Single Spin Asymmetries in Inclusive DIS and Multi-Parton Correlations in the Nucleon

(A. Metz, Temple University, Philadelphia)

1. Introduction
2. Two photons coupling to the same quark
3. Two photons coupling to different quarks
in collaboration with: Pitonyak, Schäfer, Schlegel, Vogelsang, Zhou

- Analytical results
- Relation between $q \gamma q$-correlator and $q g q$-correlator (ETQS matrix element)
- Numerical results and discussion

4. Summary

Preliminaries

- DIS: $\ell(k)+N(P) \rightarrow \ell^{\prime}\left(k^{\prime}\right)+X$
- Single spin asymmetry (SSA) can exist due to correlation

$$
\varepsilon_{\mu \nu \rho \sigma} S^{\mu} P^{\nu} k^{\rho} k^{\prime \sigma} \sim \vec{S} \cdot\left(\vec{k} \times \vec{k}^{\prime}\right)
$$

- kinematics similar to, e.g., $p+p \rightarrow h+X$
- S spin vector of nucleon, or initial/final state lepton
- Definition of transverse SSA:

$$
A_{U T}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}}
$$

- $A_{U T}=0$ for one-photon exchange (Christ, Lee, 1966)
- consider multi-photon exchange
- $A_{U T} \sim \alpha_{\text {em }}$ (small)

Data

- Early data: CEA (1968), SLAC (1969)
- not in DIS region, $A_{U T}^{p}=0$ within uncertainties
- Recent data:
$A_{U T}^{p}$ (HERMES, 2009)

$A_{U T}^{n}$ (JLab Hall A, preliminary)
(Joseph Katich, Ph.D. thesis, 2011)

$A_{U T}^{p}=0$ within uncertainties $\left(10^{-3}\right)$
- can one (qualitatively) understand these data?

Photons coupling to the same quark
 (Metz, Schlegel, Goeke, 2006)

- Feynman diagrams

- Polarized initial state lepton

$$
k^{\prime 0} \frac{d \sigma_{p o l}^{\ell}}{d^{3} \vec{k}^{\prime}}=\frac{4 \alpha_{e m}^{3}}{Q^{8}} m_{\ell} x y^{2} \varepsilon^{S_{\ell} P k k^{\prime}} \sum_{q} e_{q}^{3} x f_{1}^{q}(x)
$$

- essential element: imaginary part of lepton-quark box-graph (Barut, Fronsdal, 1960)
- general behavior of SSA:

$$
A_{U T}^{\ell} \sim \alpha_{e m} \frac{m_{\ell}}{Q} \quad \rightarrow \quad \text { small }
$$

- Polarized target

$$
\begin{aligned}
k^{\prime 0} \frac{d \sigma_{p o l}^{N}}{d^{3} \vec{k}^{\prime}}= & \frac{4 \alpha_{e m}^{3}}{Q^{8}} M x^{2} y(1-y) \varepsilon^{S_{N} P k k^{\prime}} \sum_{q} e_{q}^{3} \\
& \times\left[\left(x g_{T}^{q}(x)-g_{1 T}^{(1) q}(x)-\frac{m_{q}}{M} h_{1}^{q}(x)\right)\left(\ln \frac{Q^{2}}{\lambda^{2}}+H_{1}(y)\right)\right. \\
& \left.\quad+\frac{m_{q}}{M} h_{1}^{q}(x) H_{2}(y)\right]
\end{aligned}
$$

- contributions: (1) collinear twist-3; (2) transv. quark momentum; (3) quark mass
- calculation is em. gauge invariant, but uncancelled IR-divergence: λ is photon mass
- transversity contribution first published by Afanasev, Strikman, Weiss, 2007
\rightarrow they use transversity projector containing m_{q}
\rightarrow calculation becomes identical to that for lepton SSA
\rightarrow transversity result IR-finite
- inclusion of quark-gluon-quark correlator can cure problem (work in progress)

$$
x g_{T}(x)-g_{1 T}^{(1)}(x)-\frac{m_{q}}{M} h_{1}(x)=x \tilde{g}_{T}(x) \quad(\text { EOM-relation })
$$

\rightarrow final result $\sim x \tilde{g}_{T}$, plus quark mass term \rightarrow small ?

- Estimate of transversity contribution for $A_{U T}^{N}$ (Afanasev, Strikman, Weiss, 2007)

- they use constituent quark mass $m_{q}=M / 3$
- asymmetries very small
- proton: compatible with data
- neutron: not compatible with data; also sign opposite to data

Photons coupling to different quarks

- Elastic scattering at large Q^{2}

- 2 photons coupling to different quarks dominate in $1 / Q$ expansion (Borisyuk, Kobushkin, 2008 /
Kivel, Vanderhaeghen, 2009)
- Deep-inelastic scattering at large Q^{2}

- express through $q \gamma q$ correlator
- soft photon pole contribution
- soft fermion pole contribution vanishes (see also Koike, Vogelsang, Yuan, 2007)
- leads to $A_{U T} \sim 1 / Q$
- may dominate, in particular at larger x

