High-Energy QCD factorization from DIS to pA

Giovanni Antonio Chirilli

Lawrence Berkeley National Laboratory

QCD evolution workshop - JLAB - Newport News, VA May 16, 2012

- Wilson lines formalism for scattering processes.
- Factorization in rapidity.
- Triple Pomeron vertex through Wilson line formalism: planar (leading N_c) and non-planar (next to-leading N_c) contribution.
- Analytic NLO amplitude in \mathcal{N} =4 SYM.
- The role of the B-Hierarchy in scattering processes.
- Factorization for Inclusive Hadron Production in pA collisions.
- Conclusions.

Incoherent-vs-Coherent

Incoherent Interactions

Bjorken Limit

$$Q^2 \to \infty, \ s \to \infty$$

 $x_{\rm B} = \frac{Q^2}{s}$ fixed
resum $\alpha_s \ln \frac{Q^2}{\Lambda_{\rm QCD}}$

Incoherent-vs-Coherent

Incoherent Interactions

Coherent Interactions

Bjorken Limit

$$Q^2 \to \infty, \ s \to \infty$$

 $x_{\rm B} = \frac{Q^2}{s}$ fixed
resum $\alpha_s \ln \frac{Q^2}{\Lambda_{\rm QCD}}$

Regge Limit

$$Q^2$$
 fixed, $s \to \infty$
 $x_{\rm B} = \frac{Q^2}{s} \to 0$
resum $\alpha_s \ln \frac{1}{x_{\rm B}}$

Collinear vs. kt factorization

Collinear factorization: emitted gluon is on-shell.

• k_{\perp} factorization: emitted gluon is off-shell.

Photon Impact Factor for BFKL pomeron

Photon Impact Factor for BFKL pomeron

Photon Impact Factor for BFKL pomeron

$$\sigma^{\gamma^* p}(x, Q^2) \propto \int \frac{d^2 k}{k_\perp^2} \int \frac{d^2 k'}{k_\perp'^2} F_A(x, k_\perp, Q^2) F_B(x, k_\perp, k'_\perp) G(x, k_\perp, k'_\perp)$$

$$\rightarrow$$

$$\sigma^{\gamma^* p}(x, Q^2) \propto \int \frac{d^2 k}{k_\perp^2} \int_x^1 f(\frac{x}{x'}, k_\perp^2) \sigma^{\gamma^* g}(x', k_\perp^2, Q^2)$$

$$g(x,Q^2) = \int^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} f(x,k_{\perp}^2)$$

 $f(x, k_{\perp}^2)$: unintegrated gluon distribution

G. A. Chirilli (LBNL)

$$f(x,k_{\perp}^{2}) \propto \int \frac{d^{2}k'}{k_{\perp}^{2}} F_{B}(k_{\perp}^{\prime 2}) k_{\perp}^{2} G(x,k_{\perp},k_{\perp}^{\prime})$$

At LO: equivalence of the k_⊥-factorization and dipole approach.
At NLO?

$$\sigma_{L,T}^{\gamma^* p} = \int_0^1 dz \int d^2 b \ |\psi_{L,T}(z,b_\perp)|^2 \sigma(x,b_\perp)$$

$\langle B| \mathrm{T}\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\}|B angle ightarrow \langle \mathrm{T}\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} angle_{A}$

η - rapidity factorization scale

Rapidity Y > η - coefficient function ("impact factor") Rapidity Y < η - matrix elements of (light-like) Wilson lines with rapidity divergence cut by η

$$U_x^{\eta} = \operatorname{Pexp}\left[ig \int_{-\infty}^{\infty} dx^+ A_+^{\eta}(x_+, x_\perp)\right]$$
$$A_{\mu}^{\eta}(x) = \int \frac{d^4k}{(2\pi)^4} \theta(e^{\eta} - |\alpha_k|) e^{-ik \cdot x} A_{\mu}(k)$$

The high-energy operator expansion is

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\text{Tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}$$

+
$$\int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\} - N_{c}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

The high-energy operator expansion is

$$\langle B|T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\}|B\rangle = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\langle B|\text{Tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}|B\rangle + \\ \int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\langle B|\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\}|B\rangle - N_{c}\langle B|\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}|B\rangle]$$

Propagation in the shock wave: Wilson line (Spectator frame)

Each path is weighted with the gauge factor $Pe^{ig \int dx_{\mu}A^{\mu}}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

Each path is weighted with the gauge factor $Pe^{ig \int dx_{\mu}A^{\mu}}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

LO and NLO Impact Factor

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y) \operatorname{Tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}$$

+
$$\int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y) [\operatorname{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\} \operatorname{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\} - N_{c}\operatorname{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

LO Impact Factor diagram: I^{LO}

LO and NLO Impact Factor

$$T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} = \int d^{2}z_{1}d^{2}z_{2} I^{\text{LO}}_{\mu\nu}(z_{1}, z_{2}, x, y)\text{Tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}$$

+
$$\int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} I^{\text{NLO}}_{\mu\nu}(z_{1}, z_{2}, z_{3}, x, y)[\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{3}}\}\text{tr}\{\hat{U}^{\eta}_{z_{3}}\hat{U}^{\dagger\eta}_{z_{2}}\} - N_{c}\text{tr}\{\hat{U}^{\eta}_{z_{1}}\hat{U}^{\dagger\eta}_{z_{2}}\}]$$

NLO Impact Factor diagrams: I^{NLO}

G. A. Chirilli (LBNL)

LO Impact Factor

Conformal invariance: $(x^+, x_\perp)^2 = -x_\perp^2 \Rightarrow$ after the inversion $x_\perp \to x_\perp/x_\perp^2$ and $x^+ \to x^+/x_\perp^2$

Conformal vectors:

$$\begin{aligned} \kappa &= \frac{\sqrt{s}}{2x_*} \left(\frac{p_1}{s} - x^2 p_2 + x_\perp \right) - \frac{\sqrt{s}}{2y_*} \left(\frac{p_1}{s} - y^2 p_2 + y_\perp \right) \\ \zeta_1 &= \left(\frac{p_1}{s} + z_{1\perp}^2 p_2 + z_{1\perp} \right), \qquad \zeta_2 &= \left(\frac{p_1}{s} + z_{2\perp}^2 p_2 + z_{2\perp} \right) \end{aligned}$$

