# Single Spin Asymmetries in Inclusive DIS and Multi-Parton Correlations in the Nucleon

(A. Metz, Temple University, Philadelphia)

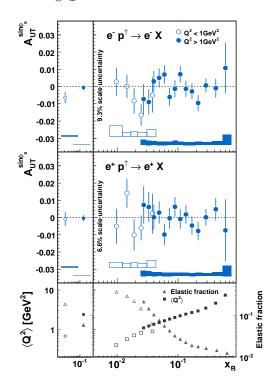
- 1. Introduction
- 2. Two photons coupling to the same quark
- 3. Two photons coupling to different quarks in collaboration with: Pitonyak, Schäfer, Schlegel, Vogelsang, Zhou
  - Analytical results
  - Relation between  $q\gamma q$ -correlator and qgq-correlator (ETQS matrix element)
  - Numerical results and discussion
- 4. Summary

#### **Preliminaries**

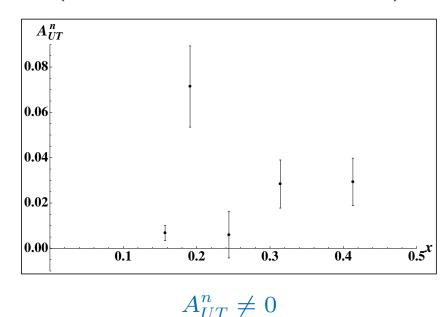
- DIS:  $\ell(k) + N(P) \rightarrow \ell'(k') + X$
- Single spin asymmetry (SSA) can exist due to correlation

$$\varepsilon_{\mu\nu\rho\sigma}S^{\mu}P^{\nu}k^{\rho}k^{\prime\sigma}\sim \vec{S}\cdot(\vec{k}\times\vec{k}^{\prime})$$

- kinematics similar to, e.g.,  $p + p \rightarrow h + X$
- -S spin vector of nucleon, or initial/final state lepton
- Definition of transverse SSA:


$$A_{UT} = rac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

- $A_{UT} = 0$  for one-photon exchange (Christ, Lee, 1966)
  - consider multi-photon exchange
  - $A_{UT} \sim \alpha_{em}$  (small)


#### **Data**

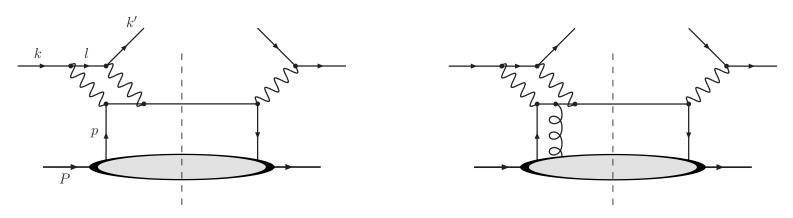
- Early data: CEA (1968), SLAC (1969)
  - not in DIS region,  $A_{UT}^p=0$  within uncertainties
- Recent data:

$$A_{UT}^{p}$$
 (HERMES, 2009)



 $A_{UT}^{n}$  (JLab Hall A, preliminary) (Joseph Katich, Ph.D. thesis, 2011)




 $A_{UT}^p = 0$  within uncertainties (10<sup>-3</sup>)

– can one (qualitatively) understand these data?

# Photons coupling to the same quark

(Metz, Schlegel, Goeke, 2006)

#### Feynman diagrams



Polarized initial state lepton

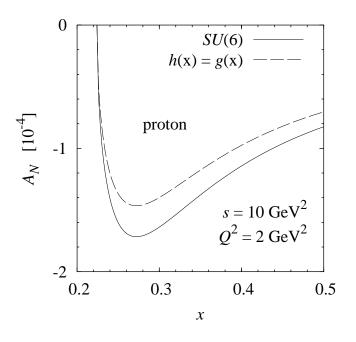
$$k'^0 \frac{d\sigma_{pol}^{\ell}}{d^3 \vec{k'}} = \frac{4\alpha_{em}^3}{Q^8} \, \boldsymbol{m_{\ell}} \, xy^2 \, \boldsymbol{\varepsilon^{S_{\ell}Pkk'}} \, \sum_{q} e_q^3 \, x f_1^q(x)$$