3-parton correlators

- Quark-gluon-quark correlator

$$
\int \frac{d \xi^{-} d \zeta^{-}}{4 \pi} e^{i x P^{+} \xi^{-}}\langle P, S| \bar{\psi}^{q}(0) \gamma^{+} F_{Q C D}^{+i}(\zeta) \psi^{q}(\xi)|P, S\rangle=-\varepsilon_{T}^{i j} S_{T}^{j} T_{F}^{q}(x, x)
$$

- first used by Efremov, Teryaev, 1984 / Qiu, Sterman, 1991 in order to explain SSAs \rightarrow ETQS matrix element
- relation to Sivers function (Boer, Mulders Pijlman, 2003)

$$
g T_{F}(x, x)=-\left.\int d^{2} \vec{k}_{T} \frac{\vec{k}_{T}^{2}}{M} f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right)\right|_{S I D I S}
$$

- T_{F} depends on definition of covariant derivative, and on sign of g; T_{F} has mass dimension; in literature different definitions for same symbol T_{F}
- Quark-photon-quark correlator

$$
\int \frac{d \xi^{-} d \zeta^{-}}{2(2 \pi)^{2}} e^{i x P^{+} \xi^{-}}\langle P, S| \bar{\psi}^{q}(0) \gamma^{+} e F_{Q E D}^{+i}(\zeta) \psi^{q}(\xi)|P, S\rangle=-M \varepsilon_{T}^{i j} S_{T}^{j} F_{F T}^{q}(x, x)
$$

Analytical results

- Unpolarized cross section

$$
k^{\prime 0} \frac{d \sigma_{u n p}}{d^{3} \vec{k}^{\prime}}=\frac{2 \alpha_{e m}^{2} y}{Q^{4}} \frac{\hat{s}^{2}+\hat{t}^{2}}{\hat{u}^{2}} \sum_{q} e_{q}^{2} x f_{1}^{q}(x)
$$

- Polarized cross section

$$
\begin{aligned}
k^{\prime 0} \frac{d \sigma_{p o l}^{N}}{d^{3} \vec{k}^{\prime}}= & \frac{8 \pi \alpha_{e m}^{2} x y^{2} M}{Q^{8}} \frac{\hat{s}^{2}+\hat{t}^{2}}{\hat{u}^{2}}\left(2+\frac{\hat{u}}{\hat{t}}\right) \varepsilon^{S_{N} P k k^{\prime}} \sum_{q} e_{q}^{2} x \tilde{F}_{F T}^{q}(x, x) \\
& \text { with } \quad \tilde{F}_{F T}(x, x)=F_{F T}(x, x)-x \frac{d}{d x} F_{F T}(x, x)
\end{aligned}
$$

- calculation in Feynman gauge and in light-cone gauge
- can be compared to $q q^{\prime} \rightarrow q^{\prime} q$ channel calculation in Kouvaris, Qiu, Vogelsang, Yuan (2006) \rightarrow full agreement
- derivative term dominates at large $x: \quad F_{F T} \sim \ldots(1-x)^{\tilde{\beta}}$
- Asymmetry

$$
A_{U T}^{N}=-\frac{2 \pi M}{Q} \frac{2-y}{\sqrt{1-y}} \frac{\sum_{q} e_{q}^{2} x \tilde{F}_{F T}^{q}(x, x)}{\sum_{q} e_{q}^{2} x f_{1}^{q}(x)}
$$

Relation between $\boldsymbol{F}_{F T}$ and $\boldsymbol{T}_{\boldsymbol{F}}$

- Focus on region of larger x (neglect antiquarks, gluons)
- Consider $F_{F T}^{q}(x, x)$ in diquark model

$(a)^{\prime}$

(b)

(c)
- diagram (b) vanishes (see also Kang, Qiu, Zhang, 2010); diagram (c) vanishes
- no assumption about type of diquark and nucleon-quark-diquark vertex
- one can relate QED correlator $F_{F T}$ to QCD correlator T_{F}
- Quantitative relation between $F_{F T}^{q}$ and T_{F}^{q} (determined by charge of diquark)

$$
\begin{array}{rlrl}
F_{F T}^{u / p} & =-\frac{\alpha_{e m}}{6 \pi C_{F} \alpha_{s} M}\left(g T_{F}^{u / p}\right) & F_{F T}^{d / p}=-\frac{2 \alpha_{e m}}{3 \pi C_{F} \alpha_{s} M}\left(g T_{F}^{d / p}\right) \\
F_{F T}^{u / n}=\frac{\alpha_{e m}}{3 \pi C_{F} \alpha_{s} M}\left(g T_{F}^{d / p}\right) & F_{F T}^{d / n}=-\frac{\alpha_{e m}}{6 \pi C_{F} \alpha_{s} M}\left(g T_{F}^{u / p}\right)
\end{array}
$$

- exactly same relations in general light-front 3-quark model (acknowledge discussion with Lorcé and Pasquini)

