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❖ Introduction and Motivation. 

❖Overview of models for fragmentation functions. 

❖The recent progress on modelling polarised quark hadronisation. 

❖Conclusions.
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HADRONIZATION:

3

• Factorization: pQCD “hard” partonic scattering separated from “soft”, 
universal fragmentation functions at renormalization scale.
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FRAGMENTATION FUNCTIONS
‣The cross-sections of DIS processes can be factorized into “hard 

scattering” parts  calculable in pQCD and “soft”, non-perturbative 
universal functions encoding parton distribution in hadrons (PDFs) and 
parton hadronization: Fragmentation Functions (FF).
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‣z is the light-cone mom. fraction of the parton carried by the hadron

‣ Unpolarized FF is the number density of hadron h with LC 
momentum fraction z, produced by quark q:
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FACTORIZATION AND UNIVERSALITY
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How to obtain (TMD) FFs?

✦ Phenomenological Extractions from Experiment. 

‣Use phenomenological parametrizations of PDFs/FFs              
to fit the SIDIS/e+e- x-sections for producing h. 

‣Limited physical insight into the hadronization process. 

‣Still have to model the contributions of non-DIS processes, etc. 

✦ Models  

‣Non-quantifiable model approximations. 

‣Only applicable in certain scenarios (when Jupiter aligns with Mars). 

‣Often provide only partial information: only leading hadron/
favoured FFs, etc.
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EMPIRICAL PARAMETRIZATIONS OF DATA

7

Choose a functional form at 
some initial scale

Perform QCD evolution to 
the scale of the data and
Calculate the Chi-square.

Is the
 Fit Good 
Enough?

Adjust the 
parameters

No
New 

Parametrization
is ready!

Yes
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Hadron Multiplicities 

Unfavored FFs NOT well known!

  

Comparison to parameterisations

● The existence of discrepancies 

   are evident (especially for K)

● Data can be used to improve 
    our knowledge on FFs (also 

    good for Δs) and also on poorly
    known PDFs (like s(x)) 

● It will contribute significantly 
    to our knowledge of the
    hadronisation process

‣Preliminary from COMPASS
12
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FIG. 9. Comparison of the vector-meson-corrected mul-
tiplicities measured on the proton for various hadrons with
LO calculations using CTEQ6L parton distributions [45] and
three compilations (see text) of fragmentation functions. Also
shown are the values obtained from the HERMES Lund
Monte Carlo. The statistical error bars on the experimen-
tal points are too small to be visible.

charge. The multiplicities in this LO approximation are
a reasonable starting point for comparing the HERMES
results with predictions based on fragmentation functions
resulting from global QCD analyses of all relevant data.

A comparison of the multiplicities measured by HER-
MES for SIDIS on the proton and deuteron with LO pre-
dictions is presented in Figs. 9 and 10. The multiplicities
are calculated from Eq. 8 (though integrated only over
the accepted range in x

B

of 0.023 to 0.600) using val-
ues for the FFs taken from three widely used analyses,
that of de Florian et al. (DSS) [22], that of Hirai et
al. (HKNS) [12], and that of Kretzer [9], together with
parton distributions taken from CTEQ6L [45]. For pos-
itively charged pions and kaons, the results for a proton
target using FFs from the analysis of DSS are in reason-
able agreement with the HERMES results. For negative
charges, the discrepancies between data and the results
based on FFs from DSS are substantial, particularly for
K

� where the curve predicted lies below the observed
multiplicity over most of the measured range of z. For
⇡

� the results from the DSS analysis agree with mea-
surement at low z. For both ⇡

� and K

�, fragmenta-
tion is less a↵ected by u-quark dominance. Uncertainties
in the less abundant production by strange and anti-u
quarks may have a larger impact on the predictions than
for the positively charged hadrons. Alternatively, next-
to-leading-order (NLO) processes may be proportionally
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FIG. 10. As in Fig. 9 but for deuterons.

