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Introduction

Physical observables with non-vanishing (or un-integrated) transverse-momentum
dependence are specially important at colliders, JLAB, RHIC, LHC, Tevatron,
Compass, Hermes, Belle,...

* Higgs searches

* Interpretation of signals of New Physics

* Precision Physics

* Spin structure of the proton ..

An exemplum out of these processes 1s the semi-inclusive Drell-Yan (DY) cross-
section.

We re-examine semi-inclusive DY 1n the region A

acp <<0r <<M

The essential problem 1s to write a factorization theorem for semi-inclusive processes,
to define the correct non perturbative matrix elements, to resum logs.

This is a battle field for eftective field theories!!



Issues treated in the talks

* SCET (Introduction)

* Gauge 1nvariance

* Factorization theorem (on the light conel!)
* Rapidity and IR regulators

* Definition of the TMDPDF

* From TMDPDF to PDF

* Universality

* Resummation and exponentiation of logs
* Conclusions
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The eftective field theory: SCET

SCET (soft collinear eftective theory) 1s an eftective theory of
QCD

SCET describes interactions between low energy,

“soft” partonic fields and collinear fields (very energetic in
one light-cone direction)

SCET and QCD have the same infrared structure: matching
1s possible

SCET helps in the proot of factorization theorems,
identification of relevant scales and the resummation of logs.



SCET: Rinematics

SCET modes

n-collinear (&.,A)

Py ~Q(4%,1,4)

n-collinear (&.,A.)

pY ~Q@ A%, 4)

u-soft (&, A,)

pi; ~ Q(4%, 2%, 2%)

soft (&, A)

pe ~Q(4,4,4)

() =3 Y ey, ()

_(pn, o,
w—(4+4jw §+¢\

Integrated out with EOM

Bauer, Fleming, Pirjol, Stewart, ‘oo

Light-cone coordinates

n=(10,0,1) p~Q
7 = (1,0,0,~1) p, ~4Q
—_ 2
0 = (.p, p,) = (4 1) P~ 47Q
Pn
Dr P Q(lr)‘Q?)‘)
p=10()\2.1,)

Soft modes (4,4, 4)
do not interact with
(anti) collinear or u-soft
In covariant gauge
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SCET -I and —II, Pictorically

A BTy s (6, W)o TF(WiEn)e = (E,W,). YITEY, (With)s

& _ _
A 7] N——
Jf , T m
r 4
(M LLLLILL N M
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=P < =P <
N\ N\
QCD SCET QCD SCET
Theory Modes Virtuality
SCET-I Collinear, ultra-soft Adeo
SCET-II Collinear, soft Ace
SCET-qT Collinear, soft qT °




From QCD to SCET

The properties of QCD in the collinear limit can be understood
directly from Feynman diagrams. In this way one obtains

The collinear and IR divergencies of the theory.

SCET 1s just QCD in a kinematical limit!

1
ptlid
/ 27r)d (pisitE)e el [(p -+ k)2 2] k2 4 20]
L[ A
@, T O, )‘D 2m)a [(p— k)2 + zs]@ﬁ [2ktk~ 4+ k2 + 40]
Collinear divergence Soft divergence
LIRS L kf — 0,Yu

The Wilson line! 7



Bauer, Fleming, Pirjol, Stewart, ‘oo

SCET Lagrangian

L eading order Lagrangian (n-collinear)

_ 1 i
Len = Enp' {en D+gn- A, 4+ (F’ —I-t?;lf{q) " _f_) T (}7’ —I_J;nq)}égﬂ-,p

o0 0
W_(x) = Pexp| —ig [ ds i -A (s +X) Y (X)= Pexp[—ig [ ds n-Aus(ns+x))
0 0

iD,u — Iay + gA\JS The new fields do not é: (0) WTé

interact anymore with
- T u-soft fields
IND =Y 'INOY,

All fields are Taylor expanded according to the power counting: Multipole expansion

The Wilson lines arise from the Lagrangian and are not ad hoc objects!
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Transverse Gauge Link in QCD
(£.b,) T (o0, BJ_)

(0,0) (,0,)

* For gauges not vanishing at infinity [Singular Gauges] like

the Light-Cone gauge (LC) one needs to introduce an additional
Gauge Link which connects (©0,) with (=0,b,) tomake it
Gauge Invariant A ———6’(5 Vin(ur,)

* In LC Gauge This Gauge Cink Is Built From The Transverse Component
Of The Gluon Field:

Firn (@ k) ) = ; /ﬂ;,nré cij —ikTe +ik 1 €1 <h|i‘_ —€1)[€ €100 £¢][ﬂ][u: £y 00T DOL]B]
Xy [oo 0015007, 00 g [007,01307, 0L ] (07,0.) h-)

(007,00, ; ac:u_._!;'J_:[g. = Pexp [-ig [ dr - A t"(&1L + IT_):|
] Jo



Gauge Invariant TMDPDF In SCET?

