l)+h(Ph)+X can be expressed

[4, 8, 20, 21] in the notation of Ref. [8] as

dσ

dx
B

dy dψ dzh dφh |P h⊥| d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW µν , (2.1)

where we assume one photon exchange. Lµν and W µν are the leptonic and hadronic tensors

respectively, and the vector P h⊥ is the transverse momentum of the produced hadron in

a frame where the virtual photon and the target are collinear, e.g. in the target rest frame

or γ∗P center of mass frame. It makes an azimuthal angle φh with the lepton scattering

plane defined by the momenta of the incoming and the final leptons l and l′ (see Figure 1).

We define q ≡ l− l′, and q2 = −Q2 is the virtuality of the photon. ψ is the azimuthal angle

of l′ around the lepton beam axis relative to S⊥, in DIS kinematics dψ ≈ dφS [21]. The

subscript “⊥” denotes transverse projection in the target rest frame while the subscript “T ”

denotes transverse projection in the light-cone frame. We use definitions for the kinematic

variables and the ratio of of longitudinal and transverse photon flux ε as in Ref. [8],

x
B

=
Q2

2P · q
, y =

P · q
P · l

, zh =
P ·Ph

P · q
, γ =

2Mx

Q
, ε =

1 − y − 1
4 γ2y2

1 − y + 1
2 y2 + 1

4 γ2y2
, (2.2)

where M is the mass of the target nucleon. We employ the standard light-cone decompo-

sition of four-vectors ωµ = ω+nµ
+ + ω−nµ

− + ωµ
T . In the γ∗P center of mass frame with the

proton three-momentum pointing in positive z-direction, the nucleon carries no transverse

momentum, PT = 0, and x ≡ p+/P+ denotes the momentum fraction carried by the quark

(parton) of momentum p. Further definitions of kinematic variables and details on the

leptonic and hadronic tensor are given in Appendix A and Ref. [8].

– 4 –



(P, Λ) (P, Λ′)

(p, λ) (p, λ′)

(k, µ) (k, µ′)
(γ∗, ε)

Ph

q

PX

PX ′ ∆

Φ

Small transverse 
momentum !!!

Minimal requirement satisfy color 
gauge invariance

Factorization PT of hadron small sensitive to intrinsic 
transv. momentum of partons

Wµν(q, P, S, Ph) =

∫
d2pT

(2π)2

∫
d2kT

(2π)2
δ2(pT − Ph⊥

zh
− kT )Tr [Φ(x,pT )γ

µ∆(z,kT )γ
ν ]

Φ(x,pT ) =

∫
dp−Φ(p, P, S)|p+=xBP+ , ∆(z,kT ) =

∫
dk−∆(k, Ph)|k−=P−

zh



T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003

. . .

. . .

k

p

P

K

Φ

∆

. . .

Φ

∆

etc . . .

• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.

14

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
∫

dξ−d2ξT

8π3
eip·ξ〈P |ψ̄j(0)U[0,ξ]ψi(ξ)|P 〉

∣∣∣∣
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!"#"!

#$%&&'()*

!!+,-+.)/$-*0
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U[−]

U[!]U[+]

1+0%2%$)&+-,.%$0
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Gauge link determined re-summing leading gluon interactions btwn soft and hard 
       Efremov,Radyushkin Theor. Math. Phys. 1981,Belitsky, Ji, Yuan NPB 2003,
       Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD • The path [C] is fixed by hard subprocess within hadronic process.

Φ[U[C]](x, pT ) =
∫

dξ−d2ξT

2(2π)3
eip·ξ〈P |ψ(0)U [C]

[0,ξ]ψ(ξ−, ξT )|P 〉|ξ+=0

∆[U[C]](z, kT ) =
∫

dξ+d2ξT

4z(2π)3
eik·ξ 〈0 |U [C]

[0,ξ]ψ(0)|X; Ph〉〈X;Ph|ψ(ξ+, ξT )|0〉|ξ−=0

• See Ch. 3 Ph.D Thesis C. Bomhof

36 chapter 3: gauge links

PSfrag replacements

P

ν µq

k

∆(k)

Ph

p1

p−p1

Φ
aρ
A (p,p1)

H †µHρν;a

p

(a)

PSfrag replacements

P

ν µq

k

∆(k)

Ph

p1
p

Φ
aρ
A (p−p1,−p1)

H †ρµ;aHν

p−p1

(b)

Figure 3.1: Examples of diagrams with an additional gluonic interaction be-
tween the soft and the hard functions.

new aspects in small steps at a time. In the first section we will treat SIDIS and Drell-
Yan scattering, two of the simplest processes, as they only involve initial or final state
interactions. Then we will consider a particular contribution to prompt photon production
as an example of a process where more gluonic interactions are possible. In section 3.3
a prescription will be given to more easily predict the structure of the gauge link for
arbitrary hard functions. Using this prescription we will calculate the Wilson lines that
occur in direct photon production and dijet production in proton-proton scattering, since
these are the processes that will be studied in more detail in the next chapter. To conclude
this chapter we will try to argue the validity of the prescription in section 3.4.

3.1 Electroweak Processes: SIDIS and Drell-Yan
In section 2.4 we have hypothesized that if the momenta of the incoming and outgoing
hadrons in semi-inclusive deep inelastic scattering are well-separated it is reasonable to
assume that the observed hadron in the final state has materialized from the soft radiation
emitted by the current quark (i.e. the active quark). In that case the quark contribution to
the hadron tensor can be written in terms of quark correlators Φ(p) and quark fragmenta-
tion correlators ∆(k) connected to each other through hard functions H(p,k):

Wµν =
1

2M

∫
d4pd4k δ4(p+q−k) Tr

[
Φ(p) H†µ(p,k)∆(k) Hν (p,k)

]
, (3.1)

where we have suppressed the summation over quark flavors. Comparing to expres-
sion (2.31) it is seen that at tree-level the hard function is just an electromagnetic vertex
Hµ(p,k)= ieqγµ (the proton charge factors e have been extracted and appear in the struc-
ture constant α in the cross section (2.30)). In the parton model contribution the quark
distribution and fragmentation correlators are given by expressions (2.28) and (2.32). Ob-
viously, this is not a physically meaningful expression, since the correlators are not gauge
invariant. However, in the diagrammatic approach an expression that involves the properly
gauge invariant correlators can be obtained by resumming all collinear gluon interactions
between the soft and the hard factors [57], such as those in Figure 3.1. The result will be
the same as the expression in (3.1) and with the same hard function Hµ(p,k)= ieqγµ as in

Minimal Requirement for PARTON MDL Factorization

Wµν(q, P, S, Ph) =

May 11, 2011 Zhongbo Kang, RBRC/BNL

Sivers function are process-dependent

! Existence of the Sivers function relies on the interaction between the 

active parton and the remnant of the hadron (process-dependent)

! SIDIS: final-state interaction

! Drell-Yan: initial-state interaction
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PDFs with SIDIS gauge link

PDFs with DY gauge link

P eig
∫ ∞
y dλ·A(λ)

P eig
∫ −∞
y dλ·A(λ)

γ∗

q

q̄

q γ∗

q

⊗

∫
d4pd4kδ4(p+ q − k)Tr

[
ΦU [C]

[∞;ξ](p)H†
µ(p, k)∆(k)Hν(p, k)

]
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“Generalized Universality” Fund. Prediction of  QCD Factorization
T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003

dσ = LµνWµν ⇒

∆

. . .
Φ

Φ̄

. . .
Φ

SIDIS Hadronic Tensor Drell-Yan Hadronic Tensor
(ξ−, 0, ξ⊥)

ξ− Φ[+] futurepointing

ξT (ξ−, 0, ξ⊥)

ξ−

ξT

Φ[−] pastpointing

Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02

P&T

Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02

f⊥
1TSIDIS

(x, kT ) = −f⊥
1TDY

(x, kT )

Φ[+]∗(x, pT ) = iγ1γ3Φ[−](x, pT )iγ1γ3

∆[+]∗(x, pT ) "= iγ1γ3∆[−](x, pT )iγ1γ3

Gauge link for TMDs
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Using the equation of motion for the quark field, the following relations can be established
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ĥ ·kT

) (
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ĥ ·kT

) (
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ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(
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Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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ĥ ·pT

M
f⊥
1TD1

]

, (4.11)

F sin(φh−φS)
UT,L = 0, (4.12)

F sin(φh+φS)
UT = C

[

−
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Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(
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A. The SIDIS cross section and asymmetries

The lepton-hadron cross section can be expressed in a model-independent way by a set of structure functions
[3, 6, 14, 15], which in the notation of Ref. [6] is:

dσ

dxB dy dψ dzh dφh dP 2
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=
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√
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√
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√
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cos(2φh−φS)
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, (1)

where in DIS kinematics dψ ≈ dφS and variables are defined as

xB =
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , γ =
2Mx

Q
, ε =

1− y − 1
4 γ

2y2

1− y + 1
2 y

2 + 1
4 γ

2y2
. (2)

For our purposes, we may assume x ≈ xB , z ≈ zh and γ ≈ 0. Individual structure functions can be projected from
the cross section using, e.g., spin asymmetries, which we introduce generically as

AF
XY ≡ 2

∫
dφh dφS F(φh,φS)

(
dσ↑ − dσ↓)

∫
dφhdφS (dσ↑ + dσ↓)

, (3)

Here the labels X,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T ) of the beam and
target, respectively. The angles φS and φh specify the directions of the hadron spin polarization and the transverse
hadron momentum, respectively, relative to the lepton scattering plane. The cross sections dσ↑ and dσ↓ correspond
to opposite spin polarization of the incident lepton / target hadron. 〈TODO: be a bit more specific?〉 The weighting
function F is a sine (or cosine) of a linear combination of the polarization angles, e.g., F(φh,φS) = sin(φh−φS). The
combination dσ↑ − dσ↓ in the numerator projects out the structure functions FF

XY in Eq. 1, while the combination
dσ↑ + dσ↓ in the denominator corresponds to the unpolarized structure function FUU,T :

dσ↑ + dσ↓ =
α2

sx2
By

2

(
1 + (1− y)2

)
FUU,T . (4)

Weighted asymmetries are introduced in a similar way:

AW
XY = 2

∫
d|P h⊥| |P h⊥| dφh dφS W(|P h⊥|,φh,φS)

(
dσ↑ − dσ↓)

∫
d|P h⊥| |P h⊥| dφh dφS (dσ↑ + dσ↓)

, (5)

where the weighting function W now can also contain different powers of |P h⊥|, e.g., W(|P h⊥|,φh,φS) =
|P h⊥|
zM sin(φh − φS), see Ref. [5].
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Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998
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38 3. TRANSVERSE MOMENTA . . .

The projections leading in 1/Q areleading

PDFs(x,pT )

Φ[γ
+](x,pT ) ≡ f1(x,p

2
T ) +

εijT pT iSTj
M

f⊥1T (x,p
2
T )

=
∫
[dσdτ δ( )]

{

[A2 + xA3] +
εijT pT iSTj
M

[−A12]
}

, (3.38)

Φ[γ
+γ5](x,pT ) ≡ λ g1L(x,p

2
T ) +

pT ·ST
M

g1T (x,p
2
T )

=
∫
[dσdτ δ( )]

{

λ

[

−A6 −
(
σ − 2xM2
2M2

)

(A7 + xA8)

]

+
pT ·ST
M

(A7 + xA8)

}

, (3.39)

Φ[iσ
i+γ5](x,pT ) ≡ SiT h1T (x,p

2
T ) +

piT
M

(

λ h⊥1L(x,p
2
T ) +

pT ·ST
M

h⊥1T (x,p
2
T )

)

+
εijT p

j
T

M
h⊥1 (x,p

2
T )

=
∫
[dσdτ δ( )]

{

−SiT (A9 + xA10) +
εijT p

j
T

M
[−A4] (3.40)

+
λ piT
M

[

A10 −
(
σ − 2xM2
2M2

)

A11

]

+
piT
M

pT ·ST
M

A11

}

.

The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
d2pT

(

h1T (x,p
2
T ) +

p2T
2M2

h⊥1T (x,p
2
T )

)

. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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The projections leading in 1/Q areleading
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Φ[γ
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=
∫
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, (3.39)
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)
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+
piT
M

pT ·ST
M

A11

}

.

