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Introduction



The main principle

e Saturation physics is based on the existence of a large internal
transverse momentum scale Q. which grows with both
decreasing Bjorken x and with increasing nuclear atomic

number A A
QQ NAI/B <l>

X

such that

U =aS(QS) <<l

and we can use perturbation theory to calculate total cross
sections, particle spectra and multiplicities, correlations, etc,
from first principles.



Dipole picture of DIS

In the dipole picture of DIS the virtual photon splits into a
guark-antiquark pair, which then interacts with the target.

The total DIS cross section and structure functions are
calculated via:




Dipole Amplitude

* The total DIS cross section is expressed in terms of the (Im
part of the) forward quark dipole amplitude N:
1
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Dipole Amplitude

* The quark dipole amplitude is defined by

N(2y2) =1 o (o [Viz) Vi)

Here we use the Wilson lines along the light-cone direction

V(z) = Pexp {z’g / det A (2", 2~ = 0,:(:)]

In the classical Glauber-Mueller/McLerran-Venugopalan

approach the dipole amplitude resums multiple rescatterings:
L
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Quasi-classical dipole amplitude

—
9 g 9 g A.H. Mueller, 90

Lowest-order interaction with each nucleon — two gluon exchange — the same
resummation parameter as in the MV model: 9 1/3
ai A
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DIS in the Classical Approximation

The dipole-nucleus amplitude in
the classical approximation is

2 Q2 1
Nz, ,Y)=1—exp|— L4Q In A
NA A.H. Mueller, ‘90
1 4/ Black disk
A limit,
saturation i )
| O, 6 < 27T R
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Color — — x,
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transparency



Dipole Amplitude

* The energy dependence comes in through nonlinear small-x

BK/JIMWLK evolution, which resums the long-lived s-channel
gluon corrections:
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Notation (Large-N)
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Nonlinear evolution at large N
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Solution of BK equation

N(XJ_aY)
asY =0,12,24,3.6,48
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numerical solution by J. Albacete



BK Solution

* Preserves the black disk limit, N<1 always.

0194 =2 /deN(xL,bL,Y)

e Avoids the IR problem of .
BFKL evolution due tothe *

saturation scale :
screening the IR: e
log,,(k/1GeV)

Golec-Biernat, Motyka, Stasto ‘02
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Map of High Energy QCD

Saturation physics allows us saturation region
phy Color Glass Condensate

to study regions of high
parton density in the small

( can be understood
by small coupling methods )

: : Y=Inl/x A
coupling regime, where
. : = BK/JIMWLK
calculations are still
under control! T
non-perturbative BFKL
region
: (Y)
(not much is known DGLAP
coupling is large) = Q2
~ 2
a.~1 A, a, << 1 (or p-|-2)
. : L A
Transition to saturation region is 5 el
: . Q ~ A _
characterized by the saturation scale S -




Map of High Energy QCD
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Going Beyond Large N.: JIMWLK

To do calculations beyond the large-N limit on has to use a functional
integro-differential equation written by lancu, Jalilian-Marian, Kovner,
Leonidov, McLerran and Weigert (JIMWLK):
04 1 2 0
—— = Q5 | = Z x(u,v)| —
oY { 2 0p(u) dp(v) Zxwv)

where the functional Z|p] can then be used for obtaining
wave function-averaged observables (like Wilson loops for DIS):

(0) = / Dp Z[p) Ol



Going Beyond Large N.: JIMWLK

« The JIMWLK equation has been solved on the lattice by
Rummukainen and H. Weigert '04

 For the dipole amplitude N(x,,X;, Y), the relative
corrections to the large-N. limit BK equation are < 0.001 !
Not the naive 1/N2 ~ 0.1 ! (For realistic rapidities/
energies.)

« The reason for that is dynamical, and is largely due to
saturation effects suppressing the bulk of the potential

1/NZ corrections (Yu.K., J. Kuokkanen, K. Rummukainen,
H. Weigert, ‘08).



Dipole Amplitude and Other Operators

Dipole scattering amplitude is a universal degree of freedom in saturation
physics.

It describes the total DIS cross section and structure functions:

* It also describes single inclusive quark and gluon production cross section
in DIS and in p+A collisions.

* Works for diffraction in DIS and p+A.