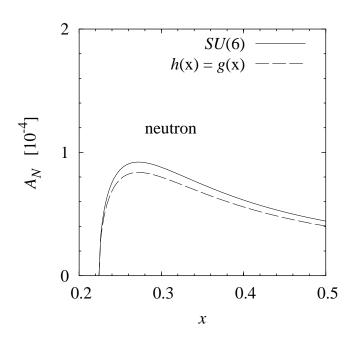
- essential element: imaginary part of lepton-quark box-graph (Barut, Fronsdal, 1960)
- general behavior of SSA:

$$A_{UT}^{\ell} \sim \alpha_{em} \frac{m_{\ell}}{Q} \rightarrow \text{small}$$

Polarized target

$$k'^{0} \frac{d\sigma_{pol}^{N}}{d^{3}\vec{k'}} = \frac{4\alpha_{em}^{3}}{Q^{8}} M x^{2} y (1-y) \varepsilon^{S_{N}Pkk'} \sum_{q} e_{q}^{3}$$

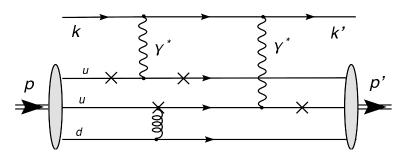

$$\times \left[ \left( x g_{T}^{q}(x) - g_{1T}^{(1)q}(x) - \frac{m_{q}}{M} h_{1}^{q}(x) \right) \left( \ln \frac{Q^{2}}{\lambda^{2}} + H_{1}(y) \right) + \frac{m_{q}}{M} h_{1}^{q}(x) H_{2}(y) \right]$$


- contributions: (1) collinear twist-3; (2) transv. quark momentum; (3) quark mass
- calculation is em. gauge invariant, but uncancelled IR-divergence:  $\lambda$  is photon mass
- transversity contribution first published by Afanasev, Strikman, Weiss, 2007
  - $\rightarrow$  they use transversity projector containing  $m_q$
  - → calculation becomes identical to that for lepton SSA
  - → transversity result IR-finite
- inclusion of quark-gluon-quark correlator can cure problem (work in progress)

$$xg_T(x) - g_{1T}^{(1)}(x) - \frac{m_q}{M}h_1(x) = x\tilde{g}_T(x)$$
 (EOM-relation)

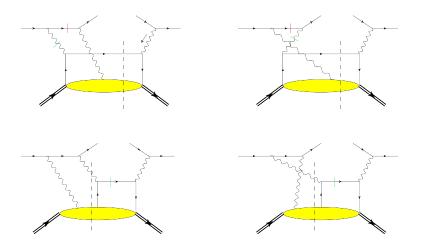
 $\rightarrow$  final result  $\sim x \tilde{g}_T$ , plus quark mass term  $\rightarrow$  small?

ullet Estimate of transversity contribution for  $A_{UT}^N$  (Afanasev, Strikman, Weiss, 2007)






- they use constituent quark mass  $m_q=M/3\,$
- asymmetries very small
- proton: compatible with data
- neutron: not compatible with data; also sign opposite to data


# Photons coupling to different quarks

• Elastic scattering at large  $Q^2$ 



- 2 photons coupling to different quarks dominate in 1/Q expansion (Borisyuk, Kobushkin, 2008 / Kivel, Vanderhaeghen, 2009)

• Deep-inelastic scattering at large  $Q^2$ 



- express through  $q\gamma q$  correlator
- soft photon pole contribution
- soft fermion pole contribution vanishes (see also Koike, Vogelsang, Yuan, 2007)
- leads to  $A_{UT} \sim 1/Q$
- may dominate, in particular at larger x