The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
d2pT

(

h1T (x,p
2
T ) +

p2T
2M2

h⊥1T (x,p
2
T )

)

. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
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T ) (the so-called Sivers function [19]) and h
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quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
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for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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can be studied experimentally by analyzing angular modulations in the differential cross

section, so called spin and azimuthal asymmetries. These modulations are a function of

the azimuthal angles of the final state hadron momentum about the virtual photon direc-

tion, as well as that of the target polarization (see e.g., ref. [8] for a review). TMD PDFs

enter the SIDIS cross section in momentum space convoluted with transverse momentum

dependent fragmentation functions (TMD FFs). However, after a two-dimensional Fourier

transform of the cross section with respect to the transverse hadron momentum P h⊥, these

convolutions become simple products of functions in Fourier bT -space. The usefulness of

Fourier-Bessel transforms in studying the factorization as well as the scale dependence of

transverse momentum dependent cross section has been known for some time [9–15]. In

this paper we exhibit the structure of the cross section in bT -space and demonstrate how

this representation results in model independent observables which are generalizations of

the conventional weighted asymmetries [6, 7]. Further we explore the impact that these

observables have in studying the scale dependence of the SIDIS cross section at small to

moderate transverse momentum where the TMD framework is designed to give a good

description of the cross section. In particular we study how the so called soft factor cancels

from these observables. The soft factor [14–19] is an essential element of the cross section

that emerges in the proofs of TMD factorization [11, 13–15]. It accounts for the collective

effect of soft momentum gluons not associated with either the distribution or fragmentation

part of the process and it is shown to be universal in hard processes [17]. Depending on

the factorization framework, it appears explicitly in the structure functions and thus in the

factorized cross section (see refs. [14, 18]), or it is completely absorbed in the definition

of TMD PDFs and TMD FFs (see refs. [15, 19]). At tree level (zeroth order in αS) the

soft factor is unity, which explains its absence in the factorization formalism considered for

example in ref. [8]. However, for a correct description of the energy scale dependence of

the cross sections and asymmetries involving TMD PDFs, it is essential to include the soft

factor. Yet, it is possible to consider observables where the soft factor is indeed absent or

cancels out, these are precisely the weighted asymmetries.

1.1 Overview on weighted asymmetries

The concept of transverse momentum weighted single spin asymmetries (SSA) was proposed

some time ago in refs. [6, 7]. Using the technique of weighting enables one to disentangle

in a model independent way the cross sections and asymmetries in terms of the transverse

(momentum) moments of TMD PDFs. A comprehensive list of such weights was derived

in ref. [7] for semi-inclusive deep inelastic scattering (SIDIS). A prominent example is the

weighted Sivers asymmetry, obtained from the differential cross section dσ according to

Aw1 sin(φh−φS)
UT,T = (1.1)

2

∫
d|P h⊥| |P h⊥|dφh dφS w1(|P h⊥|) sin(φh − φS)

{
dσ(φh,φS) − dσ(φh,φS + π)

}
∫

d|P h⊥| dφh |P h⊥|dφS w0(|P h⊥|)
{
dσ(φh,φS) + dσ(φh,φS + π)

} ,

where the integrations are performed over the observed transverse hadron momentum

|P h⊥|, the hadron azimuthal angle φh and the spin direction φS of the transversely polar-

ized target, and the weights are w1 = |P h⊥|/zM , w0 = 1. At tree level and leading twist
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★Structure functions become simple product 

rather than convolution
★CS has simpler S/T interpretation as a 
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★Use Fourier Bessel tranforms
★ The usefulness of Fourier-Bessel transforms in studying the factorization 

as well as the scale dependence of transverse momentum dependent 
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The state |P, S〉 represents a nucleon with four-momentum P and spin polarization vector

S, and quark fields are located at position “0” and “b” in coordinate space. The gauge link

U [Cb] ensures gauge invariance of the correlator [23, 25]. It corresponds to a path in b space

which is determined by the color flow in the hard sub-process [26, 27]. We will discuss the

details of the definition of the correlator and the role of the gauge link U [Cb] in section 4.

Analogous expressions define the fragmentation correlator ∆ij(z,pT ) (see e.g. [8]).

2.2 Representation in Fourier space

In this section, we rewrite the SIDIS cross section and its transverse momentum dependent

components in coordinate bT space, similar as previously done in ref. [28]. Here however,

we take advantage of the rotational invariance of TMD PDFs and FFs.

First we use the representation of the δ-function

δ(2)(zpT + KT − P h⊥) =

∫
d2bT

(2π)2
eibT (zpT +KT −Ph⊥) , (2.6)

along with the following definitions,

W µν(P h⊥) ≡
∫

d2bT

(2π)2
e−ibT ·Ph⊥ W̃ µν(bT ) , (2.7)

Φ̃ij(x, zbT ) ≡
∫

d2pT eizbT ·pT Φij(x,pT )

=

∫
db−

(2π)
eixP+b− 〈P, S|ψ̄j(0)U [Cb]ψi(b)|P, S〉

∣∣∣∣
b+=0

, (2.8)

∆̃ij(z, bT ) ≡
∫

d2KT eibT ·KT ∆ij(z,KT ) , (2.9)

to re-write the leading term in the hadronic tensor, eq. (2.3), in Fourier space

2MW̃ µν =
∑

a

e2
a Tr

(
Φ̃(x, zbT )γµ∆̃(z, bT )γν

)
. (2.10)

The advantage of the bT space representation is clear: the hadronic tensor is no longer

a convolution of pT and KT dependent functions but a simple product of bT -dependent

functions. This motivates us to re-write the entire cross section in terms of the Fourier

transform

dσ

dx
B

dy dψ dzh dφh |P h⊥|d|P h⊥|
=

∫
d2bT

(2π)2
e−ibT ·Ph⊥

{
α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW̃ µν

}
.

(2.11)

Next, we decompose the correlators Φ̃ and ∆̃ into TMD PDFs and FFs in Fourier space.

Using the trace notation (see also eqs. (A.8) and (A.9) in the appendix)

Φ̃[Γ] ≡
1

2
Tr(Φ̃Γ) , (2.12)
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(
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. (2.10)

The advantage of the bT space representation is clear: the hadronic tensor is no longer

a convolution of pT and KT dependent functions but a simple product of bT -dependent

functions. This motivates us to re-write the entire cross section in terms of the Fourier
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e−ibT ·Ph⊥
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yQ2
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1 +
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B
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(2.11)

Next, we decompose the correlators Φ̃ and ∆̃ into TMD PDFs and FFs in Fourier space.

Using the trace notation (see also eqs. (A.8) and (A.9) in the appendix)

Φ̃[Γ] ≡
1

2
Tr(Φ̃Γ) , (2.12)
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Using the equation of motion for the quark field, the following relations can be established

between the functions appearing in the above correlator and the functions in the quark-

quark correlator (3.38):

E

z
=

Ẽ

z
+

m

Mh
D1, (3.76)

D⊥

z
=

D̃⊥

z
+ D1, (3.77)

G⊥

z
=

G̃⊥

z
+

m

Mh
H⊥

1 , (3.78)

H

z
=

H̃

z
+

k2
T

M2
h

H⊥
1 . (3.79)

4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we

introduce the unit vector ĥ = P h⊥/|P h⊥| and the notation

C
[

wf D
]

= x
∑

a

e2
a

∫

d2pT d2kT δ(2)
(

pT − kT − P h⊥/z
)

w(pT ,kT ) fa(x, p2
T )Da(z, k2

T ),

(4.1)

where w(pT ,kT ) is an arbitrary function and the summation runs over quarks and anti-

quarks. The expressions for the structure functions appearing in eq. (2.7) are

FUU,T = C
[

f1D1
]

, (4.2)

FUU,L = 0, (4.3)

F cos φh

UU =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xhH⊥
1 +

Mh

M
f1

D̃⊥

z

)

−
ĥ ·pT

M

(

xf⊥D1 +
Mh

M
h⊥

1
H̃

z

)]

, (4.4)

F cos 2φh

UU = C
[

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

MMh
h⊥

1 H⊥
1

]

, (4.5)

F sin φh

LU =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xeH⊥
1 +

Mh

M
f1

G̃⊥

z

)

+
ĥ ·pT

M

(

xg⊥D1 +
Mh

M
h⊥

1
Ẽ

z

)]

, (4.6)

F sin φh

UL =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xhLH⊥
1 +

Mh

M
g1L

G̃⊥

z

)

+
ĥ ·pT

M

(

xf⊥
L D1 −

Mh

M
h⊥

1L

H̃

z

)]

, (4.7)

F sin 2φh

UL = C
[

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

MMh
h⊥

1LH⊥
1

]

, (4.8)

FLL = C
[

g1LD1
]

, (4.9)
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transforms according to

TΦ

(
Φ̃(b, w)

)
=

∫
d4p eTΦ(−i) p·b TΦ (Φ(p,w))

=

∫
d4q eTΦ(−i)T −1

p (q)·b Φ (q,Tw(w))

=

∫
d4q eTΦ(−i) q·Tp(b) Φ (q,Tw(w))

= Φ̃

(
TΦ(i)

i
Tp(b),Tw(w)

)
. (C.7)

For example, Φ̃ transforms under hermitian conjugation as

(†) :
[
Φ̃[Γ]

unsub(b, P, S; v)
]∗

= Φ̃[γ0Γ†γ0]
unsub (−b, P, S; v) . (C.8)

Let f(p,w) be any of the structures preceding the invariant amplitudes in the param-

eterization of Φ. The structure f(p,w) is a homogeneous function of some degree

n in p, i.e., f(αp,w) = αnf(p,w) for any number α. For example, the structure

f(p,w) = 1
M(v·P )(p·S)εµναβPνpαvβ preceding B(+)

9 in eq. (4.3) has degree n = 2. If we

define f̃(b, w) ≡ f(−iM2b, w), then

TΦ

(
f̃(b, w)

)
=TΦ(−iM2)n TΦ (f(b, w))=f

(
TΦ(−iM2)Tp(b),Tw(w)

)
= f̃

(
TΦ(i)

i
b, w

)
. (C.9)

This shows that f̃ transforms like Φ̃ in eq. (C.7). We conclude that the parameterization

of Φ̃ can be found by the substitution p → −iM2b in the structures parameterizing Φ, and

we arrive at eq. (4.4). The amplitudes Ã(+)
i and B̃(+)

i introduced this way are no longer

constrained to be real valued functions. Instead, hermitian conjugation eq. (C.8) yields the

relation
[
Ã(+)

i (b2, b·P, v·b/(v·P ), ζ−2, µ2)
]∗

= Ã(+)
i (b2,−b·P,−v·b/(v·P ), ζ−2, µ2) . (C.10)

D Structure functions in terms of Fourier transformed TMD PDFs and

FFs

The structure functions of ref. [8] can be expressed in terms of Fourier-transformed TMD

PDFs and FFs as

FUU,T =x
B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) f̃a
1 (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.1)

F sin(φh−φS)
UT,T =−x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz f̃⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ), (D.2)

FLL =x
B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) g̃a
1L(x, z2b2

T ) D̃a
1(z, b2

T ) , (D.3)

F cos(φh−φs)
LT =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz g̃⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.4)
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F cos φh

LL =
2M

Q
C
[

ĥ ·kT

Mh

(

xeLH⊥
1 −

Mh

M
g1L

D̃⊥

z

)

−
ĥ ·pT

M

(

xg⊥L D1 +
Mh

M
h⊥

1L

Ẽ

z

)]

, (4.10)

F sin(φh−φS)
UT,T = C

[

−
ĥ ·pT

M
f⊥
1TD1

]

, (4.11)

F sin(φh−φS)
UT,L = 0, (4.12)

F sin(φh+φS)
UT = C

[

−
ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(

ĥ ·pT

) (

pT ·kT

)

+ p2
T

(

ĥ ·kT

)

− 4 (ĥ ·pT )2 (ĥ ·kT )

2M2Mh
h⊥

1T H⊥
1

]

, (4.14)

F sinφS

UT =
2M

Q
C
{(

xfTD1 −
Mh

M
h1

H̃

z

)

−
kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

−
(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.15)

F sin(2φh−φS)
UT =

2M

Q
C
{

2 (ĥ ·pT )2 − p2
T

2M2

(

xf⊥
T D1 −

Mh

M
h⊥

1T

H̃

z

)

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

+

(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.16)

F cos(φh−φS)
LT = C

[

ĥ ·pT

M
g1T D1

]

, (4.17)

F cos φS

LT =
2M

Q
C
{

−
(

xgT D1 +
Mh

M
h1

Ẽ

z

)

+
kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

+

(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

, (4.18)

F cos(2φh−φS)
LT =

2M

Q
C
{

−
2 (ĥ ·pT )2 − p2

T

2M2

(

xg⊥T D1 +
Mh

M
h⊥

1T

Ẽ

z

)

+
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

−
(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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F sin(φh+φS)
UT =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mhz h̃a
1(x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) , (D.5)

F cos(2φh)
UU =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |3J2(|bT | |P h⊥|)MMhz2 h̃⊥a(1)
1 (x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) ,

(D.6)

F sin(2φh)
UL =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |3 J2(|bT | |P h⊥|)MMhz2 h̃⊥a(1)
1L (x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) ,

(D.7)

F sin(3φh−φS)
UT =xB

∑

a

e2
a

∫
d|bT |
(2π)

|bT |4 J3(|bT | |P h⊥|)
M2Mhz3

4
h̃⊥a(2)

1T (x, z2b2
T ) H̃⊥a(1)

1 (z, b2
T ) .