more important for ⇡

� and particularly K

�, and the
discrepancies observed here may signal the importance
of calculating multiplicities at NLO. For kaons the DSS
results give a better representation of the data than the
Kretzer and HKNS curves. This is to be expected, since
the DSS analysis included a preliminary version of the
HERMES proton data in its database. The Kretzer and
HKNS results are in substantial disagreement with the
multiplicities measured forK�. The results on deuterons
are in general in somewhat better agreement with the
various predictions, in particular for pions. However, the
discrepancy between the measured K

� multiplicities and
the various predictions is also apparent here. In Figs. 9
and 10 the multiplicities obtained from the HERMES
Lund Monte Carlo, in which the fragmentation parame-
ters have been tuned for HERMES kinematic conditions
[20], are also shown. Inclusion of the data reported here
in future global analyses should result in higher precision
in the extraction of FFs, particularly those describing
less abundant fragmentation processes.

VI. SUMMARY

HERMES has measured the multiplicity of charge-
separated pions and kaons as a function of z, P

h?

, x
B

and Q

2 produced by SIDIS o↵ a hydrogen and a deu-
terium target. This high statistics data set, which re-
sult from scattering by pure gas targets of protons and
deuterons, provides unique information on the fragmen-
tation of quarks into final state hadrons and will con-
tribute valuable input for the extraction of fragmentation
functions using QCD fits. The comparison of the results

‣Also results from HERMES
Phys. Rev. D 87, 074029 (2013)Talk by C.Franco at CIPANP 2012.
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‣ Impact on extracted Δs‣ Δs puzzle: DIS vs SIDIS.

Impact of FF uncertainties on extracted PDFs
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Fig. 5. Variation of the quark first moments !u, !u, !d, !d, !s and !u − !d integrated over the interval 0.004 < x < 0.3 as a function of the ratio RSF of s and u quark
fragmentation functions into K + . The ratio RUF is varied linearly from 0.13 at RSF = 6.6 to 0.35 at RSF = 3.4. The left and right black points indicate the values obtained
using the EMC [32] and the DSS [30] kaon fragmentation functions, respectively.

6. Conclusions

Longitudinal spin asymmetries for identified charged pions and
kaons in semi-inclusive muon scattering on a proton target have
been measured. The pion data extend the measured region by
an order of magnitude towards small x, while the kaon asymme-
tries for the proton were measured for the first time. The new
SIDIS asymmetries for the proton were combined with our previ-
ous SIDIS asymmetries for the deuteron and with both proton and
deuteron inclusive measurements in order to evaluate the three
lightest flavour quark and antiquark helicity distributions. The re-
sulting !u and !d distributions are dominant at medium and
high x. The values of the antiquark distributions are small and do
not show any significant variation in the measured range. The !u
distribution is consistent with zero, while !d seems to indicate
a slightly negative behaviour. Accordingly, the flavour asymmetry
of the helicity distribution of the sea, !u − !d, is slightly pos-
itive, about 1.5 standard deviations from zero. No difference is
observed between the !s and !s distributions, which are both
compatible with zero over the measured x range. The sum of the
flavour-separated first moments, linearly extrapolated to x = 0, is
in good agreement with our previous determination of !Σ based
on the first moments of the spin structure function gd

1(x). The de-
pendence of the results on the fragmentation functions used was
evaluated. Sizable for !u and !u distributions, this dependence
becomes critical for the !s distribution.
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Large disagreement between DIS QCD fits and SIDIS 

COMPASS SIDIS  
 Δs = -0.01 ± 0.01 ± 0.02 

 

HERMES SIDIS  
 Δs = +0.001 ± 0.003±0.001* 
*measured range 
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Figure 5: Results of the QCD fits to g1 world data at Q

2 = 3(GeV/c)2 for the two sets of functional shapes as
discussed in the text. Top: singlet xDq

S(x) and gluon distribution xDg(x). Bottom: distributions of x [Dq(x)+Dq̄(x)]
for different flavours (u, d and s). Continuous lines correspond to the fit with gS = 0, long dashed lines to the one
with gS 6= 0. The dark bands represent the statistical uncertainties, only. The light bands, which overlay the dark
ones, represent the systematic uncertainties.
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Fig. 2. Comparison of x!s (open circles) and x!s (squares) at Q 2
0 = 3 (GeV/c)2 (top) and corresponding values of the difference x(!s − !s) (bottom).