Here $x^2 = -x_\perp^2, \quad x_* \equiv x_\mu p_2^\mu$ (similarly for y); $\mathcal{R} = \frac{\kappa^2(\zeta_1, \zeta_2)}{2(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)}$

$$I_{\mu\nu}^{\rm LO}(z_1, z_2) = \frac{\mathcal{R}^2}{\pi^6(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2)} \frac{\partial^2}{\partial x^{\mu} \partial y^{\nu}} \left[(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2) - \frac{1}{2} \kappa^2 (\zeta_1 \cdot \zeta_2) \right]$$

$$\left[\langle T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\}\rangle_{A} \right]^{\text{LO}} = \int \frac{d^{2}z_{1}d^{2}z_{2}}{z_{12}^{4}} I^{\text{LO}}_{\mu\nu}(x,y;z_{1},z_{2}) \langle \operatorname{tr}\{\hat{U}_{z_{1}}^{\eta}\hat{U}_{z_{2}}^{\dagger\eta}\}\rangle_{A}$$

$$\left[\langle T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\}\rangle_{A} \right]^{\text{NLO}} = \int \frac{d^{2}z_{1}d^{2}z_{2}}{z_{12}^{4}} d^{2}z_{3} \left[I_{1}^{\mu\nu}(z_{1}, z_{2}, z_{3}) + I_{2}^{\mu\nu}(z_{1}, z_{2}, z_{3}) \right] \\ \times \left[\operatorname{tr}\{U_{z_{1}}U_{z_{3}}^{\dagger}\}\operatorname{tr}\{U_{z_{3}}U_{z_{2}}^{\dagger}\} - N_{c}\operatorname{tr}\{U_{z_{1}}U_{z_{2}}^{\dagger}\} \right]$$

where $I_2^{\mu\nu}(z_1, z_2, z_3)$ is finite and conformal, while

$$I_1^{\mu\nu}(z_1, z_2, z_3) = \frac{\alpha_s}{2\pi^2} I_{\mu\nu}^{\rm LO} \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \int_0^{+\infty} \frac{d\alpha}{\alpha} \ e^{i\frac{s\alpha}{4}Z_3}$$

is rapidity divergent.

$$\langle T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\}\rangle_{A} = \int \frac{d^{2}z_{1}d^{2}z_{2}}{z_{12}^{4}} I_{\mu\nu}^{\text{LO}}(x,y;z_{1},z_{2})\langle \operatorname{tr}\{\hat{U}_{z_{1}}^{\eta}\hat{U}_{z_{2}}^{\dagger\eta}\}\rangle_{A}$$

$$+ \int \frac{d^{2}z_{1}d^{2}z_{2}}{z_{12}^{4}}d^{2}z_{3} I_{\mu\nu}^{\text{NLO}}(x,y;z_{1},z_{2},z_{3};\eta)[\operatorname{tr}\{U_{z_{1}}U_{z_{3}}^{\dagger}\}\operatorname{tr}\{U_{z_{3}}U_{z_{2}}^{\dagger}\} - N_{c}\operatorname{tr}\{U_{z_{1}}U_{z_{2}}^{\dagger}\}] + \dots$$

$$\Rightarrow$$

$$\begin{split} & \left[\langle T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\} \rangle_{A} \right]^{\text{NLO}} - \int \frac{d^{2}z_{1}d^{2}z_{2}}{z_{12}^{4}} I_{\mu\nu}^{\text{LO}}(x,y;z_{1},z_{2}) \left[\langle \text{tr}\{\hat{U}_{z_{1}}^{\eta}\hat{U}_{z_{2}}^{\dagger}\} \rangle_{A} \right]^{\text{LO}} \\ & = \int \frac{d^{2}z_{1}d^{2}z_{2}}{z_{12}^{4}} d^{2}z_{3} I_{\mu\nu}^{\text{NLO}}(x,y;z_{1},z_{2},z_{3};\eta) \left[\text{tr}\{U_{z_{1}}U_{z_{3}}^{\dagger}\} \text{tr}\{U_{z_{3}}U_{z_{2}}^{\dagger}\} - N_{c}\text{tr}\{U_{z_{1}}U_{z_{2}}^{\dagger}\} \right] \end{split}$$

$$\left[\langle \operatorname{tr}\{\hat{U}_{z_1}^{\eta}\hat{U}_{z_2}^{\dagger\eta}\}\rangle_A\right]^{\mathrm{LO}} = \frac{\alpha_s}{2\pi^2} \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\operatorname{tr}\{U_{z_1}U_{z_3}^{\dagger}\}\operatorname{tr}\{U_{z_3}U_{z_2}^{\dagger}\} - N_c \operatorname{tr}\{U_{z_1}U_{z_2}^{\dagger}\}\right] \int_0^{e^{\eta}} \frac{d\alpha}{\alpha}$$

$$\begin{split} &\int \frac{d^2 z_1 d^2 z_2}{z_{12}^4} d^2 z_3 \ I_{\mu\nu}^{\text{NLO}}(x, y; z_1, z_2, z_3; \eta) [\text{tr}\{U_{z_1} U_{z_3}^{\dagger}\} \text{tr}\{U_{z_3} U_{z_2}^{\dagger}\} - N_c \text{tr}\{U_{z_1} U_{z_2}^{\dagger}\}] \\ &= \int \frac{d^2 z_1 d^2 z_2}{z_{12}^4} d^2 z_3 \ \left\{ I_2^{\mu\nu}(z_1, z_2, z_3) + \frac{\alpha_s}{2\pi^2} I_{\mu\nu}^{\text{LO}} \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\int_0^{+\infty} \frac{d\alpha}{\alpha} \ e^{i\frac{s\alpha}{4} z_3} - \int_0^{e^{\eta}} \frac{d\alpha}{\alpha} \right] \right\} \\ &\times [\text{tr}\{U_{z_1} U_{z_3}^{\dagger}\} \text{tr}\{U_{z_3} U_{z_2}^{\dagger}\} - N_c \text{tr}\{U_{z_1} U_{z_2}^{\dagger}\}] \end{split}$$

$$\left[\int_{0}^{+\infty} \frac{d\alpha}{\alpha} e^{i\frac{s\alpha}{4}Z_{3}} - \int_{0}^{e^{\eta}} \frac{d\alpha}{\alpha}\right] \to -\ln\frac{\sigma s}{4}Z_{3} - \frac{i\pi}{2} + C$$

NLO Impact Factor

The NLO impact factor is not Möbius invariant \Rightarrow the color dipole with the cutoff $\eta = \ln \sigma$ is not invariant.

NLO Impact Factor

$$I_{\mu\nu}^{\rm NLO}(x,y;z_1,z_2,z_3;\eta) = -I_{\mu\nu}^{\rm LO} \times \frac{\alpha_s}{2\pi} \frac{z_{13}^2}{z_{12}^2 z_{23}^2} \ln \frac{\sigma s}{4} \mathcal{Z}_3 + \text{conf.}$$

The NLO impact factor is not Möbius invariant \Rightarrow the color dipole with the cutoff $\eta = \ln \sigma$ is not invariant.

However, if we define a composite operator (a - analog of μ^{-2} for usual OPE)

$$\begin{aligned} \left[\mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \right]^{\mathrm{conf}} &= \mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \\ &+ \frac{\alpha_s}{4\pi} \int d^2 z_3 \, \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\frac{1}{N_c} \mathrm{tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_3}^{\dagger \eta} \} \mathrm{tr} \{ \hat{U}_{z_3}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} - \mathrm{Tr} \{ \hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta} \} \right] \ln \frac{a z_{12}^2}{z_{13}^2 z_{23}^2} \, + \, O(\alpha_s^2) \end{aligned}$$

the impact factor becomes conformal at the NLO.