Are TMDPDF fundamental matrix elements in SCET?
Are SCET matrix elements gauge tnvariant?

Where ave transverse gauge link tn SCET?

The SCET Lagrangian is formed by gauge bnvariant building
blockes. Gauge Transformations in covariant gauge for W&

c—>Ug
W'"—>W'U"

WTé LC gauge )é;



Gauge invariance of SCET building blocks

\wWe caLcuLat6<O‘WﬁT§ﬁ‘q> at one-loop n Feynman gaunge and n LC

oauge
AO000
{ag\“' ".”{J?’,.;\
In LC Ggauwge N ”“w ' ﬁ},
- \/
AT=0-o>W. =W.T =1 [Bassetto, Lazzizzera, Soldati]
n M Canonical quantization
imposes ML prescription
— n k +nk
(k) = g __HY v £ Prescription 1/[kY]
ﬂV v +
“+i0 [k } +i0 1/(k* +i0)

—i0 1/(k* — i0)

PV |1/2(1/(k* +i0) 4+ 1/(k+

—i0))

ML 1/(k* +i0Sgn(k™))




Gauge invariance in SCET

The SCET matrix element (0|W/£ |g) is not gauge invariant.
Using LC gauge we have different result (moreover even
the result of the one-loop correction depends on the used
prescription).

In order to restore gauge invariance we have
to introduce a new Wilson line, T, in SCET matrix

elements e
TﬁT (x7, XJ_) = Pexp[lgjo dTIJ_'AJ_ (007, X7 IJ_T+XJ_):|

And the new gauge invariant matrix element is <O | T{y\/ﬁTfﬁ | q>




How do T s arise in SCET?

def
AR Al o)
- def
A(XT,x7,x,) = AX", x7, %, )= A (x",x,)
[AL(xﬂoo‘,xl — (1), AL(xﬂx‘,xL)] =0

def

ID”, =10, +gA", =10" +¢ AL+ gAfo)“ =iD . + gAfo)”

DYy, =TiDly,T" |[THis OvsURES THATT S ARISE NATORALLY inv (T

T(x",x,)= Pexp[—igjooodrfL-Aj"o)(xﬂ X, —EJ)}
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The T-Wilson Lines in SCET-II

Now the degrees of freedom are just collinear and soft. In covariant gauges

(ﬁA\w nA\w 'A\u) ~Q(1,
(NA,NA, A )~ Q.

2

7
7

1),

1),

(Mp,, NPy, P,y ) ~ QL
(NP, NP, P, ) ~ Q74

2

7
7,

No interaction is possible for on-shell states

- & (ing, +igf, W, —W, uzm)ﬂr

1 n-_a

1),
1)



The T-Wilson Lines in SCET-II

(NA,.PA,, A, ) ~ QL 7", n);
(RA,nA =0,A ) ~Q(n,9,n);

The gauge ghost acts only on some momentum components and couples with
collinear

[TAXALK . x) > [TAMAL0.x")
Thus the covariant derivative 1s iD" =i0" +gA! (x)+gA (07, x,)

The decoupling of soft fields requires
AEO)ﬂ (X) — Tsn (XJ_) Ahﬂ (X)Terrn (XJ_)

T, ISeXp[igj:drlL-Asf) (07, x, - |LT):|



The T-Wilson Lines in SCET-II

The new SCET-II Lagrangian is

EIZ — gn(o) (InDrgO) 4 I,D/(O)VVT(O) WT(O)T /D/(O)) ﬁ 5(0)

INO

AVH (%) =T, (X ) AT ()T (x,)
Dr(lo)u —io* + gA\SO)ﬂ

grEO) =T, (XJ_)é:n (X)

T, [lgj dzl,-A (0 ,xL—ILr)}



Drell-Yan at low qT

it K We have multiscale problem!
a I=Q°>Q>L¢,
Q L
Pr p |, ~—Tand/, ~ SCD
N
o=LM
_ 2\ |2
Main steps for the factorization: SHQ)IFReFRo
f f_
JHQ) | 2@ ®g¢
o ¢

In PDF mixed UV-IR divergences
cancel between virtual and real
diagrams! This 1s not the case for
TMD: there 1s no integration n(m)

jn(ﬁ) =
over pr V¢

MaAH@Q)P f,®f ®¢"
M = HQ")I i, ® I




Drell-Yan

4z d'q 1 e 2 t S .
2_3(‘,]28 (272_)44;.‘-(1 ye ™ ( Qw)<N1(P,01)Nz(P,O'z)|J (y)J"(0)|N,(P,c0,)N,(P,05,))

J7 =;quiyﬂy/ = H(Qz,ﬂ);eq;?nSrTTyﬂSrT)(n Collinear, anti-collinear and soft act
on difterent Hilbert spaces!!