Table 3
Corrections to the deuteron spin asymmetries Ah

1,d and A1,d due to admixture of
7Li and 1H into the 6LiD target material. The corrections are to be subtracted from
the values of Ref. [17].

x range π+ π− K + K − Incl.

0.004–0.006 0.001 0. 0.001 0. 0.

0.006–0.010 0.001 0. 0.001 0. 0.001
0.010–0.020 0.001 0.001 0.002 0. 0.001
0.020–0.030 0.002 0.001 0.002 0.001 0.001
0.030–0.040 0.002 0.001 0.003 0.001 0.002
0.040–0.060 0.003 0.001 0.003 0.001 0.002
0.060–0.100 0.004 0.002 0.005 0.002 0.003
0.100–0.150 0.006 0.002 0.006 0.003 0.004
0.150–0.200 0.008 0.003 0.008 0.004 0.006
0.200–0.300 0.011 0.004 0.010 0.005 0.008
0.300–0.400 0.015 0.005 0.013 0.009 0.011
0.400–0.700 0.020 0.006 0.017 0.013 0.015

The spin asymmetries for a deuteron target were evaluated
from our previous data obtained with a 6LiD target. The published
values [17] were corrected to account for the admixtures of 7Li
(4.4%) and 1H (0.5%) in the target material [27]. These isotopes are
both polarised to more than 90% [28]. The resulting corrections,
which do not exceed one fourth of the statistical error, are listed
in Table 3 for each asymmetry and each bin of x.16 A similar cor-
rection to the inclusive asymmetry A1,d has been used in Ref. [20].

4. Polarised PDFs from a LO fit to the asymmetries

At LO in QCD and under the assumption of independent quark
fragmentation, the spin asymmetry for hadrons h produced in the
current fragmentation region can be written as a sum of products
of the quark, !q, and antiquark, !q, helicity distributions with the
corresponding fragmentation functions Dh

q and Dh
q :

Ah
1(x, z) =

∑
q e2

q(!q(x)Dh
q(z) + !q(x)Dh

q(z))
∑

q e2
q(q(x)Dh

q(z) + q(x)Dh
q(z))

. (2)

In the present analysis the Q 2 dependence of the asymme-
tries is neglected and all measurements are assumed to be valid at
Q 2

0 = 3 (GeV/c)2. The LO unpolarised parton distributions (PDFs)
with three quark flavours from the MRST parameterisation [29]

16 These corrections should always be applied when using the data of Ref. [17].

are used. The fragmentation functions are taken from the LO pa-
rameterisation of DSS [30]. As in previous analyses [17,19], the
unpolarised PDFs which are extracted from cross sections assum-
ing non-zero values of R are corrected by a factor 1 + R(x, Q 2

0 )
[25] to take into account the fact that R is assumed to be zero
at LO. The asymmetries for a deuteron target are corrected by the
factor (1 − 1.5ωD ) where ωD is the probability for a deuteron to
be in a D-state (ωD = 0.05 ± 0.01) [31]. The four semi-inclusive
asymmetries for a proton target, the four semi-inclusive asymme-
tries for a deuteron target and the two inclusive asymmetries thus
provide a system of ten equations with six unknowns (!u, !d,
!u, !d, !s and !s). A least-square fit to the data is performed
independently in each bin of x. The analysis is limited to x ! 0.3
because the antiquark distributions become insignificant above this
limit. Above x = 0.3, !u(x) and !d(x) are obtained from the in-
clusive structure functions g p