G. A. Chirilli (LBNL)

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_{1}}\hat{U}_{z_{2}}^{\dagger}\} \right]_{a,\eta}^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} + \frac{\alpha_{s}}{2\pi^{2}} \int d^{2}z_{3} \frac{z_{12}^{2}}{z_{13}^{2}z_{23}^{2}} \left[\text{Tr}\{T^{n}\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{3}}^{\dagger\sigma}T^{n}\hat{U}_{z_{3}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} - N_{c}\text{Tr}\{\hat{U}_{z_{1}}^{\sigma}\hat{U}_{z_{2}}^{\dagger\sigma}\} \right] \ln \frac{4az_{12}^{2}}{sz_{13}^{2}z_{23}^{2}} + O(\alpha_{s}^{2}) \end{aligned}$$

choose a rapidity-dependent constant $a \rightarrow ae^{-2\eta} \Rightarrow [\text{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\}]_a^{\text{conf}}$ does not depend on $\eta = \ln \sigma$ and all the rapidity dependence is encoded into *a*-dependence:

$$\begin{aligned} \left[\text{Tr}\{\hat{U}_{z_1}\hat{U}_{z_2}^{\dagger}\} \right]_a^{\text{conf}} \\ &= \text{Tr}\{\hat{U}_{z_1}^{\sigma}\hat{U}_{z_2}^{\dagger\sigma}\} + \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\text{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger\sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} - N_c \text{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} \right] \ln \frac{4a z_{12}^2}{\sigma^2 s z_{13}^2 z_{23}^2} + O(\alpha_s^2) \end{aligned}$$

Using the leading-order evolution equation

$$\frac{d}{d\eta} \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger \sigma}\} = \sigma \frac{d}{d\sigma} \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger \sigma}\} = \frac{\alpha_s}{\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} [\operatorname{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger \sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger \sigma}\} - N_c \operatorname{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger \sigma}\}]$$

$$\Rightarrow \frac{d}{d\eta} [\operatorname{Tr}\{\hat{U}_{z_1} \hat{U}_{z_1}^{\dagger}\}]_a^{\operatorname{conf}} = 0 \qquad \text{(with } O(\alpha_s^2) \text{ accuracy}.$$

$$2a\frac{d}{da}[\mathrm{Tr}\{\hat{U}_{z_1}\hat{U}_{z_2}^{\dagger}\}]_a^{\mathrm{conf}} = \frac{\alpha_s}{\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} [\mathrm{Tr}\{T^n \hat{U}_{z_1}^{\sigma} \hat{U}_{z_3}^{\dagger\sigma} T^n \hat{U}_{z_3}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\} - N_c \mathrm{Tr}\{\hat{U}_{z_1}^{\sigma} \hat{U}_{z_2}^{\dagger\sigma}\}]$$

2-gluon approx. and BFKL pomeron in DIS

$$\begin{split} & I^{\text{LO}}\hat{\mathcal{U}}(x_{\perp},y_{\perp}) \\ & I^{\text{NLO}}\Big\{\hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y)\Big\} \end{split}$$

where $\mathcal{U}(x, y) = 1 - \frac{1}{N_c} \text{tr}\{U_x U_y^{\dagger}\}$ and we neglected the non-linear term $\hat{\mathcal{U}}(x, z)\hat{\mathcal{U}}(z, y)$

The triple Pomeron vertex: Fan Diagrams

The Balitsky equation becomes the BK equation when

$$\langle \operatorname{tr}\{1 - U_{x}U_{z}^{\dagger}\}\operatorname{tr}\{1 - U_{z}U_{y}^{\dagger}\}\rangle$$

$$= \frac{N_{c}^{2}}{2(N_{c}^{2} - 1)} \Big\{2\langle \mathcal{U}_{xz}\rangle\langle \mathcal{U}_{zy}\rangle + \frac{1}{N_{c}^{2}}\Big[2\langle \mathcal{U}_{xy}\rangle\big(\langle \mathcal{U}_{xy}\rangle - \langle \mathcal{U}_{xz}\rangle - \langle \mathcal{U}_{yz}\rangle\big) + \langle \mathcal{U}_{zy}\rangle\langle \mathcal{U}_{zy}\rangle + \langle \mathcal{U}_{xz}\rangle\langle \mathcal{U}_{xz}\rangle - \langle \mathcal{U}_{xy}\rangle\langle \mathcal{U}_{xy}\rangle\Big]\Big\}$$

We extract the non planar (next-to-leading in N_c) contribution from $\langle \hat{\mathcal{U}}(x, z) \hat{\mathcal{U}}(z, y) \rangle$ for diffractive processes and for "fan" diagrams.

G.A.C, L.Szymanowski and S.Wallon 2010

We get

$$\begin{split} &\int d^2 \rho_a d^2 \rho_b \ \mathbf{16} \ h_\alpha (h_\alpha - 1) \bar{h}_\alpha (\bar{h}_\alpha - 1) E_{h_\alpha \bar{h}_\alpha} (\rho_{a\alpha}, \rho_{b\alpha}) \Bigg[\int d^2 \rho_c \ \frac{1}{|\rho_{ab}|^2 |\rho_{ac}|^2 |\rho_{bc}|^2} E_{h_\beta \bar{h}_\beta} (\rho_{a\beta}, \rho_{c\beta}) E_{h_\gamma \bar{h}_\gamma} (\rho_{b\gamma}, \rho_{c\gamma}) \\ &- \frac{2\pi}{N_c^2} \frac{1}{|\rho_{ab}|^4} \mathbf{Re} \{ \psi(1) + \psi(h_\alpha) - \psi(h_\beta) - \psi(h_\gamma) \} E_{h_\beta \bar{h}_\beta} (\rho_{a\beta}, \rho_{b\beta}) E_{h_\gamma \bar{h}_\gamma} (\rho_{b\gamma}, \rho_{c\gamma}) \Bigg] \end{split}$$

which agrees with Bartels and Wusthoff (1995)

G. A. Chirilli (LBNL)

$$\begin{split} \langle B|T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\}|B\rangle &\simeq \int d^{2}z_{1}d^{2}z_{2} \ I^{LO}(z_{1},z_{2})\langle B|\mathrm{tr}\{U_{z_{1}}^{\eta}U_{z_{2}}^{\dagger \eta}\}|B\rangle \\ &+ \frac{\alpha_{s}}{\pi} \int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} \ I^{NLO}(z_{1},z_{2},z_{3}) \Big[\langle B|\mathrm{tr}\{U_{z_{1}}^{\eta}U_{z_{3}}^{\dagger \eta}\}\mathrm{tr}\{U_{z_{3}}U_{z_{2}}^{\dagger \eta}\}|B\rangle - N_{c}\langle B|\mathrm{tr}\{U_{z_{1}}^{\eta}U_{z_{2}}^{\dagger \eta}\}|B\rangle \Big] \\ \eta &= \ln \frac{1}{x_{B}} \end{split}$$

$$\begin{split} \langle T\{\hat{j}_{\mu}(x)\hat{j}_{\nu}(y)\}\rangle_{A} &\simeq \int d^{2}z_{1}d^{2}z_{2} \ I^{LO}(z_{1},z_{2})\langle \mathrm{tr}\{U_{z_{1}}^{\eta_{1}}U_{z_{2}}^{\dagger,\eta_{1}}\}\rangle_{A} \\ &+ \frac{\alpha_{s}}{\pi} \int d^{2}z_{1}d^{2}z_{2}d^{2}z_{3} \ I^{NLO}(z_{1},z_{2},z_{3}) \Big[\langle \mathrm{tr}\{U_{z_{1}}^{\eta_{1}}U_{z_{3}}^{\dagger,\eta_{1}}\}\mathrm{tr}\{U_{z_{3}}U_{z_{2}}^{\dagger,\eta_{1}}\}\rangle_{A} - N_{c}\langle \mathrm{tr}\{U_{z_{1}}^{\eta_{1}}U_{z_{2}}^{\dagger,\eta_{1}}\}\rangle_{A} \Big] \end{split}$$