* For correlations need also quadrupoles (J.Jalilian-Marian, Yu.K. '04;
Dominguez et al ‘11) and other Wilson line operators.
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Higher-Order Corrections
to Small-x Evolution



Non-linear evolution:

why do we need higher-order corrections?

Theoretically nothing is wrong with LO BK/JIMWLK: it
preserves unitarity (black disk limit), prevents the IR
catastrophe.

Phenomenologically there is a problem though: LO BFKL
intercept is way too large (compared to 0.2-0.3 needed to
describe experiment)

ap — 1= 977 %N

T

~ 0.79

Seems like we need higher-order corrections to describe
the data.

First let’s try to determine the scale of the coupling.



A. Running Coupling



What Sets the Scale for the Running
Coupling?

aN(xOD'xlaY) aS de xOl
0Y xO2 x12

x[N(xO,xz,Y)+N(x2,xl,Y)—N(xO,xl,Y)—N(xo,xz,Y)N(xz,xl,Y)]
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plane
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What Sets the Scale for the Running
Coupling?

aN(xOD'xlaY) aS fd2 xOl
0Y xO2 x12

x[N(xO,xz,Y)+N(x2,xl,Y)—N(xO,x1,Y)—N(xo,xz,Y)N(xz,xl,Y)]

999 In order to perform consistent calculations
U ( - ) it is important to know the scale of the running
coupling constant in the evolution equation.

There are three possible scales — the sizes of the “parent”
dipole and “daughter” dipoles x,,,x,,, X,, . Which one is it?




Preview

The answer is that the running coupling corrections
come in as a " triumvirate” of couplings (H. Weigert,
Yu. K. " 06; I. Balitsky, ‘06):

a, =
cf. M. Braun ' 94, E. Levin ‘94

The scales of three couplings are somewhat involved.



BLM Prescription

To set the scale of the coupling constant we calculate the
ag N, corrections to BK/JIMWLK evolution kernel
to all orders.

We then would complete N, to the QCD beta-function
11N, -2N,
12z

by replacing N, — -6, to obtain the scale of
the running coupling:

2

&y

2y
OfS(Q ) _ 1—|—Oé,u 52 IH(Q2/M2)

(Brodsky, Lepage, Mackenzie '83)



Running Coupling Corrections to All Orders

One has to insert fermion bubbles to all orders:
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Running Coupling BK

Here’ s the BK equation with the running coupling corrections
(H. Weigert, Yu. K. 06; |. Balitsky, ‘06):

dN(xy,x,Y) N

€ (d’x

oY T
< as(1/xy,) 4 as(1/x5) _9 as(1/ xg) as(1/ x5) Xy Xy,
i s as(1/R*) o

X[N(x09x29Y)+N(x29x19Y)_N('x09x19Y)_N('XOaxz)Y)N(xzaxlaY)]

where 2 2 2 2 2 2 2 2 2 ;2
In R> 2 _ Xy In(x;, p”) = x5, In(x5, w )+ X5 X5 In(x35,/x3,)

2 2 2 2
Xoo — X7 Xy Xy Xp9 =Xy
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B. NLO BFKL/BK/JIMWLK



NLO BK

* NLO BK evolution was calculated by Ballitsky and Chirilli in 2007.
* |t resums powers of og? Y (NLO) in addition to powers of Qg Y (LO).
* Here’s a sampler of relevant diagrams (need kernel to order-a?):

Diagrams with 2 gluons interaction

(xviy -~ (Xvil

oo 3 (xx1) I3 XXl 3 ooav) xv)

X

Od o ,° B
(XXVI) o (XX o (xvi (XXIX) < (XXX)




NLO BK

* The large-N¢ limit:

—_u)2 2 __vy2 2 2
dan(x y) = 272 d*z (xXzY};) {1 - a‘:Z [131 In(x — y)?u? — 13—1X(x—_ yl;z ln)Yiz + 69—7 - ? - 21n(x)_(y)2 ln(x i y)z]]
X [N(x,z) + N(z,y) = N(x,y) — N(x, 2)N(z, y)]
2N2 2 X2Y72 + X2Y2 — 4(x — y)*(z — Z')? x—y)*
f ki { @-2) [ - z')‘*(XZYEZ - ;)321(:2) 2= xzya(;(czyfzy)— X2Y?)
+ (x i } XZYQ}[N(Z 7') = N(x,2)N(z,z') = N(z, z')N(z',y) = N(x,z)N(z', y) + N(x, z)N(z,y)
X?Y?%(z—-27')? | X7Y? ’ ’ ’ ’
+ N(x,z)N(z, Z)N(Z', y)]. (136)

(yet to be solved numerically)



NLO JIMWLK

Very recently NLO evolution has been calculated for other Wilson line
operators (not just dipoles), most notably the 3-Wilson line operator
(Grabovsky ‘13, Balitsky & Chirilli 13, Kovner, Lublinsky, Mulian "13,
Balitsky and Grabovsky ‘14). See talk by I. Balitsky later today!