(D.8)

E Cancellation of the soft factor in the Sivers asymmetry

Making use of the closure relation of the Bessel function
∫ ∞

0
d|P h⊥| |P h⊥|Jn(|P h⊥| |bT |)Jn(|P h⊥| BT ) =

1

BT
δ(|bT |− BT ) , (E.1)

we obtain for the expression in eq. (5.6)

∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥|BT )

∫
d|bT |
(2π)

|bT |J0(|bT ||P h⊥|)FUU,T (E.2)

=x
B

∑

a

e2
a HUU,T (Q2, µ2, ρ)

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS J0(|P h⊥|BT )

×
∫

d|bT |
(2π)

|bT |J0(|P h⊥| |bT |)f̃
(0)a
1 (x, z2b2

T ;µ2, ζ, ρ) S̃(+)(b2
T ;µ2, ρ) D̃(0)a

1 (z, b2
T ;µ, ζ̂, ρ)

=2πx
B

∑

a

e2
a HUU,T (Q2, µ2, ρ) f̃ (0)a

1 (x, z2B2
T ;µ2, ζ, ρ)S̃(+)(B2

T ;µ2, ρ)D̃(0)a
1 (z,B2

T ;µ, ζ̂, ρ)

Next, we consider the following expression in the numerator of the asymmetry, eq. (5.7),

∫
d|P h⊥||P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS)

×
∫

d|bT |
(2π)

|bT |2J1(|bT | |P h⊥|)F
sin(φh−φS)
UT,T

=

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS) (E.3)

×xB

∑

a

e2
a Hsin(φh−φS)

UT,T (Q2, µ2, ρ)

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)

×Mzf̃⊥(1)a
1T (x, z2b2

T , µ2, ζ, ρ) S̃(+)(b2
T , µ2, ρ) D̃(0)a

1 (z, b2
T , µ2, ζ̂, ρ)

= 2πx
B

∑

a

e2
a Hsin(φh−φS)

UT,T (Q2, µ2, ρ)f̃⊥(1)a
1T (x, z2B2

T , µ2, ζ, ρ)

×S̃(+)(B2
T , µ2, ρ)D̃(0)a

1 (z,B2
T , µ2, ζ̂/z, ρ),
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F sinφS
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z

)]}

, (4.15)

F sin(2φh−φS)
UT =

2M

Q
C
{
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T

2M2

(

xf⊥
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1T

H̃

z

)
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) (
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)

− kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh
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g1T
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z

)

+
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xh⊥
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1 −
Mh
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f⊥
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D̃⊥
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)]}

, (4.16)

F cos(φh−φS)
LT = C

[

ĥ ·pT

M
g1T D1

]

, (4.17)

F cos φS

LT =
2M

Q
C
{

−
(

xgT D1 +
Mh

M
h1

Ẽ

z

)

+
kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

+

(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

, (4.18)

F cos(2φh−φS)
LT =

2M

Q
C
{

−
2 (ĥ ·pT )2 − p2

T

2M2

(

xg⊥T D1 +
Mh

M
h⊥

1T

Ẽ

z

)

+
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

−
(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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Simple product “     “P

write out in cylindrical polar--
traceless tensor irreducible 

tensor no mixture of Bessels “J3” 



TMDs in “config” space--Bessel MOMENTS

f̃(x, b2
T ) ≡

∫
d2pT eibT ·pT f(x,p2

T )

= 2π

∫
d|pT ||pT | J0(|bT ||pT |) fa(x,p2

T ) ,

f̃ (n)(x, b2
T ) ≡ n!

(
− 2

M2
∂b2

T

)n

f̃(x, b2
T )

=
2π n!
(M2)n

∫
d|pT ||pT |

(
|pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) ,

f̃ (n)(x, 0) =
∫

d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x)

b)  n.b. connection to        moments

 a) F.T.  SIDIS cross section w/ following Bessel  moments

pT



★ CS has simpler S/T interpretation--multipole 
expansion in terms of               conjugate to

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued and f̃ (0) = f̃ , D̃(0) = D̃. Taking the

“asymptotic limit” |bT | → 0 on the right hand side of eqs. (2.19), we formally obtain the

conventional moments of the TMD PDFs and TMD FFs, f (n)(x) and D(n)(z) respectively,

f̃ (n)(x, 0) =

∫
d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =

∫
d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z). (2.20)

Thus we find that the derivatives in bT -space are directly related to moments of TMD

PDFs and FFs. Finally we re-write the SIDIS cross section of ref. [8] in the γ∗P center

of mass frame with the proton three-momentum pointing in the negative z-direction (so

called Trento conventions [22]), as

dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

) ∫
d|bT |
(2π)

|bT |
{

J0(|bT ||P h⊥|)FUU,T + εJ0(|bT ||P h⊥|)FUU,L

+
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Fcos φh
UU + ε cos(2φh)J2(|bT ||P h⊥|)F

cos(2φh)
UU

+ λe

√
2 ε(1 − ε) sin φh J1(|bT ||P h⊥|)F sin φh

LU

+ S‖

[√
2 ε(1 + ε) sin φh J1(|bT ||P h⊥|)F sin φh

UL + ε sin(2φh)J2(|bT ||P h⊥|)F sin 2φh
UL

]

+ S‖λe

[√
1 − ε2 J0(|bT ||P h⊥|)FLL +

√
2 ε(1 − ε) cos φh J1(|bT ||P h⊥|)Fcos φh

LL

]

+ |S⊥|
[
sin(φh − φS)J1(|bT ||P h⊥|)

(
F sin(φh−φS)

UT,T + εF sin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)F
sin(φh+φS)
UT

+ ε sin(3φh − φS)J3(|bT ||P h⊥|)F
sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sin φS J0(|bT ||P h⊥|)F sin φS

UT

+
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)F
sin(2φh−φS)
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)F

cos(φh−φS)
LT

+
√

2 ε(1 − ε) cos φS J0(|bT ||P h⊥|)Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)J2(|bT ||P h⊥|)F
cos(2φh−φS)
LT

]}
(2.21)

The structure of the cross section is what one gets from a multipole expansion in bT -

space followed by a Fourier transform, see appendix B. Each of the structure functions

F ···
XY,Z in bT -space corresponds to the Hankel (or Fourier-Bessel) transform of the corre-

sponding structure function F ···
XY,Z in the usual momentum space representation of the cross

section. The combinations sin(nφh + . . .)Jn(|bT ||P h⊥|) and cos(nφh + . . .)Jn(|bT ||P h⊥|)
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act as basis functions of the combined transform to (|P h⊥|,φh)-space. Due to the fact

that the multipole expansion of the physical cross section terminates, only a finite number

of terms appear in the cross section, with J3 being the Bessel function of highest order.

The structures F ···
XY,Z are functions of |bT |, x and z, but no longer depend on the angular

variables. Introducing a short-hand notation for products

P[f̃ (n)D̃(m)] ≡ x
B

∑

a

e2
a (zM |bT |)n (zMh|bT |)m f̃a(n)(x, z2b2

T ) D̃a(m)(z, b2
T ) , (2.22)

the leading twist tree level analysis in eqs. (2.10), (2.13) and (2.15) reveals that the Fourier

transformed structures in the cross section are simple products of TMD PDFs and TMD

FFs

FUU,T = P[f̃ (0)
1 D̃(0)

1 ] , (2.23)

F sin(φh−φS)
UT,T = −P[f̃⊥(1)

1T D̃(0)
1 ] , (2.24)

FLL = P[g̃(0)
1L D̃(0)

1 ] , (2.25)

Fcos(φh−φs)
LT = P[g̃(1)

1T D̃(0)
1 ] , (2.26)

F sin(φh+φS)
UT = P[h̃(0)

1 H̃⊥(1)
1 ] , (2.27)

Fcos(2φh)
UU = P[h̃⊥(1)

1 H̃⊥(1)
1 ] , (2.28)

F sin(2φh)
UL = P[h̃⊥(1)

1L H̃⊥(1)
1 ] , (2.29)

F sin(3φh−φS)
UT =

1

4
P[h̃⊥(2)

1T H̃⊥(1)
1 ]. (2.30)

For completeness, we also list the above results in terms of the momentum-space struc-

ture functions F ···
XY,Z of ref. [8] in appendix D. Note that TMD evolution equations are

typically derived in bT -space and are thus obtained in terms of the same (derivatives of)

Fourier transformed TMD PDFs and TMD FFs that appear in the equations above, see,

e.g., ref. [28], where a similar representation of the structure functions in Fourier space has

been employed.

3 Beyond tree level

The formalism becomes more involved once diagrams beyond leading order in αs are taken

into account. Various strategies have been proposed to address extra divergences that

appear at the one loop level and higher order [15–19, 30–34]. The development of these

frameworks for transverse momentum dependent factorization and the establishing of the

corresponding factorization theorems is an active field of research (see e.g., refs. [15, 35]).

The proposed strategies require the introduction of new variables that act as regularization

scales, and most importantly as it pertains to the content of this paper, the so called soft

factors coming from soft-gluon radiation. As stated in the introduction, depending on the

framework, the soft factors appear explicitly in the structure functions [14, 18], or are

absorbed into the definition of TMD PDFs and TMD FFs (see e.g., refs. [15, 19]). We will

present general arguments that soft factors cancel in weighted asymmetries, independent
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Correlator w/ explicit spin orbit correlations

J
H
E
P
1
0
(
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0
1
1
)
0
2
1

and restricting ourselves to leading twist projections, we obtain the following structures

for Φ̃

Φ̃[γ+](x, bT ) = f̃1(x, b2
T ) − i ερσ

T bTρSTσ Mf̃⊥(1)
1T (x, b2

T ) ,

Φ̃[γ+γ5](x, bT ) = SL g̃1L(x, b2
T ) + i bT ·ST M g̃(1)

1T (x, b2
T ) ,

Φ̃[iσα+γ5](x, bT ) = Sα
T h̃1(x, b2

T ) + i SL bα
T M h̃⊥(1)

1L (x, b2
T )

+
1

2

(
bα
T bρ

T +
1

2
b2

T gαρ
T

)
M2 STρh̃

⊥(2)
1T (x, b2

T )

−i εαρ
T bTρMh̃⊥(1)

1 (x, b2
T ) , (2.13)

where α = 1, 2 and ρ = 1, 2. Similarly, we obtain the following structures for ∆̃

∆̃[γ−](z, bT ) = D̃1(z, b2
T ) − i ερσ

T bTρShTσ zMhD̃⊥(1)
1T (x, b2

T ) ,

∆̃[γ−γ5](z, bT ) = ShL G̃1L(z, b2
T ) − i bT ·ShT zMh G̃(1)

1T (z, b2
T ) ,

∆̃[iσα−γ5](z, bT ) = Sα
hT H̃1(z, b2

T ) − i ShL bαzMh H̃⊥(1)
1L (z, b2

T )

+
1

2

(
bα
T bρ

T +
1

2
b2

T gαρ
T

)
z2M2

h ShTρH̃
⊥(2)
1T (z, b2

T ) (2.14)

−i εαρ
T bTρzMhH̃⊥(1)

1 (z, b2
T ) . (2.15)

For future applications, we have written down the latter decomposition for the more general

case of a spin-1
2 hadron; the expression for a spinless hadron is obtained by setting Sh = 0.

The above decompositions can be deduced from the existing expressions for Φ and ∆ in

momentum space [5, 29], or starting from the symmetry properties of the correlators Φ̃

and ∆̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also section 4

and appendix C. The functions f̃1(x, b2
T ), g̃1L(x, b2

T ), . . . are the Fourier transforms of

the usual TMD PDFs f1(x,p2
T ), g1L(x,p2

T ), . . .. For a generic TMD PDF called f and a

generic TMD FF called D, this Fourier transform is given by

f̃(x, b2
T )≡

∫
d2pT eibT ·pT f(x,p2

T )

= 2π

∫
d|pT ||pT | J0(|bT ||pT |) f(x,p2

T ) , (2.16)

D̃(z, b2
T ) ≡

∫
d2KT eibT ·KT D(z,K2

T )=2π

∫
d|KT ||KT |J0(|bT ||KT |)D(z,K2

T ) . (2.17)

Additionally, in eqs. (2.13) and (2.15) not only Fourier transformed TMD PDFs and TMD

FFs, but also their b2
T -derivatives appear, which we denote as

f̃ (n)(x, b2
T ) ≡ n!

(
−

2

M2
∂b2

T

)n

f̃(x, b2
T )

=
2π n!

(M2)n

∫
d|pT ||pT |

(
|pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) , (2.18)

D̃(n)(z, b2
T ) ≡ n!

(
−

2

z2M2
h

∂b2
T

)n

D̃(z, b2
T )

=
2π n!

(z2M2
h)n

∫
d|KT ||KT |

(
|KT |
|bT |

)n

Jn(|bT ||KT |) D(z,K2
T ) . (2.19)
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Comments on Soft factor

• Collective effect soft gluons not associated with distribution frag 
function-factorizes into a matrix of Wilson lines in QCD vacuum

• Subtracts soft divergences from TMD pdf and FF
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Momentum space convolution 

Hard

TMD Soft FF

C
[
H;wfSD

]
≡ xBH(Q2, µ2, ρ)

∑

a

e2
a

∫
d2pT d2KT d2"T δ(2)

(
zpT + KT + "T − Ph⊥

)
w

(
pT ,−KT

z

)

×fa(x, p2
T , µ2, xζ, ρ) S("2T , µ2, ρ) Da(z,K2

T , µ2, ζ̂/z, ρ)

Adilbi, Ji, Ma, Yuan PRD 05  ....    
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weighted asymmetry does not yield direct information on h⊥(1)
1 and H⊥(1)

1 . But since this contribution is calculable
in perturbation theory it can in principle be subtracted (modulo power suppressed contributions). Here we will not
go further into this aspect, but refer to Ref. [24] for more details on which weighted asymmetries are affected in a
similar way, based on calculations of the perturbative tails of TMDs and on power counting.