Matrix elements of Wilson lines: $\langle Tr\{U(x)U^{\dagger}(y)\}\rangle_A$ are divergent

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

$$\int_0^\infty \frac{d\alpha}{\alpha} = \int_{-\infty}^\infty d\eta = \infty$$

Regularization of the rapidity divergence

Matrix elements of Wilson lines: $\langle Tr\{U(x)U^{\dagger}(y)\rangle_A\}$ are divergent

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

$$\int_0^\infty \frac{d\alpha}{\alpha} \; = \; \int_{-\infty}^\infty d\eta \; = \; \infty$$

Regularization by: slope

$$U^{\eta}(x_{\perp}) = \text{Pexp}\Big\{ ig \int_{-\infty}^{\infty} du \ n_{\mu} \ A^{\mu}(un + x_{\perp}) \Big\} \qquad n^{\mu} = p_{1}^{\mu} + e^{-2\eta} p_{2}^{\mu}$$

Regularization by: Rigid cut-off (used in NLO)

$$\begin{split} U_x^\eta &= \operatorname{Pexp}\Big[ig \int_{-\infty}^{\infty} du \, p_1^\mu A_\mu^\eta(up_1 + x_\perp)\Big] \\ A_\mu^\eta(x) &= \int \frac{d^4k}{(2\pi)^4} \theta(e^\eta - |\alpha_k|) e^{-ik\cdot x} A_\mu(k) \end{split}$$

 $k^\mu = \alpha_k p_1^\mu + \beta_k p_2^\mu + k_\perp^\mu$

Evolution Equation

$$rac{d}{d\eta} \mathrm{Tr}\{\hat{U}_x\hat{U}_y^{\dagger}\} \;\; \Rightarrow \;\; rac{d}{d\eta} \langle \mathrm{Tr}\{\hat{U}_x\hat{U}_y^{\dagger}\}
angle$$

To get the evolution equation, consider the dipole with the rapidies up to η_1 and integrate over the gluons with rapidity $\eta_1 > \eta > \eta_2$. This integral gives the kernel of the evolution equation (multiplied by the dipole(s) with rapidity up to η_2).

In the frame || to η_1 the gluons with $\eta < \eta_1$ are seen as pancake.

Particles with different rapidity perceive each other as Wilson lines.

G. A. Chirilli (LBNL)

$$\langle \{U_x^{\eta_1}\}_{ij} \rangle_A = \frac{\alpha_s}{2\pi^2} \Delta \eta \int \frac{d^2 z_\perp}{(x-z)_\perp^2} \left[\langle \operatorname{tr} \{U_x^{\eta_2} U_z^{\eta_2\dagger} \} \{U_z^{\eta_2} \}_{ij} \rangle_A - \langle \frac{1}{N_c} \{U_x^{\eta_2} \}_{ij} \rangle_A \right]$$

$$\Delta = \eta_1 - \eta_2$$

 $\{U_x^{\dagger\eta_1}\}_{ij}, \quad \{U_x^{\eta_1}U_y^{\eta_1}\}_{ij}, \quad \{U_x^{\eta_1}U_y^{\dagger\eta_1}\}_{ij}, \quad \{U_x^{\dagger\eta_1}U_y^{\dagger\eta_1}\}_{ij}$

Leading order: BK equation

Non-linear evolution equation: BK equation

$$U_z^{ab} = 2\text{Tr}\{t^a U_z t^b U_z^{\dagger}\} \quad \Rightarrow (U_x U_y^{\dagger})^{\eta_1} \to (U_x U_y^{\dagger})^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^{\dagger} U_z U_y^{\dagger})^{\eta_2}$$

Non-linear evolution equation: BK equation

$$U_z^{ab} = 2\text{Tr}\{t^a U_z t^b U_z^\dagger\} \quad \Rightarrow (U_x U_y^\dagger)^{\eta_1} \to (U_x U_y^\dagger)^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^\dagger U_z U_y^\dagger)^{\eta_2}$$

$$\hat{\mathcal{U}}(x,y) \equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\}$$

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{\hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y)\Big\}$$

Alternative approach: JIMWLK (1997-2000)

Non-linear evolution equation: BK equation

$$\begin{aligned} U_z^{ab} &= \operatorname{Tr}\{t^a U_z t^b U_z^{\dagger}\} \quad \Rightarrow (U_x U_y^{\dagger})^{\eta_1} \to (U_x U_y^{\dagger})^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^{\dagger} U_z U_y^{\dagger})^{\eta_2} \\ \hat{\mathcal{U}}(x, y) &\equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\} \end{aligned}$$

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y) \right\}$$

Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD \Rightarrow BFKL

(LLA: $\alpha_s \ll 1, \alpha_s \eta \sim 1$)

Non linear evolution equation: BK equation

$$\begin{aligned} U_z^{ab} &= \operatorname{Tr}\{t^a U_z t^b U_z^{\dagger}\} \quad \Rightarrow (U_x U_y^{\dagger})^{\eta_1} \to (U_x U_y^{\dagger})^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^{\dagger} U_z U_y^{\dagger})^{\eta_2} \\ \hat{\mathcal{U}}(x, y) &\equiv 1 - \frac{1}{N_c} \operatorname{Tr}\{\hat{U}(x_{\perp}) \hat{U}^{\dagger}(y_{\perp})\} \end{aligned}$$

BK equation: Ian Balitsky (1996), Yu. Kovchegov (1999)

$$\frac{d}{d\eta}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) - \hat{\mathcal{U}}(x,z)\hat{\mathcal{U}}(z,y) \right\}$$

Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD \Rightarrow BFKL (LLA: $\alpha_s \ll 1, \ \alpha_s \eta \sim 1$) LLA for DIS in sQCD \Rightarrow BK eqn (LLA: $\alpha_s \ll 1, \ \alpha_s \eta \sim 1, \ \alpha_s^2 A^{1/3} \sim 1$)

G. A. Chirilli (LBNL)

Evolution of the unintegrated gluon distribution

$$f(x, k_{\perp}^2) \propto \int \frac{d^2k'}{k_{\perp}^2} F_B(k_{\perp}'^2) k_{\perp}^2 G(x, k_{\perp}, k_{\perp}')$$

$$\mathcal{V}(z) \equiv z^{-2} \mathcal{U}(z)$$

$$2a\frac{d}{da}\mathcal{V}_{a}(z) = \frac{\alpha_{s}N_{c}}{2\pi^{2}}\int d^{2}z' \left[\frac{2\mathcal{V}_{a}(z')}{(z-z')^{2}} - \frac{z^{2}\mathcal{V}_{a}(z)}{z'^{2}(z-z')^{2}}\right]$$

$\gamma^* - \gamma^*$ scattering at NLO

$$2a\frac{d}{da}\hat{\mathcal{U}}(x,y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z \ (x-y)^2}{(x-z)^2 (y-z)^2} \Big\{ \hat{\mathcal{U}}(x,z) + \hat{\mathcal{U}}(z,y) - \hat{\mathcal{U}}(x,y) \Big\} + K_{\rm NLO}$$