2 d4 ,

_ ra q 2 N2 fade gy O 2
2= ey H@Ar [hye™ LR MR (o)

J7

1 _ Ny
Fn(Y)=EZ<N1(P,01) 7. (Y) ”2 2,(0)N,(P,0,))
o However this i1s not the end
1 _ _ Ny _ of the story...
Fo(Y) =5 LN 0) 70 (0= “ 2 (V) N (P ) ’

o(y) = (0| Tr T[sT's! o) T[s! s ]0) |0y
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Factorization (Taylor Expansion)

M = H(Q?*/u?) f d*y e Y F,(y) Fa(y) ®(y)

® This result includes subleading contributions (in powers of 1/ QQ): Taylor Expansion.

The photon is hard:
Pn ~~ Q(la )\2: }\)

q ~ Q(la 1: )\)

Pn o~ Q(}\za 11 }\)

Yy~ %(1?

2
(33;— 6y+ 6yl)Fﬂ Q1A% A)

(5, ) Faly) ~ QU1

1
1. —
3

oy~ 3y+ dy 1

0 0 0
D(y) ~ QAN A A

M = H(Q?/u?) f d‘*yemﬁ"n(o*,y,@’L)Fﬁ(yﬂo,m}Eb(o*,o,:cﬁﬂ

® Agreement with {Ji, Ma, Yuan o5}, who first introduced this soft function with
dependence ONLY on the transverse component {contrary to earlier works of J. C.

Collins}].



Factorization (problems...)

[M— H(Q?/1i?) f d%e—*‘%(oﬂy—,m)Fn(y+,o—,m)<b(0+=”_’§”]

® Individually F,,, F; and ® have mixed UV/IR divergencies: 1
Renormalization and evolution becomes problematic EUV €IR

® Individually F,, Frand ® have non-regularized light-cone 19
divergencies: Dimensional Regularization is not enough and we [3 dt—

need another regulator.
® Even with this regulator the mixed divergencies don’t cancel
between virtual and real.

F,., F; and ® are ill-defined!!

* In QCD M has no mixed divergencies.
® The hadronic tensor can be calculated in pure Dimensional Regularization.
* I, and F}; have analogous operator definition: same mixed divergencies.

® We can combine the matrix elements to build well-defined objects: TMDPDFs!!
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Regulators and rapidity divergences

e DR: /| (gﬂ)4|§g per-se has problem with rapidity div. In

real gluon exchange diagrams (it 1s good for the

virtuals!!) Ly,
* Wailson lines oft-the-light-cone (Collins): n—>n=(,e",0,)
Works fine but it is impossible to recover n—n=(-e",10))

the light cone limit, LCG?(Unphysical scales can be
removed with our definition of TMD i1f 1t 1s used
consitently in collinear and soft sectors)

d A—regulator (Chiu, Fuhrer, Hoang, Kelley,Manohar, see also Cherednikov,
Stefanis):

Works like a mass term, i i

— > ———
respects symmetries, fine in LCG (p+k)*+iA™ Kk +io
A

p+
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Regulators and rapidity divergences

e Analytic reqgulator (echer Neubert): breaks SCET collinear/anticollinear
symmetry, not usable for TMD's, 1 e

it does not work in LCG (with ML!!) (p—k) ig—>[ (oK) _TW
—(P=K) = —(p-k) —ie

e Rapidity regulator (chivain, Neill, Rothstein): _

2 lmep | |
LCG? Transforms IR/rapidity divergences \y — Z exp| — gw ‘nﬂé‘ A
into UV divergences. Unphysical scales can be " = Ny v
Removed with our definition of the TMD. | i

We have proved the correctness of our TMD with all regulators
which respect collinear/anticollinear symmetry .

We agree on the final result for the total cross section in DY with the
ones that do break this symmetry.

Our definition of TMD i1s regulator independent! (No Rap. Div.)

22



Conclusions

We have provided a tactorization theorem for DY
using an effective field theory ot QCD!!