As a final topic in this section we briefly address what is known about the energy scale dependence of the weighted
asymmetries. The current knowledge on this is limited to the one-loop level. Choosing the factorization scale µ = Q
removes the Q dependence from the hard scattering function H that is a function of lnQ2/µ2. This will lead to a Q

dependence in the transverse moments of the TMDs only. The scale dependence of f (0)
1 (x;Q2) is known, assuming

a proper definition of the TMD can be used, such that the zeroth moment corresponds to the collinear function

f1(x;Q2) after the regularization is removed. The same applies to D(0)
1 (z;Q2). For the first moment of the Sivers

function one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [28] as shown in Ref. [29].
The evolution equation of the Qiu-Sterman function has recently been obtained [30–33] allowing for evolution of the
weighted Sivers asymmetry. The evolution of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself.
This is still true in the large-Nc limit, but in the large-x limit it does become autonomous [33, 34]. It indicates that

f⊥(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling off faster at a given x value as Q2 increases. For

other transverse moments, such as h⊥(1)
1 , the evolution is not yet known, but is expected to follow a similar pattern

as f⊥(1)
1T .

III. SOFT FACTOR CANCELLATION ON THE LEVEL OF MATRIX ELEMENTS

A. TMDs from quark-quark correlations in the nucleon

In our study of weighted asymmetries in the previous sections, we obtain ratios of moments of TMDs and fragmen-
tation functions that are free of the soft factor that appears in the convolution Eq. (8). To derive this result, it is not
necessary to specify the explicit definition of TMDs, fragmentation functions and the soft factor in terms of matrix
elements.

In this section, we now analyze a ratio of moments of TMDs directly on the level of matrix elements. Depending
on the formalism, soft factors can also appear inside the definition of TMDs and fragmentation functions themselves.
Again, we will find cancellation of these soft factors in the ratio. As in the previous section, we stick to the JMY
framework [18, 22] for definiteness. For any four vector w, we introduce light cone coordinates w = (w−, w+,wT )
as in JMY and two lightlike directions n = (1, 0, 0), n̄ = (0, 1, 0). Straight Wilson lines starting at infinity and
running along a direction given by the four-vector v to an endpoint a are denoted Lv(∞; a) as in JMY. The general
quark-quark correlator defining TMDs has the form

Φ+[Γ]
q (x,pT , P, S, µ

2, xζ, ρ) =

∫
db−

(2π)
e−ixb−P+

∫
d2bT
(2π)2

eipT ·bT

× 1

2
〈P, S| q̄(b)L†

v(∞; b) Γ Lv(∞; 0)q(0) |P, S〉
︸ ︷︷ ︸

Φ̃[Γ]
q (b, P, S; v, µ2)

/
S̃+(bT , µ

2, ρ)
∣∣∣
b+ = 0

, (30)

where Γ is a Dirac matrix and the state |P, S〉 represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v−, v+, 0) is chosen timelike, slightly off the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter ζ, defined by ζ = (2P ·v)2/v2 [check], which represents a rapidity
cutoff parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ−, ṽ+, 0) controlled by an
analogous parameter ζ̂ enters the Wilson lines of the fragmentation functions and is chosen slightly off the lightcone
direction n̄. The soft factor S̃+(bT , µ2, ρ) is formed from vacuum expectation values of Wilson lines involving both
directions v and ṽ, and thus depends on the relative orientation of these directions, specified by ρ ≡

√
v−ṽ+/v+ṽ−.

Note that ρ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on Φ+[Γ]
q and S̃+

indicates a choice of link directions appropriate for SIDIS, i.e. v ≈ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is
not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function
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weighted asymmetry does not yield direct information on h⊥(1)
1 and H⊥(1)

1 . But since this contribution is calculable
in perturbation theory it can in principle be subtracted (modulo power suppressed contributions). Here we will not
go further into this aspect, but refer to Ref. [24] for more details on which weighted asymmetries are affected in a
similar way, based on calculations of the perturbative tails of TMDs and on power counting.

As a final topic in this section we briefly address what is known about the energy scale dependence of the weighted
asymmetries. The current knowledge on this is limited to the one-loop level. Choosing the factorization scale µ = Q
removes the Q dependence from the hard scattering function H that is a function of lnQ2/µ2. This will lead to a Q

dependence in the transverse moments of the TMDs only. The scale dependence of f (0)
1 (x;Q2) is known, assuming

a proper definition of the TMD can be used, such that the zeroth moment corresponds to the collinear function

f1(x;Q2) after the regularization is removed. The same applies to D(0)
1 (z;Q2). For the first moment of the Sivers

function one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [28] as shown in Ref. [29].
The evolution equation of the Qiu-Sterman function has recently been obtained [30–33] allowing for evolution of the
weighted Sivers asymmetry. The evolution of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself.
This is still true in the large-Nc limit, but in the large-x limit it does become autonomous [33, 34]. It indicates that

f⊥(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling off faster at a given x value as Q2 increases. For

other transverse moments, such as h⊥(1)
1 , the evolution is not yet known, but is expected to follow a similar pattern

as f⊥(1)
1T .

III. SOFT FACTOR CANCELLATION ON THE LEVEL OF MATRIX ELEMENTS

A. TMDs from quark-quark correlations in the nucleon

In our study of weighted asymmetries in the previous sections, we obtain ratios of moments of TMDs and fragmen-
tation functions that are free of the soft factor that appears in the convolution Eq. (8). To derive this result, it is not
necessary to specify the explicit definition of TMDs, fragmentation functions and the soft factor in terms of matrix
elements.

In this section, we now analyze a ratio of moments of TMDs directly on the level of matrix elements. Depending
on the formalism, soft factors can also appear inside the definition of TMDs and fragmentation functions themselves.
Again, we will find cancellation of these soft factors in the ratio. As in the previous section, we stick to the JMY
framework [18, 22] for definiteness. For any four vector w, we introduce light cone coordinates w = (w−, w+,wT )
as in JMY and two lightlike directions n = (1, 0, 0), n̄ = (0, 1, 0). Straight Wilson lines starting at infinity and
running along a direction given by the four-vector v to an endpoint a are denoted Lv(∞; a) as in JMY. The general
quark-quark correlator defining TMDs has the form

Φ+[Γ]
q (x,pT , P, S, µ

2, xζ, ρ) =

∫
db−

(2π)
e−ixb−P+

∫
d2bT
(2π)2

eipT ·bT

× 1

2
〈P, S| q̄(b)L†

v(∞; b) Γ Lv(∞; 0)q(0) |P, S〉
︸ ︷︷ ︸

Φ̃[Γ]
q (b, P, S; v, µ2)

/
S̃+(bT , µ

2, ρ)
∣∣∣
b+ = 0

, (30)

where Γ is a Dirac matrix and the state |P, S〉 represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v−, v+, 0) is chosen timelike, slightly off the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter ζ, defined by ζ = (2P ·v)2/v2 [check], which represents a rapidity
cutoff parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ−, ṽ+, 0) controlled by an
analogous parameter ζ̂ enters the Wilson lines of the fragmentation functions and is chosen slightly off the lightcone
direction n̄. The soft factor S̃+(bT , µ2, ρ) is formed from vacuum expectation values of Wilson lines involving both
directions v and ṽ, and thus depends on the relative orientation of these directions, specified by ρ ≡

√
v−ṽ+/v+ṽ−.

Note that ρ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on Φ+[Γ]
q and S̃+

indicates a choice of link directions appropriate for SIDIS, i.e. v ≈ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is
not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function
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where Γ is a Dirac matrix and the state |P, S〉 represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v−, v+, 0) is chosen timelike, slightly off the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter ζ, defined by ζ = (2P ·v)2/v2 [check], which represents a rapidity
cutoff parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ−, ṽ+, 0) controlled by an
analogous parameter ζ̂ enters the Wilson lines of the fragmentation functions and is chosen slightly off the lightcone
direction n̄. The soft factor S̃+(bT , µ2, ρ) is formed from vacuum expectation values of Wilson lines involving both
directions v and ṽ, and thus depends on the relative orientation of these directions, specified by ρ ≡
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v−ṽ+/v+ṽ−.

Note that ρ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on Φ+[Γ]
q and S̃+

indicates a choice of link directions appropriate for SIDIS, i.e. v ≈ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is
not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function

Crucial  property of Soft Factor-SIDIS 
Soft factor formed from vacuum expt. value of Wilson lines involving both 
v and ṽ  thus depends on relative orientation of directions ρ =

√
v−ṽ+/v+ṽ−
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S̃+(b2, ρ, µ). In the following section, we will consider the case Γ = γ+. The correlator Φ+[γ+]
q can be decomposed

into contributions from two distinct TMDs:

Φ+[Γ]
q (x,pT , P, S, µ

2, xζ, ρ) = f1(x,pT ;µ
2, xζ, ρ)− εij pi Sj

mN
f⊥
1T (x,pT ;µ

2, xζ, ρ) (31)

To derive the decomposition of Φ+[Γ] into TMDs, it is customary to parametrize the “fully unintegrated” correlator∫
d4b/(2π4) e−ib·p Φ̃[Γ]

q in terms of real-valued Lorentz-invariant amplitudes A1, . . ., A12, see, e.g., Ref. [1]. It has been
found that the dependence on the link direction v makes it necessary to introduce further amplitudes B1, . . ., B20

[35]. The amplitudes Ai and Bi depend on the Lorentz-invariants p2, p·P , v·p, v2, v·P . However, since v represents
only a direction, the amplitudes must remain invariant under rescaling of v, i.e., under the substitution v → ηv, for
any positive real number η. We may therefore write the Ai and Bi as functions [A,B]+i (p

2, p·P, v·p/(v·P ), ζ, µ), where
the “+” indicates the sign of v·P and where v·p/(v·P ) ≈ x for v ≈ n.

In the following we make use of a very similar parametrization that has already been employed in Refs. [36, 37]: We

choose to parametrize the b-dependent matrix elements Φ̃[Γ]
q (b, P, S, v) in terms of complex-valued Lorentz-invariant

amplitudes Ã+
i (b

2, b·P, b·v/(v·P ), ζ, µ) and B̃+
i (b2, b·P, b·v/(v·P ), ζ, µ). This parametrization can be deduced from the

conventional parametrization in terms of the A+
i and B+

i by making the replacement k → im2
Nb in Eq. (7) of Ref.

[35]. For the vector case, one obtains

1

2
Φ̃[γµ] = Pµ Ã+

2 + imNbµ Ã+
3 + imN εµναβPνbαSβ Ã

+
12 +

m2
N

(v·P )
vµ B̃+

1 +
mN

v·P εµναβPνvαSβ B̃
+
7

+
im3

N

v·P εµναβbνvαSβ B̃
+
8 +

im3
N

v·P (b·S)εµναβPνbαvβ B̃
+
9 +

im3
N

(v·P )2
(v·S)εµναβPνbαvβB̃

+
10 . (32)

The factors v·P in the denominators ensure that the expression is invariant under scaling of v. As a side remark,
inserting this parametrization into Eq. (30) and comparing with Eq. (31) allows us to write the TMDs f1 and f⊥

1T as

f1 = 2

∫
d(b·P )

(2π)P+
e−ix(b·P )

∫ ∞

0

d(−b2)

4π
J0(

√
−b2p2

T )
1

S̃

(
Ã+

2 +R(ζ)B̃+
1

)
, (33)

f⊥
1T = 4m2

N
∂

∂(p2
T )

∫
d(b·P )

(2π)P+
e−ix(b·P )

∫ ∞

0

d(−b2)

4π
J0(

√
−b2p2

T )
1

S̃

(
Ã+

12 −R(ζ)B̃+
8

)
, (34)

where J0 is a Bessel function, and where

R(ζ) ≡ m2
N

v·P
v+

P+
= 1−

√

1− 4m2
N

ζ
. (35)

We observe that the amplitudes B̃i give rise to structures in Eqns. (33) and (34) that are suppressed by their explicit
ζ-dependence as ζ → ∞, i.e., in the limit of lightlike v. The structures also disappear in the limit of vanishing nucleon
mass m2

N → 0.