- NLO photon impact factor has been calculated:
 - G.A.C. and I. Balitsky see Balitsky talk.
- NLO BK has been calculated: G.A.C. and I. Balitsky (2007).
- Due to the running of the coupling we do not have an analytic expression for the NLO amplitude.
- In *N*=4 we can have a full analytic amplitude at NLO: G.A.C. and I. Balitsky (2009)

Small-x (Regge) limit in the coordinate space

 $(x-y)^4(x'-y')^4\langle \mathcal{O}(x)\mathcal{O}^{\dagger}(y)\mathcal{O}(x')\mathcal{O}^{\dagger}(y')\rangle$

Regge limit: $x^+ \to \rho x^+, \ x'^+ \to \rho x'^+, \ y^- \to \rho' y^-, \ y'^- \to \rho' y^- \qquad \rho, \rho' \to \infty$

LLA: $\alpha_s \ll 1$, $\alpha_s \ln \rho \sim 1$, $\Rightarrow \sum (\alpha_s \ln \rho)^n \equiv \text{BFKL pomeron.}$ LLA \Leftrightarrow tree diagrams \Rightarrow the BFKL pomeron is Möbius invariant.

NLO LLA: extra α_s : $\sum \alpha_s (\alpha_s \ln \rho)^n \equiv$ NLO BFKL

In conformal theory ($\mathcal{N}=4$ SYM) the NLO BFKL for composite conformal dipole operator is Möbius invariant.

G. A. Chirilli (LBNL)

NLO Amplitude in \mathcal{N} =4 SYM theory

The pomeron contribution in a conformal theory can be represented as an integral over one real variable ν Cornalba (2007)

$$\begin{split} &(x-y)^4(x'-y')^4\langle \mathcal{O}(x)\mathcal{O}^{\dagger}(y)\mathcal{O}(x')\mathcal{O}^{\dagger}(y')\rangle\\ &= \frac{i}{2}\!\int\!d\nu\,\tilde{f}_+(\nu)\frac{\tanh\pi\nu}{\nu}F(\nu)\Omega(r,\nu)R^{\frac{1}{2}\omega(\nu)} \end{split}$$

 $\omega(\nu) \equiv \omega(0, \nu)$ is the pomeron intercept, $\tilde{f}_{+}(\omega) = (e^{i\pi\omega} - 1)/\sin \pi\omega$ is the signature factor in the coordinate space. $F(\nu)$ is the "pomeron residue".

The conformal function $\Omega(r,\nu)$ is given by a representation in terms of the two-dimensional integral

$$\Omega(r,\nu) = \frac{\nu^2}{\pi^3} \int d^2 z \Big(\frac{\kappa^2}{(2\kappa \cdot \zeta)^2} \Big)^{\frac{1}{2} + i\nu} \Big(\frac{{\kappa'}^2}{(2\kappa' \cdot \zeta)^2} \Big)^{\frac{1}{2} - i\nu}$$

$$\begin{split} \zeta &= p_1 + \frac{z_{\perp}^2}{s} p_2 + z_{\perp}, \qquad p_1^2 = p_2^2 = 0, \ 2(p_1, p_2) = s \\ \kappa &= \frac{1}{2x^+} (p_1 - \frac{x^2}{s} p_2 + x_{\perp}) - \frac{1}{2y^+} (p_1 - \frac{y^2}{s} p_2 + y_{\perp}), \qquad \kappa^2 \kappa'^2 = \frac{1}{R} \\ \kappa' &= \frac{1}{2x'^-} (p_1 - \frac{x'^2}{s} p_2 + x'_{\perp}) - \frac{1}{2y'^-} (p_1 - \frac{y'^2}{s} p_2 + y'_{\perp}, \qquad 4(\kappa \cdot \kappa')^2 = \frac{r}{R} \end{split}$$

$$A(x,y;x',y') \stackrel{s \to \infty}{=} \frac{i}{2} \int d\nu f_+(\omega(\lambda,\nu)) F(\lambda,\nu) \Omega(r,\nu) R^{\omega(\lambda,\nu)/2}$$

Pomeron intercept $\omega(\nu, \lambda)$ is known in two limits:

1.
$$\lambda \to 0$$
: $\omega(\nu, \lambda) = \frac{\lambda}{\pi} \chi(\nu) + \lambda^2 \omega_1(\nu) + ...$
 $\chi(\nu) = 2\psi(1) - \psi(\frac{1}{2} + i\nu) - \psi(\frac{1}{2} - i\nu)$ - BFKL intercept,
 $\omega_1(\nu)$ - NLO BFKL intercept Lipatov, Kotikov (2000)
2. $\lambda \to \infty$: $AdS/CFT \Rightarrow \omega(\nu, \lambda) = 2 - \frac{\nu^2 + 4}{2\sqrt{\lambda}} + ...$

2 = gravition spin , next term - Brower, Polchinski, Strassler, Tan (2006)

$$A(x,y;x',y') \stackrel{s \to \infty}{=} \frac{i}{2} \int d\nu f_+(\omega(\lambda,\nu)) F(\lambda,\nu) \Omega(r,\nu) R^{\omega(\lambda,\nu)/2}$$

The function $F(\nu, \lambda)$ in two limits:

1. $\lambda \to 0$: $F(\nu, \lambda) = \lambda^2 F_0(\nu) + \lambda^3 F_1(\nu) + ...$ $F_0(\nu) = \frac{\pi \sinh \pi \nu}{4\nu \cosh^3 \pi \nu}$ Cornalba, Costa, Penedones (2007) $F_1(\nu) =$ see below I. Balitsky and G. A. C. (2009) 2. $\lambda \to \infty$: $AdS/CFT \Rightarrow F(\nu) = \pi^3 \nu^2 \frac{1 + \nu^2}{\sinh^2 \pi \nu} + ...$

L.Cornalba (2007)

We calculate $F_1(\nu)$ (and confirm $\omega_1(\nu)$) using the expansion of high-energy amplitudes in Wilson lines (color dipoles)

I. Balitsky and G.A.C. (2009)

Factorization in rapidity

I. Balitsky and G.A.C. (2009)

Factorization in rapidity

I. Balitsky and G.A.C. (2009)

Factorization in rapidity

 $\begin{aligned} &(x-y)^4 (x'-y')^4 \langle T\{\hat{\mathcal{O}}(x)\hat{\mathcal{O}}^{\dagger}(y)\hat{\mathcal{O}}(x')\hat{\mathcal{O}}^{\dagger}(y')\} \rangle \\ &= \int d^2 z_{1\perp} d^2 z_{2\perp} d^2 z'_{1\perp} d^2 z'_{2\perp} \mathrm{IF}^{a_0}(x,y;z_1,z_2) [\mathrm{DD}]^{a_0,b_0}(z_1,z_2;z'_1,z'_2) \mathrm{IF}^{b_0}(x',y';z'_1,z'_2) \end{aligned}$

 $a_0 = \frac{x^+ y^+}{(x-y)^2}, b_0 = \frac{x'^- y'^-}{(x'-y')^2} \Leftrightarrow \text{impact factors do not scale with energy}$ \Rightarrow all energy dependence is contained in $[\text{DD}]^{a_0,b_0}$