1 (x) and gd
1(x) by assuming !q to be

zero.
The fit results for the !s and !s distributions and for their

difference are displayed in Fig. 2. In the measured x range both
distributions are flat and compatible with zero. The same observa-
tion can be made for their difference, !s − !s; only one point out
of ten is outside two standard deviations (2.7σ at x = 0.0487). We
have checked that the vanishing values of !s − !s are not artifi-
cially generated by the MRST parameterisation of the unpolarised
PDFs where s(x) = s(x) is assumed. The s(x) and s(x) distributions
were scaled simultaneously by factors 2 and 0.5 and allowed to
differ in any interval of x by a factor of 2. The values of !s(x) and
!s(x) were found to be nearly independent of these modifications.
We conclude that there is no significant difference between !s(x)
and !s(x) in the x-range covered by the data. This conclusion re-
mains valid when the DSS fragmentation functions used in the fit
are replaced by those derived by EMC [32]. The results on !s(x)
and !s(x) are at variance with the SU(3) Chiral Quark–Soliton
model prediction |!s(x)| ≫ |!s(x)| [33] but are compatible with
statistical models predicting that !s(x) − !s(x) should be zero [8]
or small [34].

From here on the distributions of !s and !s will be assumed to
be equal, an assumption which reduces the number of unknowns
to five and improves the statistical precision of the fit results at
least by a factor 1.5. The χ2 of the fits varies from 1.8 to 8.5 in the
different x bins with an average of 4.0 for 5 degrees of freedom,
corresponding to a probability of 55%. Within their statistical pre-
cision the data are thus compatible with the factorisation formula
of Eq. (2).
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Fig. 4. The flavour asymmetry of the helicity distribution of the sea x(!u − !d) at Q 2
0 = 3 (GeV/c)2. The shaded area displays the systematic error. The dashed curve is the

result of the DSSV fit at NLO. The other curves are model predictions from Wakamatsu [33] (long dash-dotted line), Kumano and Miyama [39] (short dash-dotted line) and
Bourrely, Soffer and Buccella [10] (dotted line). The solid curve shows the MRST parameterisation for the unpolarised difference x(d − u) at NLO.

Table 5
Full first moments of the quark helicity distributions at Q 2

0 = 3 (GeV/c)2. The un-
measured contributions at low and high x were estimated by extrapolating the data
towards x = 0 and x = 1 and by using the DSSV parameterisation [1].

Extrapolation DSSV

!u 0.71±0.02±0.03 0.71±0.02±0.03
!d −0.34±0.04±0.03 −0.35±0.04±0.03
!u 0.02±0.02±0.01 0.03±0.02±0.01
!d −0.05±0.03±0.02 −0.07±0.03±0.02
!s(!s) −0.01±0.01±0.01 −0.05±0.01±0.01

!uv 0.68±0.03±0.03 0.68±0.03±0.03
!dv −0.29±0.06±0.03 −0.28±0.06±0.03
!Σ 0.32±0.03±0.03 0.22±0.03±0.03

listed in Table 5. The sum of the quark and antiquark contribu-
tions !Σ = 0.32 ± 0.03(stat.), obtained by linearly extrapolating
the data, is nearly identical to the value of a0 = 0.33±0.03(stat.)17

derived [35] from the first moment of gd
1(x) using the octet ax-

ial charge a8. Not surprisingly, the extrapolation with the DSSV
parameterisation results in a much smaller value for !Σ . The ob-
served difference comes mainly from the negative behaviour of !s
assumed at small x. The sum of the valence quark contributions
!uv + !dv = 0.39 ± 0.03(stat.) is also consistent with our previ-
ous determination based on the difference asymmetry of positive
and negative hadrons in a subsample of the present deuteron data
(0.41 ± 0.07(stat.) at Q 2

0 = 10 (GeV/c)2) [37].
The flavour asymmetry of the helicity distribution of the sea,