B. Soft factor cancellation in the average transverse momentum shift

Consider the average transverse momentum shift of unpolarized quarks in a transversely polarized nucleon, given
by a ratio of the pT -weighted correlator:

〈py〉TU =

∫
d2pT py

∫ 1
−1 dx Φ+[γ+](x,pT , P, S, µ

2, xζ, ρ)
∫
d2pT

∫ 1
−1 dx Φ+[γ+](x,pT , P, S, µ

2, xζ, ρ)

∣∣∣∣∣
S±=0,ST=(1,0)

(36)

= mN

∫
d2pT (p2

T /2m
2
N )

∫ 1
−1 dx f⊥

1T (x,pT ;µ
2, xζ, ρ)

∫
d2pT

∫ 1
−1 dx f1(x,pT ;µ

2, xζ, ρ)
(37)

We now evaluate Eq. (36) using the above parametrization. First of all, we find that
∫ 1

−1
dxΦ+[γ+] =

∫ 1

−1
dx

∫
db−

2π

∫
d2bT
(2π)2

e−ib−xP++ibT ·pT Φ̃[γ+]/S̃+

=
1

P+

∫
d2bT
(2π)2

eibT ·pT Φ̃[γ+]/S̃+
∣∣∣
b+=b−=0

(38)
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weighted asymmetry does not yield direct information on h⊥(1)
1 and H⊥(1)

1 . But since this contribution is calculable
in perturbation theory it can in principle be subtracted (modulo power suppressed contributions). Here we will not
go further into this aspect, but refer to Ref. [24] for more details on which weighted asymmetries are affected in a
similar way, based on calculations of the perturbative tails of TMDs and on power counting.

As a final topic in this section we briefly address what is known about the energy scale dependence of the weighted
asymmetries. The current knowledge on this is limited to the one-loop level. Choosing the factorization scale µ = Q
removes the Q dependence from the hard scattering function H that is a function of lnQ2/µ2. This will lead to a Q

dependence in the transverse moments of the TMDs only. The scale dependence of f (0)
1 (x;Q2) is known, assuming

a proper definition of the TMD can be used, such that the zeroth moment corresponds to the collinear function

f1(x;Q2) after the regularization is removed. The same applies to D(0)
1 (z;Q2). For the first moment of the Sivers

function one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [28] as shown in Ref. [29].
The evolution equation of the Qiu-Sterman function has recently been obtained [30–33] allowing for evolution of the
weighted Sivers asymmetry. The evolution of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself.
This is still true in the large-Nc limit, but in the large-x limit it does become autonomous [33, 34]. It indicates that

f⊥(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling off faster at a given x value as Q2 increases. For

other transverse moments, such as h⊥(1)
1 , the evolution is not yet known, but is expected to follow a similar pattern

as f⊥(1)
1T .

III. SOFT FACTOR CANCELLATION ON THE LEVEL OF MATRIX ELEMENTS

A. TMDs from quark-quark correlations in the nucleon

In our study of weighted asymmetries in the previous sections, we obtain ratios of moments of TMDs and fragmen-
tation functions that are free of the soft factor that appears in the convolution Eq. (8). To derive this result, it is not
necessary to specify the explicit definition of TMDs, fragmentation functions and the soft factor in terms of matrix
elements.

In this section, we now analyze a ratio of moments of TMDs directly on the level of matrix elements. Depending
on the formalism, soft factors can also appear inside the definition of TMDs and fragmentation functions themselves.
Again, we will find cancellation of these soft factors in the ratio. As in the previous section, we stick to the JMY
framework [18, 22] for definiteness. For any four vector w, we introduce light cone coordinates w = (w−, w+,wT )
as in JMY and two lightlike directions n = (1, 0, 0), n̄ = (0, 1, 0). Straight Wilson lines starting at infinity and
running along a direction given by the four-vector v to an endpoint a are denoted Lv(∞; a) as in JMY. The general
quark-quark correlator defining TMDs has the form

Φ+[Γ]
q (x,pT , P, S, µ

2, xζ, ρ) =

∫
db−

(2π)
e−ixb−P+

∫
d2bT
(2π)2

eipT ·bT

× 1

2
〈P, S| q̄(b)L†

v(∞; b) Γ Lv(∞; 0)q(0) |P, S〉
︸ ︷︷ ︸

Φ̃[Γ]
q (b, P, S; v, µ2)

/
S̃+(bT , µ

2, ρ)
∣∣∣
b+ = 0

, (30)

where Γ is a Dirac matrix and the state |P, S〉 represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v−, v+, 0) is chosen timelike, slightly off the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter ζ, defined by ζ = (2P ·v)2/v2 [check], which represents a rapidity
cutoff parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ−, ṽ+, 0) controlled by an
analogous parameter ζ̂ enters the Wilson lines of the fragmentation functions and is chosen slightly off the lightcone
direction n̄. The soft factor S̃+(bT , µ2, ρ) is formed from vacuum expectation values of Wilson lines involving both
directions v and ṽ, and thus depends on the relative orientation of these directions, specified by ρ ≡

√
v−ṽ+/v+ṽ−.

Note that ρ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on Φ+[Γ]
q and S̃+

indicates a choice of link directions appropriate for SIDIS, i.e. v ≈ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is
not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function
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only a direction, the structures above should remain invariant under re-scaling of v, i.e.,
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the (suppressed) momentum component p−. The integration with respect to p− reduces

the Fourier transform with respect to b+ to the evaluation of Φ̃ at b+ = 0. Moreover, in
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where xP+ = p+. The soft factor is given as
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and involves another time-like direction ṽ = (ṽ−, ṽ+, 0) slightly off the light-cone direction
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is different for the SIDIS and the Drell-Yan process.

2In refs. [38, 39], a different convention for the position of the quark fields in the Fourier transformed

correlator Φ̃ has been used. These references introduce Φ̃ as Φ̃(l, P, S, C) = 1
2 〈P, S| ψ̄(l) U†[Cl] Γ ψ(0) |P, S〉.

In eq. (4.1) we stick to the more common convention of an operator ψ̄(0) . . . ψ(b). From translation invariance

follows that the variable b corresponds to −l in refs. [38, 39]. In particular, our amplitudes Ãi(b
2, b·P, . . .)

correspond to Ãi(l2,−l·P, . . .) of refs. [38, 39].
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1 . But since this contribution is calculable
in perturbation theory it can in principle be subtracted (modulo power suppressed contributions). Here we will not
go further into this aspect, but refer to Ref. [24] for more details on which weighted asymmetries are affected in a
similar way, based on calculations of the perturbative tails of TMDs and on power counting.

As a final topic in this section we briefly address what is known about the energy scale dependence of the weighted
asymmetries. The current knowledge on this is limited to the one-loop level. Choosing the factorization scale µ = Q
removes the Q dependence from the hard scattering function H that is a function of lnQ2/µ2. This will lead to a Q

dependence in the transverse moments of the TMDs only. The scale dependence of f (0)
1 (x;Q2) is known, assuming

a proper definition of the TMD can be used, such that the zeroth moment corresponds to the collinear function

f1(x;Q2) after the regularization is removed. The same applies to D(0)
1 (z;Q2). For the first moment of the Sivers

function one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [28] as shown in Ref. [29].
The evolution equation of the Qiu-Sterman function has recently been obtained [30–33] allowing for evolution of the
weighted Sivers asymmetry. The evolution of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself.
This is still true in the large-Nc limit, but in the large-x limit it does become autonomous [33, 34]. It indicates that

f⊥(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling off faster at a given x value as Q2 increases. For

other transverse moments, such as h⊥(1)
1 , the evolution is not yet known, but is expected to follow a similar pattern

as f⊥(1)
1T .

III. SOFT FACTOR CANCELLATION ON THE LEVEL OF MATRIX ELEMENTS

A. TMDs from quark-quark correlations in the nucleon

In our study of weighted asymmetries in the previous sections, we obtain ratios of moments of TMDs and fragmen-
tation functions that are free of the soft factor that appears in the convolution Eq. (8). To derive this result, it is not
necessary to specify the explicit definition of TMDs, fragmentation functions and the soft factor in terms of matrix
elements.

In this section, we now analyze a ratio of moments of TMDs directly on the level of matrix elements. Depending
on the formalism, soft factors can also appear inside the definition of TMDs and fragmentation functions themselves.
Again, we will find cancellation of these soft factors in the ratio. As in the previous section, we stick to the JMY
framework [18, 22] for definiteness. For any four vector w, we introduce light cone coordinates w = (w−, w+,wT )
as in JMY and two lightlike directions n = (1, 0, 0), n̄ = (0, 1, 0). Straight Wilson lines starting at infinity and
running along a direction given by the four-vector v to an endpoint a are denoted Lv(∞; a) as in JMY. The general
quark-quark correlator defining TMDs has the form

Φ+[Γ]
q (x,pT , P, S, µ
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∫
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q (b, P, S; v, µ2)

/
S̃+(bT , µ

2, ρ)
∣∣∣
b+ = 0

, (30)

where Γ is a Dirac matrix and the state |P, S〉 represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v−, v+, 0) is chosen timelike, slightly off the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter ζ, defined by ζ = (2P ·v)2/v2 [check], which represents a rapidity
cutoff parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ−, ṽ+, 0) controlled by an
analogous parameter ζ̂ enters the Wilson lines of the fragmentation functions and is chosen slightly off the lightcone
direction n̄. The soft factor S̃+(bT , µ2, ρ) is formed from vacuum expectation values of Wilson lines involving both
directions v and ṽ, and thus depends on the relative orientation of these directions, specified by ρ ≡

√
v−ṽ+/v+ṽ−.

Note that ρ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on Φ+[Γ]
q and S̃+

indicates a choice of link directions appropriate for SIDIS, i.e. v ≈ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is
not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function
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q and S̃+

indicates a choice of link directions appropriate for SIDIS, i.e. v ≈ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is
not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function

7

weighted asymmetry does not yield direct information on h⊥(1)
1 and H⊥(1)

1 . But since this contribution is calculable
in perturbation theory it can in principle be subtracted (modulo power suppressed contributions). Here we will not
go further into this aspect, but refer to Ref. [24] for more details on which weighted asymmetries are affected in a
similar way, based on calculations of the perturbative tails of TMDs and on power counting.

As a final topic in this section we briefly address what is known about the energy scale dependence of the weighted
asymmetries. The current knowledge on this is limited to the one-loop level. Choosing the factorization scale µ = Q
removes the Q dependence from the hard scattering function H that is a function of lnQ2/µ2. This will lead to a Q

dependence in the transverse moments of the TMDs only. The scale dependence of f (0)
1 (x;Q2) is known, assuming

a proper definition of the TMD can be used, such that the zeroth moment corresponds to the collinear function

f1(x;Q2) after the regularization is removed. The same applies to D(0)
1 (z;Q2). For the first moment of the Sivers

function one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [28] as shown in Ref. [29].
The evolution equation of the Qiu-Sterman function has recently been obtained [30–33] allowing for evolution of the
weighted Sivers asymmetry. The evolution of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself.
This is still true in the large-Nc limit, but in the large-x limit it does become autonomous [33, 34]. It indicates that

f⊥(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling off faster at a given x value as Q2 increases. For

other transverse moments, such as h⊥(1)
1 , the evolution is not yet known, but is expected to follow a similar pattern

as f⊥(1)
1T .

III. SOFT FACTOR CANCELLATION ON THE LEVEL OF MATRIX ELEMENTS

A. TMDs from quark-quark correlations in the nucleon

In our study of weighted asymmetries in the previous sections, we obtain ratios of moments of TMDs and fragmen-
tation functions that are free of the soft factor that appears in the convolution Eq. (8). To derive this result, it is not
necessary to specify the explicit definition of TMDs, fragmentation functions and the soft factor in terms of matrix
elements.

In this section, we now analyze a ratio of moments of TMDs directly on the level of matrix elements. Depending
on the formalism, soft factors can also appear inside the definition of TMDs and fragmentation functions themselves.
Again, we will find cancellation of these soft factors in the ratio. As in the previous section, we stick to the JMY
framework [18, 22] for definiteness. For any four vector w, we introduce light cone coordinates w = (w−, w+,wT )
as in JMY and two lightlike directions n = (1, 0, 0), n̄ = (0, 1, 0). Straight Wilson lines starting at infinity and
running along a direction given by the four-vector v to an endpoint a are denoted Lv(∞; a) as in JMY. The general
quark-quark correlator defining TMDs has the form

Φ+[Γ]
q (x,pT , P, S, µ

2, xζ, ρ) =

∫
db−

(2π)
e−ixb−P+

∫
d2bT
(2π)2

eipT ·bT

× 1

2
〈P, S| q̄(b)L†

v(∞; b) Γ Lv(∞; 0)q(0) |P, S〉
︸ ︷︷ ︸

Φ̃[Γ]
q (b, P, S; v, µ2)

/
S̃+(bT , µ

2, ρ)
∣∣∣
b+ = 0

, (30)

where Γ is a Dirac matrix and the state |P, S〉 represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v−, v+, 0) is chosen timelike, slightly off the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter ζ, defined by ζ = (2P ·v)2/v2 [check], which represents a rapidity
cutoff parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ−, ṽ+, 0) controlled by an
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v−ṽ+/v+ṽ−.
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not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function

7

weighted asymmetry does not yield direct information on h⊥(1)
1 and H⊥(1)

1 . But since this contribution is calculable
in perturbation theory it can in principle be subtracted (modulo power suppressed contributions). Here we will not
go further into this aspect, but refer to Ref. [24] for more details on which weighted asymmetries are affected in a
similar way, based on calculations of the perturbative tails of TMDs and on power counting.