G. A. Chirilli (LBNL)

$$\mathcal{O} \equiv \frac{4\pi^2\sqrt{2}}{\sqrt{N_c^2 - 1}} \text{Tr}\{Z^2\} \quad (Z = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)) \text{ renorm-invariant chiral primary operator}$$

$$\begin{aligned} (x-y)^4 T\{\hat{\mathcal{O}}(x)\hat{\mathcal{O}}^{\dagger}(y)\} &= \frac{(x-y)^4}{\pi^2 (N_c^2 - 1)} \int d^2 z_1 d^2 z_2 \frac{(x_* y_*)^{-2}}{\mathcal{Z}_1^2 \mathcal{Z}_2^2} \left[\mathrm{Tr}\{\hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta}\} \right]^{\mathrm{conf}} \\ &- \frac{\alpha_s (x-y)^4}{2\pi^4 (N_c^2 - 1)} \int d^2 z_1 d^2 z_2 d^2 z_3 \frac{z_{12}^2 (x_* y_*)^{-2}}{z_{13}^2 z_{23}^2 \mathcal{Z}_1^2 \mathcal{Z}_2^2} \\ &\times \Big(\ln \frac{x_* y_* z_{12}^2 e^{2\eta}}{16 (x-y)_{\perp}^2 z_{13}^2 z_{23}^2} \Big[\frac{(x-z_3)^2}{x_*} - \frac{(y-z_3)^2}{y_*} \Big]^2 - i\pi + 2C \Big) \\ &\times \left[\mathrm{Tr}\{T^n \hat{U}_{z_1}^{\eta} \hat{U}_{z_3}^{\dagger \eta} T^n \hat{U}_{z_3}^{\eta} \hat{U}_{z_2}^{\dagger \eta}\} - N_c \mathrm{Tr}\{\hat{U}_{z_1}^{\eta} \hat{U}_{z_2}^{\dagger \eta}\} \right] \end{aligned}$$

The impact factor is Möbius invariant and does not scale with the energy.

NLO Amplitude in N=4 SYM

Balitsky and G.A.C. (2009)

$$\begin{split} &(x-y)^{4}(x'-y')^{4}\langle T\{\hat{\mathcal{O}}(x)\hat{\mathcal{O}}(y)^{\dagger}\hat{\mathcal{O}}(x')\hat{\mathcal{O}}^{\dagger}(y')\}\rangle\\ &=-\frac{1}{\pi^{4}}\int d\nu \int d^{2}z_{0} \; \frac{1+4\nu^{2}}{8\pi} \frac{\Gamma^{2}\left(\frac{1}{2}-i\nu\right)}{\Gamma(1-2i\nu)} \left(\frac{\kappa^{2}}{4(\kappa\cdot\zeta_{0})^{2}}\right)^{\frac{1}{2}+i\nu}\\ &\times \frac{\left(-a_{0}b_{0}+i\epsilon\right)^{\frac{1}{2}\omega(\nu)}-\left(a_{0}b_{0}+i\epsilon\right)^{\frac{1}{2}\omega(\nu)}}{\pi\omega} I_{0}(\nu) \left[1-\frac{\alpha_{s}N_{c}}{4\pi}\Phi_{1}(\nu)\right]\\ &\times \frac{1+4\nu^{2}}{8\pi} \frac{\Gamma^{2}\left(\frac{1}{2}+i\nu\right)}{\Gamma(1+2i\nu)} \left(\frac{\kappa'^{2}}{4(\kappa'\cdot\zeta_{0}')^{2}}\right)^{\frac{1}{2}-i\nu} I_{0}(\nu) \left[1-\frac{\alpha_{s}N_{c}}{4\pi}\Phi_{1}(\nu)\right]\\ &\times \left[1-\frac{\alpha_{s}N_{c}}{2\pi} \left(\chi(\gamma) \left[4C+\frac{2}{\gamma(1-\gamma)}\right]+\frac{\pi^{2}}{3}\right)\right] \end{split}$$

$$\begin{split} F(\nu) &= \frac{N_c^2}{N_c^2 - 1} \frac{16\pi^4 \alpha_s^2}{\cosh^2 \pi \nu} \left[1 - \frac{\alpha_s N_c}{4\pi} \Phi_1(\nu) \right] \left[1 - \frac{\alpha_s N_c}{4\pi} \Phi_1(\nu) \right] \\ &\left[1 - \frac{\alpha_s N_c}{2\pi} \left(\chi(\gamma) \left\{ 4C + \frac{2}{\gamma(1-\gamma)} \right\} + \frac{\pi^2}{3} \right) \right] + O(\alpha_s^2) \end{split}$$

which gives the pomeron residue in the next-to-leading order.

G. A. Chirilli (LBNL)

$$\begin{aligned} &\frac{d}{d\eta} \operatorname{tr} \{ U_x U_z^{\dagger} \} \operatorname{tr} \{ U_z U_y^{\dagger} \} = \frac{\alpha_s}{2\pi^2} \int d^2 w_{\perp} \left\{ \\ &\operatorname{tr} \{ U_z U_y^{\dagger} \} \left[\operatorname{tr} \{ U_x U_w^{\dagger} \} \operatorname{tr} \{ U_w U_z^{\dagger} \} - N_c \operatorname{tr} \{ U_x U_z^{\dagger} \} \right] \frac{(x-z)_{\perp}^2}{(x-w)^2 (z-w)^2} \\ &+ \frac{1}{2} \left[\operatorname{tr} \{ U_x U_z^{\dagger} U_w U_y^{\dagger} U_z U_w^{\dagger} \} - \operatorname{tr} \{ U_x U_y^{\dagger} \} \right] \left(\frac{(x-w,z-w)_{\perp}^2}{(x-w)^2 (z-w)^2} - \frac{(x-w,y-w)_{\perp}^2}{(x-w)^2 (y-w)^2} \right. \\ &+ \frac{(z-w,y-w)_{\perp}^2}{(z-w)^2 (y-w)^2} - \frac{1}{(z-w)^2} \right) + (x \leftrightarrow y)^{\dagger} \right\} \end{aligned}$$

$$\begin{split} S^{(2)}(x_{\perp}, y_{\perp}) &\equiv \frac{1}{N_c} \text{tr}\{U_x U_y^{\dagger}\}\\ S^{(4)}(x_{\perp}, z_{\perp}, y_{\perp}) &\equiv \frac{1}{N_c^2} \text{tr}\{U_x U_z^{\dagger}\} \text{tr}\{U_z U_y^{\dagger}\}\\ S^{(6)}(x_{\perp}, w_{\perp}, z_{\perp}, y_{\perp}) &\equiv \frac{1}{N_c^3} \text{tr}\{U_x U_w^{\dagger}\} \text{tr}\{U_w U_z^{\dagger}\} \text{tr}\{U_z U_y^{\dagger}\}\\ \tilde{S}^{(6)}(x_{\perp}, z_{\perp}, w_{\perp}, y_{\perp}) &\equiv \frac{1}{N_c} \text{tr}\{U_x U_z^{\dagger} U_w U_y^{\dagger} U_z U_w^{\dagger}\} \end{split}$$