!u − !d, is shown in Fig. 4. Although compatible with zero,
the values indicate a slightly positive distribution. The DSSV fit
at NLO [1] and the unpolarised asymmetry d − u are shown for
comparison. The first moment !u − !d truncated to the range
0.004 < x < 0.3 is 0.06±0.04(stat.)±0.02(syst.). It is worth noting
that the polarised first moment is about one standard deviation
smaller than the unpolarised one truncated to the same range
(≈ 0.10 for the MRST parameterisation [29]). The data thus dis-
favour models predicting !u − !d ≫ d − u (see Refs. [9,38] and
references therein). Three model predictions are shown in Fig. 4.
The statistical model of Ref. [10] and the SU(3) version of the Chi-
ral Quark–Soliton model of Ref. [33] both predict positive distribu-
tions, while the Meson Cloud model of Ref. [39] predicts a slightly

17 The admixture of 7Li and 1H in the target material reduces the value of a0
quoted in Ref. [35] by 0.02 [20].

negative distribution. Within the statistical errors, the COMPASS
data are compatible with all three predictions. The sum of the
light quark helicity distributions, !u + !d, is mainly constrained
by the deuteron data and nearly identical to the result published
in Ref. [17]. The first moment truncated to the range of the data is
found to be −0.03 ± 0.03(stat.) ± 0.01(syst.).

5. Influence of the fragmentation functions on the helicity
distributions

The relation between the semi-inclusive asymmetries and the
quark helicity distributions (Eq. (2)) depends only on the ratios
of fragmentation functions integrated over the selected range of
z (0.2 < z < 0.85). Relevant for the kaon asymmetries are the
unfavoured-to-favoured FF ratio, RUF , and strange-to-favoured FF
ratio, RSF :

RUF =
∫

D K +
d (z)dz

∫
D K +

u (z)dz
, RSF =

∫
D K +

s (z)dz
∫

D K +
u (z)dz

. (3)

In the DSS parameterisation, the RUF and RSF ratios are equal
to 0.13 and 6.6 respectively. In the earlier EMC parameterisation
[32] RSF is substantially smaller, RSF = 3.4, whereas RUF is larger,
RUF = 0.35. Since the pion fragmentation functions are better con-
strained by the data than the kaon ones, the effect of the corre-
sponding ratios on the final result is expected to be much smaller.
The dependence of the truncated moments quoted in Table 4 was
evaluated by varying RSF from RSF = 2.0 to RSF = 7.0. In order to
keep the K + multiplicity approximately constant, the value of RUF
was simultaneously varied from 0.45 to 0.10 according to the re-
lation RUF = 0.35 − 0.07(RSF − 3.4). The resulting truncated first
moments !u, !u, !d, !d, !s and !u − !d are shown in Fig. 5
as a function of RSF . We observe that the values of !u (!u) in-
crease (decrease) by more than one standard deviation when the
ratios evolve from the DSS to the EMC values. In contrast both
!d and !d remain nearly constant. The variation of !s is much
more pronounced: its value evolves from −0.01 to −0.04, although
with a much larger error. The difference !u −!d follows the same
trend as !u. It slightly decreases with RSF , down to one standard
deviation from zero at RSF = 3.4. We note that the simultaneous
changes of the two ratios, while leaving the K + rate practically
unchanged, affect the K − rate only for x ! 0.1. Precise values of
RUF and RSF may thus be difficult to extract from the data.



TMD Fragmentation Functions

✦ TMD Polarized Fragmentation Functions at LO. 
‣Only two for unpolarised final state hadrons. 
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COLLINS FRAGMENTATION FUNCTION

• Chiral-ODD: Needs to be coupled with another chiral-odd 
quantity to be observed.

• Collins Effect: 

Azimuthal Modulation of 
Transversely Polarized 
Quark’ Fragmentation 
Function.
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• Opposite sign for the charged pions.
• Large positive signal for      .
• Consistent with 0 for      and       .   