The NLO JIMWLK Hamiltonian was constructed as well (Kovner, Lublinsky,
Mulian ’13, '14).

However, the equations do not close, that is, the operators on the right
hand side can not be expressed in terms of the operator on the left. Hence
can’t solve.

To find the expectation values of the corresponding operators, one has to
perform a lattice calculation with the NLO JIMWLK Hamiltonian,
generating field configurations to be used for averaging the operators.



NLO Dipole Evolution at any N

« NLO BK equation is the large-N_ limit of (Balitsky and Chrilli " 07)

B (z — y)2 Qs 22 X*-Y* X* 67 = . 10
- 2~r2 X2Y2 t i [bh‘(m Y by g e gy
X? y? T It Tt imidl
—2Neln (s In y)z]} ({0, U YT {0.0]} — NI {00} }]

2 4 X2Y"? + X7?Y? — 4z — y)2(2 — 2')?

s 2,732,/ _ y
T 164 /d z2d"2 [( (z—2)t " {2 (z — 2)i[X2Y"% — X'2Y?]

(z —y)* 1 1 (z-y3?r 1 1 X2y’

N X2yr? — X%y [XQY’2 N Y2X’2] * (z — 2')? [X2Y’2 X’2y2]}ln X’QYQ)

x [Te{U. U} (0.0} Te{U.. U} } — Te{U. U0 U 0.0} - (7 — 2)]

Eoyf T 1 L 1 (@) ) XY
i {(z —2')? [X2Y'2 " Y2X'2] - X2Y'2X'2Y'z}l Srys DU I{U:0; } {0 U}
4 X?Y2+ Y X - (z—p)(z—2)? XY\, s byt afy b7yt /
— 4nf{ (z — 2')4 -2 (z— Z’)4(X2Y'2 - X’2Y2—) In X12y? }Tr{t U,t Uy}[Tr{t Ut Uz,} — (2 — z)]



NLO Corrections

Note also that two iterations of NLO evolution kernel is parametrically of
the same order as a combination of one LO and one NNLO kernels:

(a3Y)? ~ (as V) (a]Y)

Does this mean that NLO kernel can only be inserted once into the LO
evolution?

Things simplify if you know the solution of the equation. For instance, in
DGLAP case, perturbative expansion in the kernel naturally translates into
the perturbative expansion in the anomalous dimensions.

Nonlinear equations are hard. Let’s consider the linear BFKL evolution.



The Problem

We want to find the BFKL Green function. It satisfies the BFKL
equation

G K.Y) = [ @K (kg Clak.Y)

with the initial condition

1
kK'Y =0)= —0(k—K

K(k,q) represents a BFKL kernel at an unspecified order in a..

We need to find the eigenfunctions and eigenvalues for the
kernel.



BFKL Equation in N=4 SYM Theory

The form of the BFKL equation’s solution is straightforward to
determine in N=4 SYM theory: there the eigenfunctions are fixed by
conformal symmetry and are simply E™V (eigenfunctions of the
Casimir operators of the Mobius group).

In the angle-independent case at hand E™V ‘s reduce to simple
powers of momentum k and we write the BFKL Green function in
N=4 SYM theory as

oo

2\ LV
Gk, K,Y) = / W Jaxo@)+a? aw)+.] Y (k >

o2 k k! k2

— o0

Perturbative expansion takes place in the exponent (the
eigenvalue).



Solving BFKL Equation in QCD

 QCD is not a conformal theory: we can not fix the all-order
BFKL eigenfunctions by a symmetry argument.