Our definition can be used also in Light Cone
Gauge with the T-Wilson lines

We have a consistent definition of the TMDPDF

on-the-light-cone: no unphysical parameters

All the rest (and the best) in Ahmad’s talk!
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Back up slides



The T-Wilson Lines in SCET-I

AreT's compatible with SCET power counting?In SCET-I only collinear and u-soft fields.
The first step to obtain the SCET Lagrangian is integrating out energetic part of spinors

£=§n(|nD+uZ uzj E

X ~1/Q(L1/ A%,1/ A)

And then applying multipole expansion,
L e i . X, ~1/Q/ A%,11 A%,11 A?)

£, =E,(in, + gna, (<) + 1B, Wy w g, ) 2.,

Where W' =TW

n

U-soft field does not give rise to any transverse gauge link!!
There are no transverse u-soft fields and they cannot depend
on transverse coordinates!!
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Definition ot the TMDPDF

Using the fact that all mixed divergences are the same in the collinear
and anticollinear sectors and are canceled by the soft function

4 )
B} 1 [ drd®7) 1t
Jn(g‘kﬂ_]_) = 5/ 7(2”);J_8—1(%T‘ IP+_”-"I'””J‘)Fn(O+,'}"_,'I‘:l)\/‘i)(o—i_,o_,'F_J_)
. 1 [ drtd27 ‘ -
(2 Fnr) = 5/ ?(2");J_e—z(%r+zP _T'J_*-Iuﬁj_)Fﬁ(,r—l_!O_’.F_L)\/(I)(O—i—ﬁo—‘.,f.]h)
\ J

We agree with Collins“11 in the square root, but we stay on the light cone and

No rapidity cutotts!

M = H(Q, 1) Y 2 [ d?ky 07Ky, 6P (A, =Ky —Kyi) §n (6K £0) o (23 Ky 21)
q

And we have used the equivalence

. 1 cdrd?r, -idresrk) f (07,1 r _bi i

i, 06k ) == [ Fe't n( _ ) || of zero-bin and soft function for the
27 (2r) |#(0",07,r)|l IR regulator that we used 26




Re-factorization

* The TMDPDF has perturbative content when q_T is perturbative.
* We can do an OPE of the TMDPDF onto the PDF in impact parameter space
[integrating out the intermediate scale ¢7-.]

1
. - do' -~ rx -
[Jn(w;bJ_aQaﬂ) :/ ?Cn (;;lU_,Q,M) Qn(x,*}u)J

* Properties of the C:
» It is independent of the IR regulator (matching coefficient!!)
» It is supposed to live at the intermediate scale. All logs should be cancelled by one
choice for the intermediate scale (like at threshold).
» BUT: it has a subtle Q2-dependence [Becher, Neubert 11}

g OF

C’n b0, 1) =6(1 — P L 1 — 272
(37, J_,Q,P'J) ( l’)—|— 9 [ q/q T_I_( x) LT:hl )UJS
1, 3 2 2 de—<VE
—0(1 — - L5 — =L In —L —
( $)<2 T ghrT HM2 T+ 12)]

* Accidentally, In(Q?/u?) can be eliminated by choosing p. Not at higher orders.
* The logs cannot be combined in one single log, like at threshold.



Re-factorization (Q”2 factor)

* Using the A-regulator, Lorentz invariance and dimensional analysis we can extract the Q-
dependence from the TMDPDF to all orders.

X + A
~ h'lfn = Rn (33, g, LT7 1n5—+ — ln_2>
Inj, = Inf, — llngg p Q
g =0fn = 5 ~ e ¥
1ﬂ¢ — R¢ (CHS’ LT, lﬂ ‘u2 — ln Q2u2)

2
[lnjn = Inj*** — D(a, L7) (an—2 + LT>]
i

QQbZ )‘D(Oés,LT) N ~

i @ = (150 Colar: B, ) @ Qulas

dD(as, L) (Consistent with
= Leusp(as) [Becher, Neubert ’11])

dln p

* The Q*-factor is extracted for each TMDPDF individually.
* Its origin is related to the appearance of the Soft function in the TMDPDF.
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Factorization theorem (final)
el
X'z 7 7

2p2e?r \ D) Ly : e \ O g :
[Q j Cn(;;LT,u)Qn(X;ﬂ) 2 Cﬁ(;;LT,ﬂ)Qﬁ(Z;u)

4%, a5
M=l (27)°

4 4
Q H:(Q)
* T,
qr Crm)
Pasq
Agep On(7)

The PDF are the only hadronic matrix element for intermediate QT
The Q-factor is resummed in 2 places H and J
The matching coefficients are extracted for each individual PDF!
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