## **3-parton correlators**

Quark-gluon-quark correlator

$$\int \frac{d\xi^{-}d\zeta^{-}}{4\pi} e^{ixP^{+}\xi^{-}} \langle P, S | \bar{\psi}^{q}(0) \gamma^{+} F_{QCD}^{+i}(\zeta) \psi^{q}(\xi) | P, S \rangle = -\varepsilon_{T}^{ij} S_{T}^{j} T_{F}^{q}(x, x)$$

- first used by Efremov, Teryaev, 1984 / Qiu, Sterman, 1991 in order to explain SSAs  $\rightarrow$  ETQS matrix element
- relation to Sivers function (Boer, Mulders Pijlman, 2003)

$$g \, T_F(x,x) = - \int d^2 ec{k}_T \, rac{ec{k}_T^{\; 2}}{M} f_{1T}^\perp(x,ec{k}_T^{\; 2}) \Big|_{SIDIS}$$

- $T_F$  depends on definition of covariant derivative, and on sign of g;  $T_F$  has mass dimension; in literature different definitions for same symbol  $T_F$
- Quark-photon-quark correlator

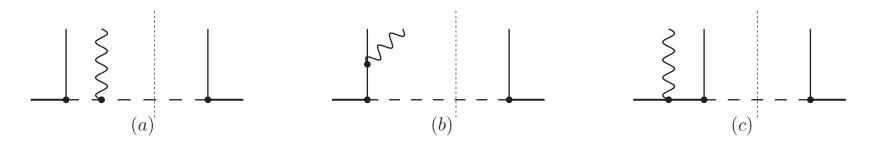
$$\int \frac{d\xi^{-}d\zeta^{-}}{2(2\pi)^{2}} e^{ixP^{+}\xi^{-}} \langle P, S | \bar{\psi}^{q}(0) \gamma^{+} e F_{QED}^{+i}(\zeta) \psi^{q}(\xi) | P, S \rangle = -M \varepsilon_{T}^{ij} S_{T}^{j} F_{FT}^{q}(x, x)$$

## **Analytical results**

Unpolarized cross section

$$k'^{0} \frac{d\sigma_{unp}}{d^{3}\vec{k}'} = \frac{2\alpha_{em}^{2} y}{Q^{4}} \frac{\hat{s}^{2} + \hat{t}^{2}}{\hat{u}^{2}} \sum_{q} e_{q}^{2} x f_{1}^{q}(x)$$

Polarized cross section


$$k'^{0} \frac{d\sigma_{pol}^{N}}{d^{3}\vec{k'}} = \frac{8\pi\alpha_{em}^{2} xy^{2} M}{Q^{8}} \frac{\hat{s}^{2} + \hat{t}^{2}}{\hat{u}^{2}} \left(2 + \frac{\hat{u}}{\hat{t}}\right) \boldsymbol{\varepsilon}^{S_{N}Pkk'} \sum_{q} e_{q}^{2} x \tilde{F}_{FT}^{q}(x, x)$$
with  $\tilde{F}_{FT}(x, x) = F_{FT}(x, x) - x \frac{d}{dx} F_{FT}(x, x)$ 

- calculation in Feynman gauge and in light-cone gauge
- can be compared to  $qq' \to q'q$  channel calculation in Kouvaris, Qiu, Vogelsang, Yuan (2006)  $\to$  full agreement
- derivative term dominates at large x:  $F_{FT} \sim \dots (1-x)^{ ilde{eta}}$
- Asymmetry