Evolution of the non-linear term of the BK: First B-hierarchy

$$\begin{split} &\frac{d}{d\eta} S^{(4)}(x_{\perp}, z_{\perp}, y_{\perp}) \\ &= \frac{\alpha_s}{2\pi^2} \int d^2 w_{\perp} \left\{ N_c \left[S^{(6)}(x_{\perp}, w_{\perp}, z_{\perp}, y_{\perp}) - S^{(4)}(x_{\perp}, y_{\perp}) \right] \frac{(x - w, z - w)_{\perp}^2}{(x - w)^2 (z - w)^2} \right. \\ &\left. + \frac{1}{2N_c} \left[\tilde{S}^{(6)}(x_{\perp}, z_{\perp}, w_{\perp}, y_{\perp}) - S^{(2)}(x_{\perp}, y_{\perp}) \right] \left(\frac{(x - w, z - w)_{\perp}^2}{(x - w)^2 (z - w)^2} - \frac{(x - w, y - w)_{\perp}^2}{(x - w)^2 (y - w)^2} \right. \\ &\left. + \frac{(z - w, y - w)_{\perp}^2}{(z - w)^2 (y - w)^2} - \frac{1}{(z - w)^2} \right) + (x \leftrightarrow y)^{\dagger} \right\} \end{split}$$

Evolution of the non-linear term of the BK: First B-hierarchy

$$\begin{split} &\frac{d}{d\eta} S^{(4)}(x_{\perp}, z_{\perp}, y_{\perp}) \\ &= \frac{\alpha_s}{2\pi^2} \int d^2 w_{\perp} \left\{ N_c \left[S^{(6)}(x_{\perp}, w_{\perp}, z_{\perp}, y_{\perp}) - S^{(4)}(x_{\perp}, y_{\perp}) \right] \frac{(x - w, z - w)_{\perp}^2}{(x - w)^2 (z - w)^2} \right. \\ &\left. + \frac{1}{2N_c} \left[\tilde{S}^{(6)}(x_{\perp}, z_{\perp}, w_{\perp}, y_{\perp}) - S^{(2)}(x_{\perp}, y_{\perp}) \right] \left(\frac{(x - w, z - w)_{\perp}^2}{(x - w)^2 (z - w)^2} - \frac{(x - w, y - w)_{\perp}^2}{(x - w)^2 (y - w)^2} \right. \\ &\left. + \frac{(z - w, y - w)_{\perp}^2}{(z - w)^2 (y - w)^2} - \frac{1}{(z - w)^2} \right) + (x \leftrightarrow y)^{\dagger} \right\} \end{split}$$

S⁽⁶⁾(x_⊥, w_⊥, z_⊥, y_⊥) relevant for P → 3P vertices.
 Pomeron vertices from B-hierarchy.

$$\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}} = \sum_a \int \frac{dz}{z^2} \frac{dx}{x} \,\xi \,x f_a(x,\mu) D_{h/c}(z,\mu) \int [dx_{\perp}] \,\mathcal{S}_{a,c}^{\boldsymbol{Y}}([x_{\perp}]) \,\mathcal{H}_{a\to c}(\alpha_s,\xi,[x_{\perp}]\mu)$$

$$\bullet \ s = (p + P_A)^2 \longrightarrow \infty$$

- x is the momentum fraction of the nucleon carried by the parton a; z the momentum fraction of parton c carried by the final state hadron h.
- ξ = τ/xz, τ = p⊥ e^v/√s.
 y and p⊥: rapidity and transverse momentum for the final state hadron.

$$\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}} = \left[\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}}\right]^{\rm LO} + \left[\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}}\right]^{\rm NLO} + \dots$$

G.A.C, B-W. Xiao, F. Yuan (2011)

$$\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}} = \left[\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}}\right]^{\rm LO} + \left[\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}}\right]^{\rm NLO} + \dots$$

$$\Rightarrow$$

$$\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}} - \left[\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}}\right]^{\rm LO} = \left[\frac{d^3\sigma^{p+A\to h+X}}{dyd^2p_{\perp}}\right]^{\rm NLO}$$

G. A. Chirilli (LBNL)

Quark channel contribution: $qA \longrightarrow q + X$ at one loop order

$$-\frac{\alpha_{s}N_{c}}{2\pi^{2}}\int_{0}^{1}\frac{d\xi'}{1-\xi'}\int\frac{d^{2}b_{\perp}}{(2\pi)^{2}}e^{-ik_{\perp}\cdot r_{\perp}}\frac{(x-y)_{\perp}^{2}}{(x-b)_{\perp}^{2}(y-b)_{\perp}^{2}}\left[S^{(2)}(x_{\perp},y_{\perp})-S^{(4)}(x_{\perp},b_{\perp},y_{\perp})\right]$$

$$+\frac{\alpha_{s}C_{F}}{2\pi}\int_{\tau/z}^{1}d\xi\left(-\frac{1}{\epsilon}\right)\left[\mathcal{P}_{qq}(\xi)e^{-ik_{\perp}\cdot r_{\perp}}+\mathcal{P}_{qq}(\xi)\frac{1}{\xi^{2}}e^{-i\frac{k_{\perp}}{\xi}\cdot r_{\perp}}\right]\frac{1}{(2\pi)^{2}}S^{(2)}(x_{\perp},y_{\perp})$$

$$\begin{split} S^{(2)}(x_{\perp}, \mathbf{y}_{\perp}) &= \frac{1}{N_c} \langle U(x_{\perp}) U^{\dagger}(\mathbf{y}_{\perp}) \rangle_{Y} \\ S^{(4)}(x_{\perp}, b_{\perp}, \mathbf{y}_{\perp}) &= \frac{1}{N_c^2} \langle \mathrm{Tr}[U(x_{\perp}) U^{\dagger}(b_{\perp})] \mathrm{Tr}[U(b_{\perp}) U^{\dagger}(\mathbf{y}_{\perp})] \rangle_{Y} \end{split}$$

Quark channel contribution: $qA \longrightarrow q + X$ at one loop order

$$\frac{d^{3}\sigma^{p+A\to h+X}}{dyd^{2}p_{\perp}} = \int \frac{dz}{z^{2}} \frac{dx}{x} \,\xi \,x \,[q(x,\mu)]^{1-\mathrm{loop}} [D_{h/q}(z,\mu)]^{1-\mathrm{loop}} \int \frac{d^{2}x_{\perp}d^{2}y_{\perp}}{(2\pi)^{2}} \times \\ \left\{ \left[\mathcal{S}^{(2)}(x_{\perp},y_{\perp}) \right]^{1-\mathrm{loop}} \left[\mathcal{H}^{(0)}_{2qq} + \frac{\alpha_{s}}{2\pi} \mathcal{H}^{(1)}_{2qq} \right] + \int \frac{d^{2}b_{\perp}}{(2\pi)^{2}} \mathcal{S}^{(4)}(x_{\perp},b_{\perp},y_{\perp}) \frac{\alpha_{s}}{2\pi} \mathcal{H}^{(1)}_{4qq} \right\}$$

- The collinear divergence is absorbed into the renormalization of the quark distribution and fragmentation functions
 - $[q(x,\mu)]^{1-\text{loop}}$ and $[D_{h/q}(z,\mu)]^{1-\text{loop}}$: DGLAP evolution equation
- The rapidity divergence can be absorbed into the renormalization of the dipole gluon distribution
 - $[S^{(2)}(x_{\perp}, y_{\perp})]^{1-\text{loop}}$: Balitsky-BK evolution equation
- kt Factorization is violated in pA at NLO level.