* While simple powers are eigenfunctions for the LO kernel,
they are not eigenfunctions for the NLO kernel due to the
running coupling effects:

_ _ _ k21
/d2qKLO+NLO(kaQ) ¢ = [%&XO(W) — a2 B2 xo(y )lnﬁ - —CY B2 xo(7) + a2 x1 (v k% g

/1 \/

LO BFKL 1-loop running Conformal NLO
eigenvalue coupling terms

NLO terms

11N, — 2N,
Xo(v) =29(1) — (y) — (1 —7) bo= =9,




The Strategy

* Since the BFKL kernel is known perturbatively up to NLO
K(k,q) = a, K" (k,q) + a;, K" (k, q) + O(a))
it appears logical to construct the eigenfunctions order-by-
order in the coupling as well. (Solving NLO BFKL equation

exactly would exceed the precision of the approximation as
NLO? = LO x NNLO.)

G. Chirilli, Yu.K. ‘13
* To find the eigenfunctions we thus write

Ho (k) = K72 (L Gy fo (k) + ..
and (perturbatively) impose the eigenfunction condition
[ KOOk g) H, (@) = A H (b

where the eigenvalue A(y) is also an unknown.



NLO BFKL Solution

i dy (07 v Oé v *
b K.Y /_2 oW g ) [ Hyy, ()

T

— 00 Z
* Note that}@urbaﬁve expansionispresent both in the

exponent and in the eigenfunctions (G. Chirilli, Yu.K. ‘13).

* The procedure can be repeated at higher orders in o, and was
implemented at NNLO already (G. Chirilli, Yu.K. ‘14).

e See talk by G. Chirillli next!




Long-Range Rapidity Correlations



Ridge in heavy ion collisions

Heavy ion collisions, along with high-multiplicity p+p and p+A collisions,
are known to have long-range rapidity correlations, known as ‘the ridge’:

Au+Au central
3<pttrlg<4 GeV/c




Origin of rapidity correlations

Causality demands that long-range

rapidity correlations originate at very
early times (cf. explanation of the
CMB homogeneity in the Universe)

Gavin, McLerran, Moschelli '08;
Dumitru, Gelis, McLerran, Venugopalan ‘08.



Ridge in CGC

* There are two explanations of the ridge in CGC:

— Long-range rapidity-independent fields are created at
early times, with correlations generated soon after and
with azimuthal collimation produced by radial hydro flow.
(Gavin, McLerran, Moschelli ’08)

— Both long-range rapidity correlations and the azimuthal
correlations are created in the collision due to a particular
class of diagrams referred to as the “Glasma graphs”.



“Glasma” graphs

Generate back-to-back and
near-side azimuthal correlations.

Dumitru, Gelis, McLerran, Venugopalan ‘08.



(i) Single gluon production in pA



Single gluon production in pA

Model the proton by a single quark (can be easily improved upon).
The diagrams are shown below (Yu.K., A. Mueller ’97):
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Multiple rescatterings are denoted by a single dashed line:
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Single gluon production in pA

I b | | |
> | | > | |
W W :

| | | |

| X y | | |

The gluon production cross section can be readily written as (U = Wilson line
in adjoint representation, represents gluon interactions)

Ao
do? _ Qg CF /d2£IZ‘ d2y e—ik'(X—Y) x—b . Yy — b
d?k dy d?b 44 x — b2 |y—Db|?

1
N2 1

1
N2 1

1
X < TT[UXU;E] — TT[UXU;;] —

NT Tr{UsUj] + 1>



(ii)) Two-gluon production
in heavy-light ion collisions



The process

O
=
o

Solid horizontal lines = quarks in the incoming nucleons.
Dashed vertical line = interaction with the target.
Dotted vertical lines = energy denominators.



Two-gluon production cross section

* “Squaring” the single gluon production cross section yields

do _ aiCE
PherdyydPhaydyy . 1675
x1—b;1  yi—bi x3—-by ys—by
x1 —b1[? |y1 —b1]* |x2 —ba* |y2 —by|?