As a final topic in this section we briefly address what is known about the energy scale dependence of the weighted
asymmetries. The current knowledge on this is limited to the one-loop level. Choosing the factorization scale µ = Q
removes the Q dependence from the hard scattering function H that is a function of lnQ2/µ2. This will lead to a Q

dependence in the transverse moments of the TMDs only. The scale dependence of f (0)
1 (x;Q2) is known, assuming

a proper definition of the TMD can be used, such that the zeroth moment corresponds to the collinear function

f1(x;Q2) after the regularization is removed. The same applies to D(0)
1 (z;Q2). For the first moment of the Sivers

function one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [28] as shown in Ref. [29].
The evolution equation of the Qiu-Sterman function has recently been obtained [30–33] allowing for evolution of the
weighted Sivers asymmetry. The evolution of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself.
This is still true in the large-Nc limit, but in the large-x limit it does become autonomous [33, 34]. It indicates that

f⊥(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling off faster at a given x value as Q2 increases. For

other transverse moments, such as h⊥(1)
1 , the evolution is not yet known, but is expected to follow a similar pattern

as f⊥(1)
1T .

III. SOFT FACTOR CANCELLATION ON THE LEVEL OF MATRIX ELEMENTS

A. TMDs from quark-quark correlations in the nucleon

In our study of weighted asymmetries in the previous sections, we obtain ratios of moments of TMDs and fragmen-
tation functions that are free of the soft factor that appears in the convolution Eq. (8). To derive this result, it is not
necessary to specify the explicit definition of TMDs, fragmentation functions and the soft factor in terms of matrix
elements.

In this section, we now analyze a ratio of moments of TMDs directly on the level of matrix elements. Depending
on the formalism, soft factors can also appear inside the definition of TMDs and fragmentation functions themselves.
Again, we will find cancellation of these soft factors in the ratio. As in the previous section, we stick to the JMY
framework [18, 22] for definiteness. For any four vector w, we introduce light cone coordinates w = (w−, w+,wT )
as in JMY and two lightlike directions n = (1, 0, 0), n̄ = (0, 1, 0). Straight Wilson lines starting at infinity and
running along a direction given by the four-vector v to an endpoint a are denoted Lv(∞; a) as in JMY. The general
quark-quark correlator defining TMDs has the form

Φ+[Γ]
q (x,pT , P, S, µ

2, xζ, ρ) =

∫
db−

(2π)
e−ixb−P+

∫
d2bT
(2π)2

eipT ·bT

× 1

2
〈P, S| q̄(b)L†

v(∞; b) Γ Lv(∞; 0)q(0) |P, S〉
︸ ︷︷ ︸

Φ̃[Γ]
q (b, P, S; v, µ2)

/
S̃+(bT , µ

2, ρ)
∣∣∣
b+ = 0

, (30)

where Γ is a Dirac matrix and the state |P, S〉 represents a nucleon with four-momentum P and spin polarization
vector S. The direction v = (v−, v+, 0) is chosen timelike, slightly off the lightcone direction n. This direction is
specified in a Lorentz-invariant way by the parameter ζ, defined by ζ = (2P ·v)2/v2 [check], which represents a rapidity
cutoff parameter [16], and by the condition that b · v = 0. Another timelike direction ṽ = (ṽ−, ṽ+, 0) controlled by an
analogous parameter ζ̂ enters the Wilson lines of the fragmentation functions and is chosen slightly off the lightcone
direction n̄. The soft factor S̃+(bT , µ2, ρ) is formed from vacuum expectation values of Wilson lines involving both
directions v and ṽ, and thus depends on the relative orientation of these directions, specified by ρ ≡

√
v−ṽ+/v+ṽ−.

Note that ρ is a function of the Lorentz-invariant expression (v·ṽ)2/v2ṽ2. The superscript “+” on Φ+[Γ]
q and S̃+

indicates a choice of link directions appropriate for SIDIS, i.e. v ≈ n, or, more precisely, v·P > 0. As mentioned,
the soft factor is considered to be universal in hard processes [8], therefore, strictly speaking a superscript “+” is
not needed. In the formalism of JMY, the soft factor S̃+(bT , µ2, ρ) appearing in the denominator of the integrand
is the Fourier transform (21) of the same soft factor as the one in the convolution integral Eq. (8). Moreover, the
matrix element JMY give for S̃+(bT , ρ, µ) is invariant under rotations of the bT -vector (provided b · v = 0). Since
for TMDs we always consider the case b+ = 0, we have b2T = −b2, so that we can write the soft factor as a function

w/
is slightly off light-cone  direction n  & 

Direction defined in LI way     

Direction defined in LI way     ̂ζ2 = (2Ph · ṽ)2/ṽ2

ζ2 = (2P · v)2/v2

ρ =
√

v−ṽ+/v+ṽ−angle between       v and ṽ

First summarize what we know about correlator off light cone

scales arising from 
regulating LC div
gluon rap. cutoff

b · v = 0

gauge links 15

U [a, b, c, . . .] ≡ P exp
(
−ig

∫ b
a dξµAµ(ξ)− ig

∫ c
b dξµAµ(ξ) + . . .

)

!

"

!

!

!

"
!

"

!

!

!

"#

!
#

"! "!

#"!

!"#$%&'"%'()*$+
,#$(-'(./*!!'0
*$(,.&#"*#$!(1#21'(

︸ ︷︷ ︸
Φ̃[Γ]

unsubtr.(b, P, S, v, µ)
︸ ︷︷ ︸

S̃(b2
T , ρ, µ)

ζ̂2 ≡ (P · v)2

|P 2||v2| , ρ =̂
(v · ṽ)2

v2ṽ2
. v, ṽ lightlike for ζ̂, ρ→∞

ζ = 4M2ζ̂2 : “Collins-Soper evolution param.” [CS NPB (1981)]

evolution eqns. for large ζ̂, ρ [Idilbi,Ji,Ma,Yuan PRD (2004)]

b⊥

b+

b−



P
dσ

dxB dy dφS dzh dφh d|P h⊥|2
∝ α2

xBQ2

∫
d|bT |
(2π)

|bT | S̃(b2
T )

{
. . .

+J0(|bT ||P h⊥|)P[f̃1 D̃1]

+ |S⊥| sin(φh − φS) J1(|bT ||P h⊥|) P[f̃⊥(1)
1T D̃1]

+ε cos(2φh) J2(|bT ||P h⊥|)P[h̃⊥(1)
1 H̃⊥(1)

1 ]

+ . . . 15 more structure functions

  Products in terms of   “     moments “bT

}Soft factor is
• spin blind
• flavor blind
• factors in
• Universal

P

Idilbi,Ji,Ma,Yuan PRD 05

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

of the specific factorization framework; however for definiteness we work with the JMY

framework [14, 18], which is based on the ideas of Collins, Soper, and Sterman for the

factorization of e+e− and Drell Yan scattering [13, 30]. Again we consider the structure

function giving rise to the Sivers asymmetry,

F sin(φh−φS)
UT,T = Hsin(φh−φS)

UT,T (Q2, µ2, ρ) S̃(+)(b2
T , µ2, ρ) P[f̃ (1)

1T D̃(0)
1 ] + Ỹ sin(φh−φS)

UT,T (Q2, b2
T ) .

(3.1)

The first term in the following referred to as the “TMD expression”, dominates in the

region where |P h⊥| is small, |P h⊥|/z ≈ QT " Q. The second term is necessary to properly

describe the structure function for large transverse momentum, where QT ∼ Q, and where

fixed order perturbation theory and collinear factorization apply. Here Hsin(φh−φS)
UT,T is the

hard part, and S̃(+) is a soft factor appearing explicitly in the structure function within

the JMY formalism. It is the same in all the structure functions F ···
XY,Z , see ref. [28]. All

other structure functions of eqs. (2.23)–(2.30) need to be modified analogous to eq. (3.1).

The term Ỹ sin(φh−φS)
UT,T (Q2, b2

T ) represents contributions that are relevant only in the

region of large transverse momentum |P h⊥| [19, 36]. Qualitatively, this corresponds to the

very small bT region, z|bT | ! 1/Q. Since our aim is to study TMD PDFs, we want to

focus on the region |P h⊥|/z " Q where we expect them to give the dominant contribution

if z|bT | $ 1/Q. Nevertheless, since we are considering weighted integrals of structure

functions, the integrals do include the region of very large |P h⊥|. As a result, the Ỹ term

in eq. (3.1) is non-zero even if z|bT | $ 1/Q. We note that the Ỹ term is expected to be

particularly important in the case of a “mismatch” between the tail of the TMD term and

the |P h⊥|-behavior obtained from the collinear formalism in the regime of intermediate

|P h⊥|, i.e., M " QT " Q. Matches and mismatches between the collinear and TMD

formalism have been discussed in detail in ref. [37]. An important example for the case

of a mismatch is the cos(2φh) asymmetry. One possibility to avoid the discussion of the

Ỹ -term is to explicitly cut off the |P h⊥| integrals at some upper value ΛTMD. This cutoff

introduces an error in our extracted TMD expression, for which we give an estimate in

appendix G.3. Another option is to simply ignore the Ỹ term. This amounts to keeping

the TMD term in the large |P h⊥| region, i.e., to include the large-|P h⊥|-tail generated

by the TMD term, which would otherwise be corrected by the Y term. In appendix G.3,

we show that in the z|bT | $ 1/Q region of interest this produces an error that falls off

at least as a fractional inverse power with increasing |bT |. It should be mentioned that

this estimate of the behavior of the error applies to the Bessel weighting which we discuss

below. By contrast, no such error estimate exists for conventional weighting with powers

of |P h⊥| since such integrals are divergent. Better error estimates, or equivalently, a better

determination of the TMD region in BT , can be obtained by an explicit treatment of the

Ỹ term, which we will leave for future analyses.

In summary, we find that weighted integrals based on the TMD expression alone are

valid only in a limited range of BT . Finally, beyond tree level, the product notation

P[fD] defined in eq. (2.22) has to be updated to include further dependences on the

renormalization and cutoff parameters µ2, ρ, ζ and ζ̂ appearing in the JMY formalism

– 9 –

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

discussed in more detail below:1

P[f̃ (n)D̃(m)] ≡ xB

∑

a

e2
a(zM |bT |)n(zMh|bT |)mf̃a(n)(x, z2b2

T , µ2, ζ, ρ)D̃a(m)(z, b2
T , µ2, ζ̂, ρ) .

(3.2)

4 TMD PDFs at the level of matrix elements

Apart from introducing the parameters ζ, ζ̂ and ρ the purpose of this section is to review

the formalism of Lorentz-invariant amplitudes underlying the decomposition of Φ̃ eq. (2.13).

In the framework of JMY, the TMD correlator Φ itself involves a soft factor S(+) as already

encountered above, i.e., eqs. (2.5) and (2.8) need to be modified. In the following, we label

the unmodified correlators with the subscript “unsub”:

Φ[Γ]
unsub(p, P, S; v, µ)=

∫
d4b

(2π)4
eip·b 1

2
〈P, S| ψ̄(0)

U [Cb]︷ ︸︸ ︷
U [0,∞v]U [∞v, b] Γ ψ(b) |P, S〉

︸ ︷︷ ︸
Φ̃[Γ]

unsub(b, P, S; v, µ)

. (4.1)

The gauge link U [Cb] is essentially given by two parallel straight Wilson lines running out

to infinity in the direction given by the four-vector v and back again. The definition of a

straight Wilson line between two points a and b is

U [a, b] ≡ P exp

(
−ig

∫ b

a
dξµ Aµ(ξ)

)
, (4.2)

where Aµ(ξ) = T cAc
µ(ξ), c = 1 . . . 8 is the (matrix valued) gauge field. A transverse link

connecting these parallel Wilson lines at infinity can be omitted in the covariant gauge

used by JMY. In case of SIDIS, the direction v = [v−, v+, 0] is slightly off the light-cone

direction n−, while for the Drell-Yan process v is slightly off the light cone direction −n−.

The shift away from the light cone is time-like in the JMY framework and specified in a

Lorentz-invariant way by the parameter ζ, defined by ζ2 = (2P · v)2/v2. The parameter ζ

represents a rapidity cutoff parameter [30]. The above correlator can be parameterized in

terms of real-valued Lorentz-invariant amplitudes. Here we restrict ourselves to the case

Γ = γµ. Reference [29] lists the following structures

1

2
Φ[γµ]

unsub = Pµ A(+)
2 + pµ A(+)

3 +
1

M
εµναβPνpαSβ A(+)

12 +
M2

(v·P )
vµ B(+)

1

+
M

v·P
εµναβPνvαSβ B(+)

7 +
M

v·P
εµναβpνvαSβ B(+)

8

+
1

M(v·P )
(p·S)εµναβPνpαvβ B(+)

9 +
M

(v·P )2
(v·S)εµναβPνpαvβB(+)

10 . (4.3)

The amplitudes B(+)
i only appear when the dependence of the correlator on the direction v

is explicitly taken into account, and were not listed in earlier works [1, 5]. Since v represents

1The framework of, e.g., ref. [19], would require analogous modifications within this formalism.