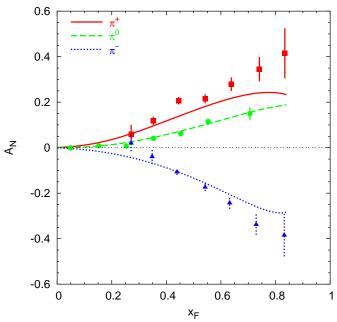
$$A_{UT}^{N} = -\frac{2\pi M}{Q} \frac{2-y}{\sqrt{1-y}} \frac{\sum_{q} e_{q}^{2} x \tilde{F}_{FT}^{q}(x,x)}{\sum_{q} e_{q}^{2} x f_{1}^{q}(x)}$$

#### Relation between $F_{FT}$ and $T_{F}$

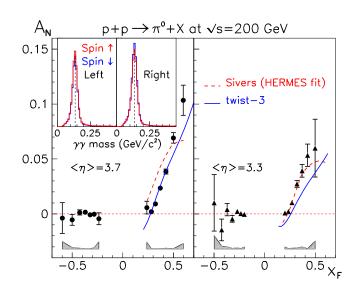
- ullet Focus on region of larger x (neglect antiquarks, gluons)
- ullet Consider  $F_{FT}^q(x,x)$  in diquark model



- diagram (b) vanishes (see also Kang, Qiu, Zhang, 2010); diagram (c) vanishes
- no assumption about type of diquark and nucleon-quark-diquark vertex
- one can relate QED correlator  $F_{FT}$  to QCD correlator  $T_F$
- ullet Quantitative relation between  $F_{FT}^q$  and  $T_F^q$  (determined by charge of diquark)


$$F_{FT}^{u/p} = -\frac{\alpha_{em}}{6\pi C_F \alpha_s M} (g T_F^{u/p}) \qquad F_{FT}^{d/p} = -\frac{2 \alpha_{em}}{3\pi C_F \alpha_s M} (g T_F^{d/p})$$

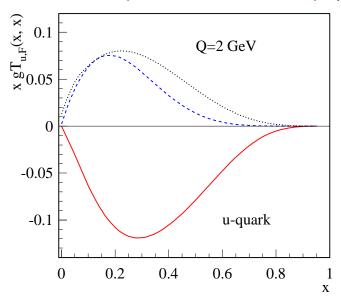
$$F_{FT}^{u/n} = \frac{\alpha_{em}}{3\pi C_F \alpha_s M} (g T_F^{d/p}) \qquad F_{FT}^{d/n} = -\frac{\alpha_{em}}{6\pi C_F \alpha_s M} (g T_F^{u/p})$$

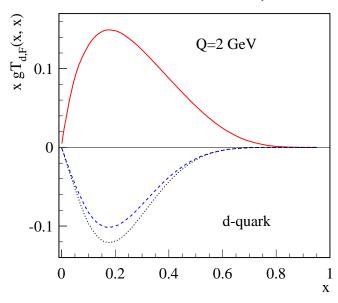

 exactly same relations in general light-front 3-quark model (acknowledge discussion with Lorcé and Pasquini)

# Input for $T_F$

- ullet  $T_F$  from HERMES and COMPASS data on  $\ell N^\uparrow \to \ell' h X$ 
  - extraction of  $f_{1T}^{\perp}$  by Anselmino et al. (2008)
  - use relation between  $f_{1T}^{\perp}$  and  $T_F$
  - same general conclusions for other extractions
- ullet  $T_F$  from FNAL and RHIC data on  $p^\uparrow p o h X$ 
  - sample data



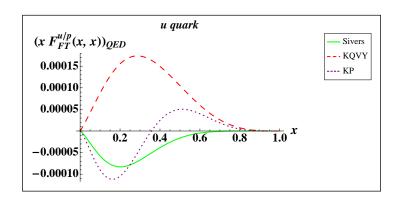

FermiLab, E704, 1990  $\sqrt{s} = 20 \,\mathrm{GeV}$ 

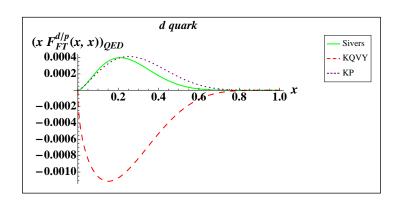



RHIC, STAR, 2008  $\sqrt{s}=200\,\mathrm{GeV}$ 

extraction by Kouvaris, Qiu, Vogelsang, Yuan (2006) (FIT I: no antiquarks)