1 1 1
T
X <<N2 — TriUx,UJ.] — Nz 7 [0 U] = NT TrlUs,UJ, ] + 1)

C C

/dzB d?by d?by Ty (B — by) Ty (B — by) d?zy d?yy d2ay d2yy et X Ga—y)—i ke (x2—y2,

1 1 1
1.
X <N2 — Tr[UxQUj,Q] - NT 1 Tr[UXQUbQ] — NZ_1 Tr[UbQU;EQ] + 1>>

e e (cf. Kovner & Lublinsky, ‘12)




Two-gluon production cross section

* The “crossed” diagrams give

do—CTOSS@ 1
d2k1dy1d2]g;ldy2 - 2(27)3]2 /d2B d?by d°by T (B — by) T1 (B — by) d*xy d*yy d*xs d?ys

>< |:e—i ki-(x1—y2)—i k2 (x2—y1) 4 et ki (x1—y2)+i k2'(X2—Y1)}

16 a2 Cr  x1—by y2—ba X2 —Dbo y1— b1
2 2N, |x1 —bi1|? |y2 —b2]? [x2 —b2]? |y1 — by|?

X

X [Q(X1,Y1,X2,Y2) — Q(x1,y1,X2,b2) — Q(x1,y1,b2,y2) + Sa(x1,y1) — Q(x1,b1,X%2,¥y2)
+ Q(X1,b17X2,b2) + Q(leblaanYQ) - SG(Xlabl) - Q(b17YI7X27Y2) + Q(b17YI7X27b2)

+ Q(b1,y1,b2,y2) — Sa(b1,y1) + Sa(x2,y2) — Sa(x2,b2) — Sa(ba,y2) + 1]

%%
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Two-gluon production cross section

* The “crossed” diagrams give

dO—CTOSSG 1
d2k1dy1d2k;ldy2 - 2(27)3]2 /d2B d?by d°by T (B — by) T1 (B — by) d*xy d*yy d*xs d?ys

>< |:e—i ki-(x1—y2)—i k2 (x2—y1) 4 et ki (x1—y2)+i k2'(X2—Y1)}

16 a2 Cr  x1—by y2 — b2 X2 — by y1 — b
2 2N, |x1 —bi1|? |y2 —b2]? [x2 —b2]? |y1 — by|?

X

X [Q(X1,Y1,X2,Y2) — Q(x1,y1,X2,b2) — Q(x1,y1,b2,y2) + Sa(x1,y1) — Q(x1,b1,X%2,¥y2)
+ Q(X1,b17X2,b2) + Q(X17b1,b2>}’2) - SG(Xlabl) - Q(b17YI7X27Y2) + Q(thth,bQ)

+ Q(b1,y1,b2,y2) — Sa(b1,y1) + Sa(X2,¥2) — Sa(x2,b2) — Sa(ba,y2) + 1]

 We introduced the adjoint color-dipole and color quadrupole amplitudes:

Sa(x1,X2,y) = T 1 (TrUx, UL,T)

C

(Tr[Ux, U}, Uy, UL 1)

Q(X17X27X37X4) =



Two-gluon production: properties

do a3 CE
PhydyrPhadys | 167
x1—b1  y1—b1 xp—by y>—by
x1 —b1[? |y1 —b1|?* [x2 —b2[? [|y2 —byf?

1 1 1
T

C

/dzB d?by d?by Ty (B — by) Ty (B — by) d?xq d?yy 2y d2yy e K- Gamy)—i ke (x2—y2,

X

1 1 1
T
X (Ng — TrlUx,UJ,] — NZ TriUx, Uy ] — NT TrlUs,U{,] + 1>>

* The cross section is symmetric under (ditto for the “crossed” term)

kl < k2 (just coordinate relabeling)
ko = —ks o Tr[U US| =Tr U, Uf]
* Hence the correlations generate only even azimuthal harmonics

~ COS2MN (¢1 — ¢2) and there should be two ridges!



Correlation function

May look like this (a toy model; two particles far separated in rapidity,
jets subtracted, pA and AA):

C(A9)
1.0: A(I)

09

08+

0.7

0.6

I I I I I I I I I I | I I I I I I I I I I | I I A ¢
05 1.0 1.5 20 25 30

Dumitru, Gelis, McLerran, Venugopalan '08; Kovner, Lublinsky ‘10;
Yu.K., D. Wertepny ‘12; Lappi, Srednyak, and Venugopalan ‘09




LHC p+Pb data from ALICE

0.88—p-Pb \'s,, = 5.02 TeV = Data
~ (0-20%) - (60-100%) a, + a, cos(2A¢) + a, cos(3A¢)
0.86 - 2<p . <4 GeV/ic  ------- a, + a, cos(2A¢)
1<p <2 GeV/c Baseline for yield extraction
T,assoc

o HIJING shifted

+

1/Ntrig dN,ges0c/dAQ per An (rad'1)
o
(0]
S

o ¢

(o]

N
"|III|III|III|III|

0.80
0.78 ! | wd A 00, 00000, B
T T LA |
_ ¢¢¢¢¢¢ u ¢T
0'76 PRI I S T A KT T T SR NN SO S S A KT T T S N S S SR RN RN
-1 0 1 2 3 4
Ag (rad)

These are high-multiplicity collisions: it is possible that quark-gluon plasma is created
in those, with the hydrodynamics contributing to these correlations.