– 10 –

Soft factor in deconvoluted Fourier Bessel rep of CS
 versus C



J BT
1 (|P hT |)

zM
=

2 J1(|P hT |BT )
zMBT

A
JBT

1 (|P hT |)
zM sin(φh−φs)

UT (BT ) =

−2
S̃(B2

T ) Hsin(φh−φS)
UT,T (Q2)

∑
a e2

a f̃⊥(1)a
1T (x, z2B2

T ) D̃a
1(z,B2

T )

S̃(B2
T ) HUU,T (Q2)

∑
a e2

a f̃a
1 (x, z2B2

T ) D̃a
1(z,B2

T )

A
JBT

1 (|P hT |)
zM sin(φh−φS)

UT (BT ) =

2
∫

d|P h⊥| |P h⊥| dφh dφS
JBT

1 (|P hT |)
zM sin(φh − φS)

(
dσ↑ − dσ↓

)
∫

d|P h⊥| |P h⊥| dφh dφS J BT
0 (|P hT |) (dσ↑ + dσ↓)

Bessel weighting-projecting out Sivers 
using orthogonality of Bessel Fncts.

2. Bessel Weighting & cancellation of soft factor 



A
JBT

1 (|P hT |)
zM sin(φh−φs)

UT (BT ) =

−2
S̃(B2

T , µ2, ρ2)Hsin(φh−φS)
UT,T (Q2, µ2, ρ)

∑
a e2

a f̃⊥(1)a
1T (x, z2B2

T ;µ2, ζ, ρ) D̃a
1(z,B2

T ;µ2, ζ̂, ρ)

S̃(B2
T , µ2, ρ2)HUU,T (Q2, µ2, ρ)

∑
a e2

a f̃a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃a
1(z,B2

T ;µ2, ζ̂, ρ)

Sivers asymmetry with full dependences



lim
BT→0

w1 = 2J1(|P h⊥|BT )/zMBT −→ |P h⊥|/zM

A
|P h⊥|
zhM sin(φh−φs)

UT = −2
∑

a e2
a f⊥(1)

1T (x) Da(0)
1 (z)

∑
a e2

a fa(0)
1 (x) Da(0)

1 (z)

Traditional weighted asymmetry recovered but UV divergent

3. Circumvents the problem of ill-defined       moments pT

undefined w/o 
regularization Bacchetta et al. JHEP 08

A
JBT

1 (|P hT |)
zM sin(φh−φs)

UT (BT ) =

−2
S̃(B2

T , µ2, ρ2)Hsin(φh−φS)
UT,T (Q2, µ2, ρ)

∑
a e2

a f̃⊥(1)a
1T (x, z2B2

T ;µ2, ζ, ρ) D̃a
1(z,B2

T ;µ2, ζ̂, ρ)

S̃(B2
T , µ2, ρ2)HUU,T (Q2, µ2, ρ)

∑
a e2

a f̃a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃a
1(z,B2

T ;µ2, ζ̂, ρ)



CS resummation 81
When                              get large double logs

talks of Qiu, Kang, Idilbi, Scimemi, Guzi .....
Λ2
QCD ! P 2

h⊥ ! Q2

FUT (x, z, b,Q
2) =f̃⊥(1)

1T (x, z2b2, µ2
L, µ

2
L/C2, ρ)D̃1(zh, b

2, µ2
L, µ

2
L/C2, ρ)

× S̃(b2T , µ
2
L, ρ)H̃UT (1/C

2
2ρ, ρ)e

−Sharde−SNP
UT



May 14, 2012 Zhongbo Kang, LANL

Evolution of TMDs 

 Needs to resum double logarithms, typically it involves two steps:
 Energy evolution of the unpolarized PDFs

 Since it contains double logarithms, the kernel still contains single logarithms

 Solving two equations--equivalently one resums the double logs
 First for the evolution equation of K and G

 Then feed the solution back to the energy evolution equation

39

µ
d

dµ
K(µ, b) = −γK = −µ

d

dµ
G(µ, ζ)

Idilbi-Ji-Ma-Yuan, 2004



May 14, 2012 Zhongbo Kang, LANL

The formalism contains all the evolutions

 Similar for the unpolarized fragmentation function

 Hard function and Soft function contain only single logs

 Eventually collect all the terms

40



Further Cancellation of  Sudakov and hard CS

CS-81 formalism

dσ

dQ2dyd2qTdΩ
=

∫
d2b e−ib·qT W̃ (b, Q;xA, xB) +O

(
Q2

T

Q2

)

W̃ (b, Q;xA, xB) =
∑

a

f̃a/A(xA, b; 1/b, αs(1/b))
∑

b

f̃b/B(xB, b; 1/b, αs(1/b))

×e−S(b,Q) Hab (Q;αs(Q)) Ũ(b; 1/b, αs(1/b))

f̃(x, b) is the Fourier transform of f(x,kT ), hence one needs to deal with TMDs

No integrals over momentum fractions, those appear in the small-b limit only

Ũ is called the soft factor, H is the hard scattering part

e−S(b,Q) = Sudakov form factor

ECT*, Trento, June 12, 2007 6

due to resummation large logs

In prep. Boer, LG, Prokudin, Musch

When                                    get large DL
talks of Qiu, Kang, Idilbi, and  Scimemi ...

Λ2
QCD ! P 2

h ! Q2

still a scaling effect from derivative 
of Bessel function J1(|b||P h⊥|)

maybe 
scaling effect from derivative of Bessel 

function

AUT (x, z, b,Q
2) =

f̃⊥(1)
1T (x, z2b2, µ2

L, µ
2
L/C2, ρ)D̃1(zh, b

2, µ2
L, µ

2
L/C2, ρ)e−SNP

UT??

f̃1(x, z2b
2, µ2

L, µ
2
L/C2, ρ)D̃1(zh, b

2, µ2
L, µ

2
L/C2, ρ)e−SNP

UU??

AUT (x, z, b,Q
2)

=
f̃⊥(1)
1T (x, z2b2, µ2

L, µ
2
L/C2, ρ)D̃1(zh, b

2, µ2
L, µ

2
L/C2, ρ)S̃(b

2
T , µ

2
L, ρ)H̃UT (1/C2

2ρ, ρ)e
−Sharde−SNP

UT??

f̃1(x, z2b
2, µ2

L, µ
2
L/C2, ρ)D̃1(zh, b

2, µ2
L, µ

2
L/C2, ρ)S̃(b

2
T , µ

2
L, ρ)H̃UU (1/C2

2ρ, ρ)e
−Sharde−SNP

UU??



• Propose generalize Bessel Weights

• Theoretical weighting procedure- advantages

• Introduces a free parameter                   that 
is  Fourier conjugate to  

• Provides a regularization of infinite 
contributions at lg. transverse momentum 
when       is non-zero

•  Soft factor, pertb-Sudakov, and Hard CS 
eliminated from weighted asymmetries

• Possible to compare observables at different 
scales.... could be useful for an EIC 

Conclusions

P h⊥

BT [GeV−1]

B2
T



2 Π

BT
min
"PhT
max

P h⊥

  Extracting TMD contribution to Asymmetries 
More sensitive to low           region

      can serve as a lever arm to enhance the low 
description and possibly dampen lg. momentum tail of cross 
section. We can use it to scan the cross section

BT P h⊥

P h⊥

2 J1(|P hT |BT )
zMBT

σ illustration



• The  Y term in principle included to eliminate errors but its FT 
expected to be power suppressed in region                   since was 
shown to be power suppressed at small     

• Thus dropping  Y means we approximate the full result by the large          
tail  of the TMD expression---is this a bad approx?

• In addition extending integrals to arbitrarily large transverse 
momentum ignores that the physical cross section should vanish above 
a certain  max trans. momentum

P h⊥

bT >> 1/Q

for integer powers m. Analogous expressions hold for the TMD FFs. Comparing the right

hand side of Eq. (2.19) with the criterion for functions of type B, we find that convergence

is maintained if n < m− 1/2. The logarithmic modifications do not play a significant role

since logarithms grow more slowly than any polynomial.

The analysis of Ref. [37] reveals that (up to logarithmic modifications) f1, g1L, h1, f⊥,

g⊥L , hT , h
⊥
T , fT , gT , hL, h, eL, e, fL, g

⊥, eT , e⊥T , D1, D⊥, G⊥, H,E ∼ 1/p2
T . For these func-

tions, the corresponding zero-derivative and single-derivative Fourier-transforms f̃ (0)(x, b2T ),

f̃ (1)(x, b2T ), D̃
(0)(z, b2T ) and D̃(1)(z, b2T ) exist. A second group of distributions exhibits the

high-momentum behavior f⊥
1T , g1T , h

⊥
1L, h

⊥
1 , f

⊥
T , g⊥T , h

⊥
1T , H

⊥
1 ∼ 1/p4

T . For these latter func-

tions, the existence of n-derivative Fourier-transforms f̃ (n)(x, b2T ) and D̃(n)(z, b2T ) is ensured

up to n = 3. Again, we point out that these results are only valid for |bT | > 0, while the

limiting case |bT | = 0 leads to divergent integrals [37].

G.3 Systematic errors from the region at large P h⊥

TMD frameworks have been designed to give a good description of the cross section at

low transverse momentum, i.e., for |P h⊥|/z # Q. However, in weighted asymmetries we

integrate over the whole range of |P h⊥|. The contributions from high |P h⊥| thus lead to

theoretical errors in the results if one does not have a description of the cross section that

is valid there, even when one restricts to the region z|bT | $ 1/Q. The Y term can in

principle be included to eliminate those errors, but its Fourier transform is expected to be

power suppressed in the region z|bT | $ 1/Q, because it was shown to be power suppressed

at small |P h⊥| [13, 36]. Dropping the Y term means that we approximate the full result by

the large |P h⊥|-tail of the TMD expression. This in general may be a bad approximation,

but the question is whether it will affect the result much for z|bT | $ 1/Q. In addition,

extending the integrals to arbitrarily large transverse momenta ignores the fact that the

physical cross section should vanish above a certain maximum transverse momentum value

|P h⊥|max (see also Refs. [12, 36]). In this appendix we are going to estimate the effect of

these various simplifications.

The Y term will be significant only in a finite region of |P h⊥|: between a scale ΛTMD

and |P h⊥|max. Note that both these scales will depend on Q. We can bound the error from

neglecting the Y term in terms of its maximal value. As long as |bT | $ Λ−1
TMD > |P h⊥|−1

max,

we can approximate the Bessel-function as in Eq. (G.2) to obtain,

Ỹ sin/cos(Nφh+...)
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Here |Y sin/cos(Nφh+...)
XY,Z |max is the maximum absolute value of Y in the range between ΛTMD

and |P h⊥|max. It can be estimated from the (perturbatively calculable) Y -term. Thus,
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for integer powers m. Analogous expressions hold for the TMD FFs. Comparing the right

hand side of Eq. (2.19) with the criterion for functions of type B, we find that convergence

is maintained if n < m− 1/2. The logarithmic modifications do not play a significant role

since logarithms grow more slowly than any polynomial.

The analysis of Ref. [37] reveals that (up to logarithmic modifications) f1, g1L, h1, f⊥,

g⊥L , hT , h
⊥
T , fT , gT , hL, h, eL, e, fL, g

⊥, eT , e⊥T , D1, D⊥, G⊥, H,E ∼ 1/p2
T . For these func-

tions, the corresponding zero-derivative and single-derivative Fourier-transforms f̃ (0)(x, b2T ),
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T . For these latter func-

tions, the existence of n-derivative Fourier-transforms f̃ (n)(x, b2T ) and D̃(n)(z, b2T ) is ensured

up to n = 3. Again, we point out that these results are only valid for |bT | > 0, while the

limiting case |bT | = 0 leads to divergent integrals [37].

G.3 Systematic errors from the region at large P h⊥

TMD frameworks have been designed to give a good description of the cross section at

low transverse momentum, i.e., for |P h⊥|/z # Q. However, in weighted asymmetries we

integrate over the whole range of |P h⊥|. The contributions from high |P h⊥| thus lead to

theoretical errors in the results if one does not have a description of the cross section that

is valid there, even when one restricts to the region z|bT | $ 1/Q. The Y term can in

principle be included to eliminate those errors, but its Fourier transform is expected to be

power suppressed in the region z|bT | $ 1/Q, because it was shown to be power suppressed

at small |P h⊥| [13, 36]. Dropping the Y term means that we approximate the full result by

the large |P h⊥|-tail of the TMD expression. This in general may be a bad approximation,

but the question is whether it will affect the result much for z|bT | $ 1/Q. In addition,

extending the integrals to arbitrarily large transverse momenta ignores the fact that the

physical cross section should vanish above a certain maximum transverse momentum value

|P h⊥|max (see also Refs. [12, 36]). In this appendix we are going to estimate the effect of

these various simplifications.

The Y term will be significant only in a finite region of |P h⊥|: between a scale ΛTMD

and |P h⊥|max. Note that both these scales will depend on Q. We can bound the error from

neglecting the Y term in terms of its maximal value. As long as |bT | $ Λ−1
TMD > |P h⊥|−1

max,

we can approximate the Bessel-function as in Eq. (G.2) to obtain,

Ỹ sin/cos(Nφh+...)
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∫
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Here |Y sin/cos(Nφh+...)
XY,Z |max is the maximum absolute value of Y in the range between ΛTMD

and |P h⊥|max. It can be estimated from the (perturbatively calculable) Y -term. Thus,
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Figure 2. Schematic illustration of important scales for Bessel-weighted asymmetries before and
after the Fourier-transform.

Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |bT |−1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in αs in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P h⊥|max is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |bT |−3/2. Let [F sin/cos(Nφh+...)
XY,Z ]TMD denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P h⊥| region can be bounded using that the TMD expression (times

|P h⊥|1/2) is a monotonically decreasing function of |P h⊥|. Thus, applying Eq. (G.10),

∫ ∞

|P h⊥|max
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where the upper bound applies as long as |bT | ! |P h⊥|−1
max. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P h⊥|.
Finally, let us consider what error would be introduced if all |P h⊥| integrations of the

experimental data were to be cut off at ΛTMD. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P h⊥|−1
max would need to be replaced by ΛTMD.

Again the error estimate would be valid provided |bT | ! Λ−1
TMD and provided the structure

function times |P h⊥|1/2 is monotonically falling, i.e., in its tail region, beyond ΛTMD. This
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for integer powers m. Analogous expressions hold for the TMD FFs. Comparing the right

hand side of Eq. (2.19) with the criterion for functions of type B, we find that convergence

is maintained if n < m− 1/2. The logarithmic modifications do not play a significant role

since logarithms grow more slowly than any polynomial.

The analysis of Ref. [37] reveals that (up to logarithmic modifications) f1, g1L, h1, f⊥,
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T . For these latter func-

tions, the existence of n-derivative Fourier-transforms f̃ (n)(x, b2T ) and D̃(n)(z, b2T ) is ensured

up to n = 3. Again, we point out that these results are only valid for |bT | > 0, while the

limiting case |bT | = 0 leads to divergent integrals [37].

G.3 Systematic errors from the region at large P h⊥

TMD frameworks have been designed to give a good description of the cross section at

low transverse momentum, i.e., for |P h⊥|/z # Q. However, in weighted asymmetries we

integrate over the whole range of |P h⊥|. The contributions from high |P h⊥| thus lead to

theoretical errors in the results if one does not have a description of the cross section that

is valid there, even when one restricts to the region z|bT | $ 1/Q. The Y term can in

principle be included to eliminate those errors, but its Fourier transform is expected to be

power suppressed in the region z|bT | $ 1/Q, because it was shown to be power suppressed

at small |P h⊥| [13, 36]. Dropping the Y term means that we approximate the full result by

the large |P h⊥|-tail of the TMD expression. This in general may be a bad approximation,

but the question is whether it will affect the result much for z|bT | $ 1/Q. In addition,

extending the integrals to arbitrarily large transverse momenta ignores the fact that the

physical cross section should vanish above a certain maximum transverse momentum value

|P h⊥|max (see also Refs. [12, 36]). In this appendix we are going to estimate the effect of

these various simplifications.

The Y term will be significant only in a finite region of |P h⊥|: between a scale ΛTMD

and |P h⊥|max. Note that both these scales will depend on Q. We can bound the error from

neglecting the Y term in terms of its maximal value. As long as |bT | $ Λ−1
TMD > |P h⊥|−1

max,

we can approximate the Bessel-function as in Eq. (G.2) to obtain,

Ỹ sin/cos(Nφh+...)
XY,Z (Q2, b2T ) ≡

∫
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≈
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Here |Y sin/cos(Nφh+...)
XY,Z |max is the maximum absolute value of Y in the range between ΛTMD

and |P h⊥|max. It can be estimated from the (perturbatively calculable) Y -term. Thus,
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tions, the existence of n-derivative Fourier-transforms f̃ (n)(x, b2T ) and D̃(n)(z, b2T ) is ensured

up to n = 3. Again, we point out that these results are only valid for |bT | > 0, while the

limiting case |bT | = 0 leads to divergent integrals [37].

G.3 Systematic errors from the region at large P h⊥

TMD frameworks have been designed to give a good description of the cross section at

low transverse momentum, i.e., for |P h⊥|/z # Q. However, in weighted asymmetries we

integrate over the whole range of |P h⊥|. The contributions from high |P h⊥| thus lead to

theoretical errors in the results if one does not have a description of the cross section that

is valid there, even when one restricts to the region z|bT | $ 1/Q. The Y term can in

principle be included to eliminate those errors, but its Fourier transform is expected to be

power suppressed in the region z|bT | $ 1/Q, because it was shown to be power suppressed

at small |P h⊥| [13, 36]. Dropping the Y term means that we approximate the full result by

the large |P h⊥|-tail of the TMD expression. This in general may be a bad approximation,

but the question is whether it will affect the result much for z|bT | $ 1/Q. In addition,

extending the integrals to arbitrarily large transverse momenta ignores the fact that the

physical cross section should vanish above a certain maximum transverse momentum value

|P h⊥|max (see also Refs. [12, 36]). In this appendix we are going to estimate the effect of

these various simplifications.

The Y term will be significant only in a finite region of |P h⊥|: between a scale ΛTMD

and |P h⊥|max. Note that both these scales will depend on Q. We can bound the error from

neglecting the Y term in terms of its maximal value. As long as |bT | $ Λ−1
TMD > |P h⊥|−1

max,

we can approximate the Bessel-function as in Eq. (G.2) to obtain,
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Here |Y sin/cos(Nφh+...)
XY,Z |max is the maximum absolute value of Y in the range between ΛTMD

and |P h⊥|max. It can be estimated from the (perturbatively calculable) Y -term. Thus,
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Figure 2. Schematic illustration of important scales for Bessel-weighted asymmetries before and
after the Fourier-transform.

Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |bT |−1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in αs in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P h⊥|max is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |bT |−3/2. Let [F sin/cos(Nφh+...)
XY,Z ]TMD denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P h⊥| region can be bounded using that the TMD expression (times

|P h⊥|1/2) is a monotonically decreasing function of |P h⊥|. Thus, applying Eq. (G.10),

∫ ∞

|P h⊥|max

d|P h⊥| |P h⊥| 2πJN (|bT ||P h⊥|) [F
sin/cos(Nφh+...)
XY,Z ]TMD(Q

2,P 2
h⊥)

! 4

√
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|bT |3
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2, |P h⊥|2max)

∣∣∣ , (G.13)

where the upper bound applies as long as |bT | ! |P h⊥|−1
max. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P h⊥|.
Finally, let us consider what error would be introduced if all |P h⊥| integrations of the

experimental data were to be cut off at ΛTMD. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P h⊥|−1
max would need to be replaced by ΛTMD.

Again the error estimate would be valid provided |bT | ! Λ−1
TMD and provided the structure

function times |P h⊥|1/2 is monotonically falling, i.e., in its tail region, beyond ΛTMD. This
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Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |bT |−1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in αs in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P h⊥|max is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |bT |−3/2. Let [F sin/cos(Nφh+...)
XY,Z ]TMD denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P h⊥| region can be bounded using that the TMD expression (times

|P h⊥|1/2) is a monotonically decreasing function of |P h⊥|. Thus, applying Eq. (G.10),
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where the upper bound applies as long as |bT | ! |P h⊥|−1
max. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P h⊥|.
Finally, let us consider what error would be introduced if all |P h⊥| integrations of the

experimental data were to be cut off at ΛTMD. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P h⊥|−1
max would need to be replaced by ΛTMD.

Again the error estimate would be valid provided |bT | ! Λ−1
TMD and provided the structure

function times |P h⊥|1/2 is monotonically falling, i.e., in its tail region, beyond ΛTMD. This
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Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |bT |−1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in αs in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P h⊥|max is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |bT |−3/2. Let [F sin/cos(Nφh+...)
XY,Z ]TMD denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P h⊥| region can be bounded using that the TMD expression (times

|P h⊥|1/2) is a monotonically decreasing function of |P h⊥|. Thus, applying Eq. (G.10),
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d|P h⊥| |P h⊥| 2πJN (|bT ||P h⊥|) [F
sin/cos(Nφh+...)
XY,Z ]TMD(Q

2,P 2
h⊥)

! 4

√
2π|P h⊥|max

|bT |3
∣∣∣[F sin/cos(Nφh+...)

XY,Z ]TMD(Q
2, |P h⊥|2max)

∣∣∣ , (G.13)

where the upper bound applies as long as |bT | ! |P h⊥|−1
max. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P h⊥|.
Finally, let us consider what error would be introduced if all |P h⊥| integrations of the

experimental data were to be cut off at ΛTMD. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P h⊥|−1
max would need to be replaced by ΛTMD.

Again the error estimate would be valid provided |bT | ! Λ−1
TMD and provided the structure

function times |P h⊥|1/2 is monotonically falling, i.e., in its tail region, beyond ΛTMD. This
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average transverse momentum shift (here: Sivers) 18

unpolarized quark density in a transversely polarized nucleon

ρTU (x,pT ,ST ) = f1(x,p2
T )− εijpiSj

M
f⊥1T (x,p2

T ) =
∫

dp− Φ[γ+]

〈py〉TU ≡
∫

dx
∫

d2pT py ρTU (x,pT ,ST = (1, 0))∫
dx

∫
d2pT ρTU (x,pT ,ST = (1, 0))

= M

∫
dx f⊥(1)

1T (x)
∫

dx f (0)
1 (x)

px

p
y

〈py〉TU := average quark momentum in
transverse y-direction
measured in a proton polarized
in transverse x-direction.

”dipole moment”, “shift”

attention divergences from high-pT -tails!

⇒ “generalized” average transverse momentum shift

〈py〉TU (BT ) ≡ M

∫
dx f̃⊥(1)

1T (x,B2
T )

∫
dx f̃ (0)

1 (x,B2
T )

= !!!!!!S̃(−B2
T , . . .) Ã12B(−B2

T , 0, 0, ζ̂, µ)

!!!!!!S̃(−B2
T , . . .) Ã2B(−B2

T , 0, 0, ζ̂, µ)

Generalized av. quark trans. momentum shift
Soft Factor cancels

〈py〉TU (BT ) ≡ M

∫
dxf̃⊥(1)

1T (x,B2
T )

∫
dxf̃ (0)

1 (x,B2
T )

=
S̃(B2

T , . . . )Ã12B(B2
T , 0, 0, ζ̃, µ)

S̃(B2
T , . . . )Ã2B(B2

T , 0, 0, ζ̃, µ)

above quantity, weighting with Bessel functions of |pT | instead. In particular, we replace

py = |pT | sin(φp) −→
2J1(|pT |BT )

BT
sin(φp − φS) , (6.2)

where φS = 0 for the choice ST = (1, 0) in Eq. (6.1). The correlator Φ(+)[γ+] reads in

terms of the amplitudes Ã(+)
i and B(+)

i ,

Φ(+)[γ+](x,pT , P, S, µ2, ζ, ρ) =

∫
X

∫ ∞

0

d|bT |
2π

|bT |
{

J0(|bT | |pT |) 2Ã(+)
2B /S̃

− M |bT | |ST | sin(φp − φS)J1(|bT | |pT |) 2Ã(+)
12B/S̃

}
, (6.3)

where we abbreviate ∫
X ≡

∫
d(b·P )

(2π)
eix(b·P ) . (6.4)

The Bessel-weighted analog of Eq. (6.1) is thus

〈py(x)〉BT
TU ≡

∫
d|pT | |pT |

∫
dφp

2 J1(|pT |BT )
BT

sin(φp − φS) Φ(+)[γ+](x,pT , P, S, µ2, ζ, ρ)
∫

d|pT | |pT |
∫

dφpJ0(|pT |BT ) Φ(+)[γ+](x,pT , P, S, µ2, ζ, ρ)

∣∣∣∣∣
|ST |=1

= −M

∫
X Ã(+)

12B

(
−B2

T , b·P, (b·P )R(ζ2)
M2 , ζ−2, µ2

)

∫
X Ã(+)

2B

(
−B2

T , b·P, (b·P )R(ζ2)
M2 , ζ−2, µ2

)

= M
f̃⊥(1)
1T (x,B2

T ;µ2, ζ, ρ)

f̃ (0)
1 (x,B2

T ;µ2, ζ, ρ)
. (6.5)

Again, the soft factors cancel. At this point, the independence of the soft factor on v·b/
√

v2

is crucial. In the limit BT → 0, we recover equation (6.1), 〈py(x)〉0TU = 〈py(x)〉TU , which

we have thus shown to be formally free of any soft factor contribution. However, we caution

the reader again that the expressions at BT = 0 can be ill-defined without an additional

regularization step.

We can go one step further and form ratios that are also integrated in x, with weights

exp(−ixBL). For BL = 0, this is the same as taking the lowest x-moment that appears

in the Burkardt sum rule [52]. The reason it is interesting to look at such quantities

is their renormalization properties. Another motivation to discuss such quantities here

is lattice QCD. Taking x-moments is a standard ingredient in lattice computations of

nucleon structure, see e.g., Ref. [53] for a review. First exploratory studies of TMD PDFs

on the lattice [38, 39] focus to a large degree on computations of the lowest x-moment of

distributions, but access to finite values of BL is also possible. By “integration over x” we

mean an integration over the entire support of the correlator; this includes contributions

from negative x which correspond to anti-quark contributions, see e.g., Ref. [5, 39] for

details. In particular, the x-integrals of the two TMD PDFs f1 and f⊥
1T can be decomposed
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