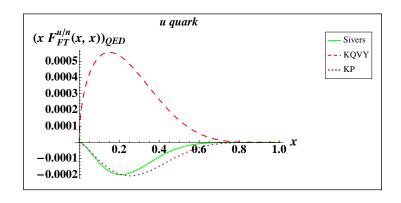
- ansatz for each flavor:  $T_F(x,x) = N \, x^{lpha} \, (1-x)^{eta} \, f_1(x)$
- in order to describe large  $x_F$  behavior one needs:  $\beta < 1$ 
  - $\rightarrow A_N$  diverges for  $x_F \rightarrow 1$  due to derivative term
- sign mismatch (striking spin crisis!) (Kang, Qiu, Vogelsang, Yuan, 2011)

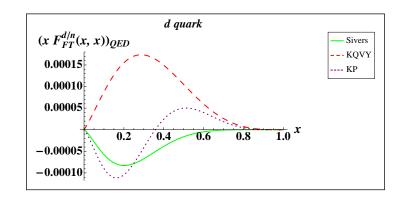



- $\rightarrow$  resolution?
- $T_F$  from combined fit of data on  $\ell N^\uparrow \to \ell' h X$  and  $p^\uparrow p \to h X$  (Kang, Prokudin, 2012)
  - use relation between  $f_{1T}^{\perp}$  and  $T_F$
  - do not include FNAL data
  - allow for node in x (and  $k_T$ ) in  $f_{1T}^{\perp}$

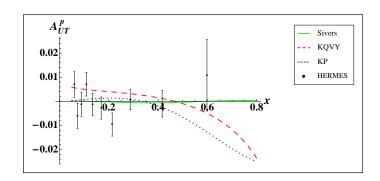
## Numerical results for $F_{FT}$

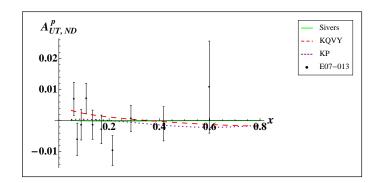

#### Proton






- side-remark: large  $N_c$  analysis predicts:  $f_{1T}^{\perp u} = -f_{1T}^{\perp d}$  (Pobylitsa, 2003)

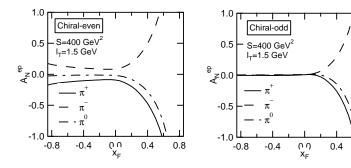

#### Neutron

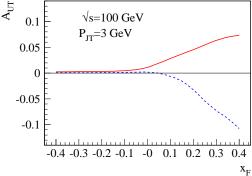





# **Numerical results for asymmetries**

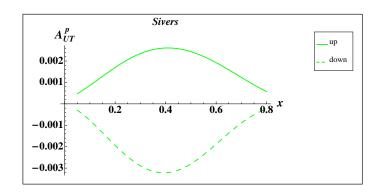
• Proton:  $\langle Q^2 \rangle = 2.4 \, \mathrm{GeV}^2 \qquad \langle y \rangle = 0.5$ 

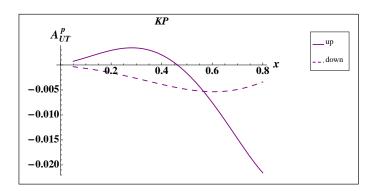



- Sivers function input in perfect agreement with data
- KQVY seems too large at large x; even diverges for  $x \to 1$ 
  - o similar observation for  $\ell p^\uparrow o h X$  and  $\ell p^\uparrow o jet X$