Saturation approach in this framework is lacking the odd harmonics, like cos (3 A¢),
etc. May they be generated at subleading orders?



Connections to TMDs and Spin



Quark Production

e Start with inclusive classical quark
production cross section in SIDIS.

Ca

e The kinematics is standard: é éﬁ

b X

k

s~ Q% >12

* Theresultis
Wigner distribution
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Wilson lines

* Here
1
DM[Jroo,b_] — <ﬁ Tr [V 00,0~ ]V +00,b” ]}>
is the quark dipole scattering S-r_natrix with i
=
Velb”,a | =P exp zzg de~ AT (2T =0,27,2)

denoting Wilson lines.

* Inthe quasi-classical approximation D, is real!



Compare with TMD definitions:

* TMDs are defined through the correlator

dr™ d*T1 ;(1,p+ 4 o ; _
0ok P.S) = [ St (o7 ) (P SI O U (e = 0,07 DIP.S)

with the gauge links

USIPIS — VQT[—|—OO, 0] Vy[+00, 7]
U =10, —od] Vg[x_ , —0Q]

* The correlator is decomposed in terms of quark TMDs as
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TMDs and Small-x Physics

e SIDIS TMDs and quark production are related
in a simple way

e Can use our small-x expertise to calculate the
Wilson line correlator, either in the classical
approximation or including evolution

* Partly done for Sivers function, resulting in the
following insight (see the talk by M. Sievert on
Thursday)



Classical picture of STSA in Drell-Yan

Think of a transversely polarized proton as a rotating disk with the axis
perpendicular to the collision axis

The proton is not transparent: it has some amount of screening/
shadowing (e.g. gray disk, black disk, etc.)

Incoming anti-quark (in DY) is more likely to interact near the “front” of
the proton: hence, due to the rotation, the outgoing virtual photon is
more likely to be produced left-of-beam, thus generating STSA.




Classical picture of STSA in SIDIS

e Ditto for SIDIS: except now the incoming virtual photon is more likely to
interact near the “back” of the proton, in order for the produced quark to
be able to escape out of the proton remnants.

 Owing to the same rotation, the outgoing quark is more likely to be
produced right-of-beam, thus generating STSA in SIDIS with the opposite

sign compared to STSA in DY!
e See talk by M. Sievert on Thursday!




Conclusions

| have way too many slides

All small-x evolution equations are known up to NLO, with rc
corrections to LO kernel known as well.

We know how to systematically construct the solution of the
BFKL evolution at any order in the coupling.

Long-range rapidity correlations received a lot of attention
recently, due to their observation in pp, pA and AA.

Connections between small-x and TMD physics are being
explored recently, with the hope of achieving mutually
beneficial results.



Backup Slides



The main principle

e Saturation physics is based on the existence of a large internal
momentum scale Qg which grows with both energy s and
nuclear atomic number A

Q§ N A1/3 S)L

such that

Uy = aS(QS) <<l

* and we can calculate total cross sections, particle spectra and
multiplicities, etc, from first principles.




More running-coupling phenomenology

* rcBK has been very successful in describing the DIS HERA data (Albacete et
al, 2011) and heavy ion collisions (Albacete and Dumitru, "10):

| Fit including heavy quarks

|
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LHC line is a prediction!

* Seems like to do serious phenomenology one needs running coupling
corrections for diffractive evolution.



Solutions of Evolution Equations

* DGLAP equation
— derived: 1972 (QED), 1977 (QCD)
— solved: 1972, 1974

* LO BFKL equation
— derived: 1977, 1978
— solved: 1978

* NLO BFKL equation
— derived: 1998 (Fadin&Lipatov, Camici&Ciafaloni)
— solved: 2013 (see talk by G. Chirilli)