Input for $\boldsymbol{T}_{\boldsymbol{F}}$

- T_{F} from HERMES and COMPASS data on $\ell N^{\uparrow} \rightarrow \ell^{\prime} h X$
- extraction of $f_{1 T}^{\perp}$ by Anselmino et al. (2008)
- use relation between $f_{1 T}^{\perp}$ and T_{F}
- same general conclusions for other extractions
- T_{F} from FNAL and RHIC data on $p^{\uparrow} p \rightarrow h X$
- sample data

FermiLab, E704, $1990 \sqrt{s}=20 \mathrm{GeV}$

- extraction by Kouvaris, Qiu, Vogelsang, Yuan (2006) (FIT I: no antiquarks)
- ansatz for each flavor: $T_{F}(x, x)=N x^{\alpha}(1-x)^{\beta} f_{1}(x)$
- in order to describe large x_{F} behavior one needs: $\beta<1$
$\rightarrow A_{N}$ diverges for $x_{F} \rightarrow 1$ due to derivative term
- sign mismatch (striking spin crisis !) (Kang, Qiu, Vogelsang, Yuan, 2011)

\rightarrow resolution?
- T_{F} from combined fit of data on $\ell N^{\uparrow} \rightarrow \ell^{\prime} h X$ and $p^{\uparrow} p \rightarrow h X$ (Kang, Prokudin, 2012)
- use relation between $f_{1 T}^{\perp}$ and T_{F}
- do not include FNAL data
- allow for node in x (and k_{T}) in $f_{1 T}^{\perp}$

Numerical results for $\boldsymbol{F}_{\boldsymbol{F T}}$

- Proton

- side-remark: large N_{c} analysis predicts: $f_{1 T}^{\perp u}=-f_{1 T}^{\perp d}$ (Pobylitsa, 2003)
- Neutron

Numerical results for asymmetries

- Proton: $\left\langle Q^{2}\right\rangle=2.4 \mathrm{GeV}^{2} \quad\langle y\rangle=0.5$

- Sivers function input in perfect agreement with data
- KQVY seems too large at large x; even diverges for $x \rightarrow 1$ \rightarrow similar observation for $\ell p^{\uparrow} \rightarrow h X$ and $\ell p^{\uparrow} \rightarrow$ jet X
$\ell p^{\uparrow} \rightarrow \pi X$ (Koike, 2002)

$\ell p^{\uparrow} \rightarrow j e t X$ (Kang, Metz, Qiu, Zhou, 2011)

\rightarrow side-remark: data on $\ell p^{\uparrow} \rightarrow h X$ from HERMES, COMPASS would be useful!
- KP seems too large at large x; does not diverge for $x \rightarrow 1$ (caveat: use x-related value for Q rather than $\langle Q\rangle$)
- individual flavor contributions

\rightarrow Sivers: individual contributions small, plus cancellation
\rightarrow KP: due to node in Sivers function no cancellation at larger x, node in x not preferred
- Neutron: $\left\langle Q^{2}\right\rangle=2.1 \mathrm{GeV}^{2} \quad\langle y\rangle=0.66$

- Sivers function input in reasonable agreement with preliminary data (sign, order of magnitude)
\rightarrow wrong sign if $f_{1 T}$ had node in k_{T}
\rightarrow this finding agrees with recent work by Kang, Prokudin, 2012
- data may change somewhat; sign and order of magnitude not affected (J.P. Chen, private communication)
- KQVY has the wrong sign
\rightarrow indication that SSAs in $p^{\uparrow} p \rightarrow h X$ not primarily caused by Sivers effect
\rightarrow sign mismatch boils down to puzzle about origin of SSAs in $p^{\uparrow} p \rightarrow h X$
\rightarrow Collins effect, or something else?
\rightarrow effects are too nice and too large to be left unexplained
- KP in reasonable agreement with preliminary data (sign, order of magnitude)
- individual flavor contributions

$\rightarrow A_{U T}^{n}$ largely dominated by $f_{1 T}^{\perp d / p}$
\rightarrow difference in $f_{1 T}^{\perp u / p}$ between Sivers and KP only matters at rather large x

Summary

- Transverse SSAs in inclusive DIS can exist when going beyond one-photon exchange
- Nice recent data on target SSAs $A_{U T}^{p}$ and $A_{U T}^{n}$
- Two photons coupling to same quark
- complete result for lepton SSA $A_{U T}^{\ell}$
- result for target SSA incomplete (work in progress)
- Two photons coupling to different quarks
- does not affect result for lepton SSA
- may dominate target SSA
- calculation in twist-3 collinear factorization
- result depends on $q \gamma q$-correlator $F_{F T}$
- in valence quark picture, $F_{F T}$ can be related to T_{F} and $f_{1 T}^{\perp}$
- best description of data if T_{F} taken from SIDIS Sivers function
- Node of $f_{1 T}^{\perp}$ in k_{T} would not work; also node in x not preferred
- Indication that SSAs in $p^{\uparrow} p \rightarrow h X$ not primarily caused by Sivers effect
- Indication that Sivers effect indeed due to rescattering of active partons through gauge boson exchange