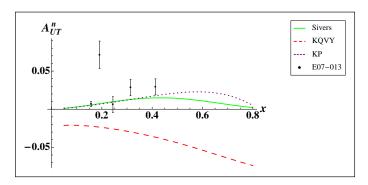
$$\ell p^{\uparrow} 
ightarrow \pi X$$
 (Koike, 2002)

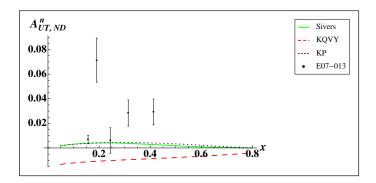

 $\ell p^{\uparrow} \rightarrow jet X$  (Kang, Metz, Qiu, Zhou, 2011)





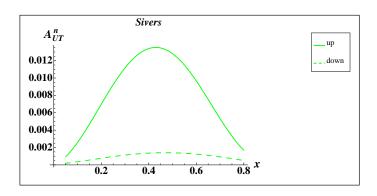

 $\rightarrow$  side-remark: data on  $\ell p^{\uparrow} \rightarrow h X$  from HERMES, COMPASS would be useful!

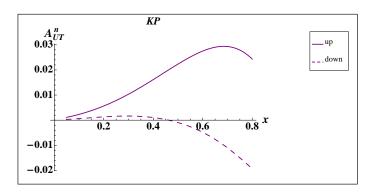

- KP seems too large at large x; does not diverge for  $x \to 1$  (caveat: use x-related value for Q rather than  $\langle Q \rangle$ )
- individual flavor contributions






- → Sivers: individual contributions small, plus cancellation
- $\rightarrow$  KP: due to node in Sivers function no cancellation at larger x, node in x not preferred


• Neutron:  $\langle Q^2 \rangle = 2.1 \, \mathrm{GeV}^2 \qquad \langle y \rangle = 0.66$ 






- Sivers function input in reasonable agreement with preliminary data (sign, order of magnitude)
  - $\rightarrow$  wrong sign if  $f_{1T}$  had node in  $k_T$
  - → this finding agrees with recent work by Kang, Prokudin, 2012
- data may change somewhat; sign and order of magnitude not affected (J.P. Chen, private communication)
- KQVY has the wrong sign
  - ightarrow indication that SSAs in  $p^\uparrow p 
    ightarrow h X$  not primarily caused by Sivers effect
  - ightarrow sign mismatch boils down to puzzle about origin of SSAs in  $p^\uparrow p 
    ightarrow h X$
  - → Collins effect, or something else?
  - → effects are too nice and too large to be left unexplained

- KP in reasonable agreement with preliminary data (sign, order of magnitude)
- individual flavor contributions





- $ightarrow A^n_{UT}$  largely dominated by  $f_{1T}^{\perp d/p}$
- ightarrow difference in  $f_{1T}^{\perp u/p}$  between Sivers and KP only matters at rather large x

## **Summary**

- Transverse SSAs in inclusive DIS can exist when going beyond one-photon exchange
- ullet Nice recent data on target SSAs  $A^p_{UT}$  and  $A^n_{UT}$
- Two photons coupling to same quark
  - complete result for lepton SSA  $A_{UT}^{\ell}$
  - result for target SSA incomplete (work in progress)
- Two photons coupling to different quarks
  - does not affect result for lepton SSA
  - may dominate target SSA
  - calculation in twist-3 collinear factorization
  - result depends on  $q\gamma q$ -correlator  $F_{FT}$
  - in valence quark picture,  $F_{FT}$  can be related to  $T_F$  and  $f_{1T}^{\perp}$
  - best description of data if  $T_F$  taken from SIDIS Sivers function
- Node of  $f_{1T}^{\perp}$  in  $k_T$  would not work; also node in x not preferred
- ullet Indication that SSAs in  $p^\uparrow p o h X$  not primarily caused by Sivers effect
- Indication that Sivers effect indeed due to rescattering of active partons through gauge boson exchange