Hard coefficients at one loop for quark channel: Infra-red and Ultra-violet finite.

$$\begin{aligned} \mathcal{H}_{2qq}^{(1)} &= C_F \mathcal{P}_{qq}(\xi) \ln \frac{c_0^2}{r_{\perp}^2 \mu^2} \left(e^{-ik_{\perp} \cdot r_{\perp}} + \frac{1}{\xi^2} e^{-i\frac{k_{\perp}}{\xi} \cdot r_{\perp}} \right) - 3C_F \delta(1-\xi) e^{-ik_{\perp} \cdot r_{\perp}} \ln \frac{c_0^2}{r_{\perp}^2 k_{\perp}^2} \\ &- (2C_F - N_c) e^{-ik_{\perp} \cdot r_{\perp}} \left[\frac{1+\xi^2}{(1-\xi)_+} \widetilde{I}_{21} - \left(\frac{(1+\xi^2) \ln (1-\xi)^2}{1-\xi} \right)_+ \right] \\ \mathcal{H}_{4qq}^{(1)} &= -4\pi N_c e^{-ik_{\perp} \cdot r_{\perp}} \left\{ e^{-i\frac{1-\xi}{\xi} k_{\perp} \cdot (x_{\perp} - b_{\perp})} \frac{1+\xi^2}{(1-\xi)_+} \frac{1}{\xi} \frac{x_{\perp} - b_{\perp}}{(x_{\perp} - b_{\perp})^2} \cdot \frac{y_{\perp} - b_{\perp}}{(y_{\perp} - b_{\perp})^2} \right. \\ &- \delta(1-\xi) \int_0^1 d\xi' \frac{1+\xi'^2}{(1-\xi')_+} \left[\frac{e^{-i(1-\xi')k_{\perp} \cdot (y_{\perp} - b_{\perp})}}{(b_{\perp} - y_{\perp})^2} - \delta^{(2)}(b_{\perp} - y_{\perp}) \int d^2r'_{\perp} \frac{e^{ik_{\perp} \cdot r'_{\perp}}}{r'_{\perp}^2} \right] \right\} \end{aligned}$$

where $c_0 = 2e^{-\gamma_E}$ with γ_E the Euler constant, and

$$\widetilde{I}_{21} = \int rac{d^2 b_\perp}{\pi} \left\{ e^{-i(1-\xi)k_\perp \cdot b_\perp} \left[rac{b_\perp \cdot (\xi b_\perp - r_\perp)}{b_\perp^2 \left(\xi b_\perp - r_\perp\right)^2} - rac{1}{b_\perp^2}
ight] + e^{-ik_\perp \cdot b_\perp} rac{1}{b_\perp^2}
ight\}$$

$$\begin{split} \frac{d^{3}\sigma^{p+A\to h+X}}{dyd^{2}p_{\perp}} &= \int \frac{dz}{z^{2}} \frac{dx}{x} \, \xi \, x \, [q(x,\mu)]^{2-\text{loop}} [D_{h/q}(z,\mu)]^{2-\text{loop}} \int \frac{d^{2}x_{\perp}d^{2}y_{\perp}}{(2\pi)^{2}} \times \\ \left\{ \left[\mathcal{S}^{(2)}(x_{\perp},y_{\perp}) \right]^{2-\text{loop}} \left[\mathcal{H}^{(0)}_{2qq} + \frac{\alpha_{s}}{2\pi} \mathcal{H}^{(1)}_{2qq} + \frac{\alpha_{s}^{2}}{(2\pi)^{2}} \mathcal{H}^{(2)}_{2qq} \right] \right. \\ &+ \int \frac{d^{2}b_{\perp}}{(2\pi)^{2}} \left[\mathcal{S}^{(4)}(x_{\perp},b_{\perp},y_{\perp}) \right]^{1-\text{loop}} \left[\frac{\alpha_{s}}{2\pi} \mathcal{H}^{(1)}_{4qq} + \frac{\alpha_{s}^{2}}{(2\pi)^{2}} \mathcal{H}^{(2)}_{4qq} \right] \\ &+ \int \frac{d^{2}b}{(2\pi)^{2}} \frac{d^{2}\omega}{(2\pi)^{2}} \mathcal{S}^{(6)}(x_{\perp},b_{\perp},\omega_{\perp},y_{\perp}) \frac{\alpha_{s}^{2}}{(2\pi)^{2}} \mathcal{H}^{(2)}_{6qq} \bigg\} \end{split}$$

$$\begin{split} \frac{d^{3}\sigma^{p+A\to h+X}}{dyd^{2}p_{\perp}} &= \int \frac{dz}{z^{2}} \frac{dx}{x} \, \xi \, x \, [q(x,\mu)]^{2-\text{loop}} [D_{h/q}(z,\mu)]^{2-\text{loop}} \int \frac{d^{2}x_{\perp}d^{2}y_{\perp}}{(2\pi)^{2}} \times \\ \left\{ \left[\mathcal{S}^{(2)}(x_{\perp},y_{\perp}) \right]^{2-\text{loop}} \left[\mathcal{H}^{(0)}_{2qq} + \frac{\alpha_{s}}{2\pi} \mathcal{H}^{(1)}_{2qq} + \frac{\alpha_{s}^{2}}{(2\pi)^{2}} \mathcal{H}^{(2)}_{2qq} \right] \right. \\ &+ \int \frac{d^{2}b_{\perp}}{(2\pi)^{2}} \left[\mathcal{S}^{(4)}(x_{\perp},b_{\perp},y_{\perp}) \right]^{1-\text{loop}} \left[\frac{\alpha_{s}}{2\pi} \mathcal{H}^{(1)}_{4qq} + \frac{\alpha_{s}^{2}}{(2\pi)^{2}} \mathcal{H}^{(2)}_{4qq} \right] \\ &+ \int \frac{d^{2}b}{(2\pi)^{2}} \frac{d^{2}\omega}{(2\pi)^{2}} \mathcal{S}^{(6)}(x_{\perp},b_{\perp},\omega_{\perp},y_{\perp}) \frac{\alpha_{s}^{2}}{(2\pi)^{2}} \mathcal{H}^{(2)}_{6qq} \bigg\} \end{split}$$

B-hierarchy at work.

Conclusions

- High-energy operator expansion in color dipoles works at the NLO level.
- The planar (leading N_c) and non-planar (next-to-leading N_c) contribution to the triple Pomeron vertex has been derived through the Wilson line formalism.
- Pomeron vertices from B-hierarchy.
- In \mathcal{N} =4 we obtained the analytic amplitude at NLO.
- Factorization for Inclusive Hadron Production in *p*A holds at one loop level: the collinear divergence reproduces DGLAP eq. for parton distribution and fragmentation functions, while the rapidity divergence reproduces the Balitsky-BK evolution equation.
- B-hierarchy plays the same role in small-x regime that DGLAP plays at large-x.
- kt Factorization is violated in pA at NLO level.