K+

K�⇡0

0

0.05

2 
〈s

in
(φ

+φ
S)
〉 U

T
π π+

-0.1

0
π0

-0.05

0 π-

0

0.1

2 
〈s

in
(φ

+φ
S)
〉 U

T
K K+

-0.1

0

0.1

10 -1
x

K-

0.4 0.6
z

0.5 1
Ph⊥ [GeV]

Fig. 2. Collins amplitudes for pions and charged kaons as a function
of x, z, or Ph⊥. The systematic uncertainty is given as a band at the
bottom of each panel. In addition there is a 7.3% scale uncertainty
from the accuracy in the measurement of the target polarization.

of all these effects was estimated using a Pythia6 Monte
Carlo simulation [32] tuned toHermes hadron multiplicity
data and exclusive vector-meson production data [33–35]
and including a full simulation of the Hermes spectrom-
eter. A polarization state was assigned to each generated
event using a model that reflects the (transverse target) po-
larization dependent part of the cross section (see Eq. (1)).
This model was obtained through a fully differential (i.e
differential in the four relevant kinematic variables x, Q2,
z, and Ph⊥) 2nd order polynomial fit [36,37] of real data.
The asymmetry amplitudes, extracted from the simulated
data by means of the same analysis procedure used for the
real data, were then compared with the model, evaluated
in each bin at the mean kinematics, to obtain an estimate
of the global impact of the effects listed above. The result
was included in the systematic uncertainty and constitutes
the largest contribution. It accounts for effects of nonlin-
earity of the model, as it includes the difference in each bin
between the average model and the model evaluated at the
average kinematics. The impact on the extracted ampli-
tudes of contributions [30] from the non-vanishing longitu-
dinal target-spin component was estimated based on previ-

ous measurements of single-spin asymmetries for longitu-
dinally polarized protons [38,39]. The resulting relatively
small effect was included in the systematic uncertainty.
A Monte Carlo simulation was used to estimate the frac-

tion of pions and kaons originating from the decay of ex-
clusively produced vector mesons, updating previous re-
sults reported in Ref. [40]. For charged pions, this fraction
is dominated by the decay of ρ0 mesons and, in the kine-
matic region covered by the present analysis, is of the or-
der of 6-7%. The vector-meson fractions for neutral pions
and charged kaons are of the order of 2-3%. The z and Ph⊥

dependences of the fraction of pions and kaons stemming
from the decay of exclusively produced vector mesons are
shown in [16] for the two kinematic regions Q2 < 4 GeV2

and Q2 > 4 GeV2 (the x dependence was not reported due
to the strong correlation between x and Q2 in the data).
They exhibit maxima at high z and low Ph⊥. These con-
tributions are considered part of the signal and were not
used to correct the pion and kaon yields analysed in the
present work. However, this information can be useful for
the interpretation of the results.
In general, the non-vanishing amplitudes shown in Fig. 2

increase in magnitude with x. This is consistent with the
expectation that transversity mainly receives contributions
from the valence quarks. A non negligible contribution from
the sea quarks cannot be excluded, but is not expected to
be large due to the fact that transversity cannot be gener-
ated in gluon splitting. The amplitudes are also found to
increase with z, in qualitative agreement with the results
for the Collins fragmentation function from the Belle ex-
periment [24,25]. The results of Fig. 2 also show that the
π− amplitude is of opposite sign to that of π+ and larger in
magnitude. A possible explanation is dominance of u fla-
vor among struck quarks, in conjunction with a substantial
magnitude with opposite sign of the disfavoredCollins frag-
mentation function describing, e.g, the fragmentation of u
quarks into π− mesons, as already suggested in Ref. [17].
Opposite signs for the favored and disfavored Collins frag-
mentation functions are not in contradiction to the Belle

results [24,25] and are supported by the combined fits re-
ported in [22]. They can be understood in light of the
string model of fragmentation [41] (and also of the Schäfer–
Teryaev sum rule [42]). If a favored pion is created at the
string end by the first break, a disfavored pion from the next
break is likely to inherit transverse momentum in the op-
posite direction. The string fragmentation model, the base
of the successful and widespread Jetset generator [43],
predicts such a Ph⊥ strong negative correlation between
favored and disfavored pions.
Under the assumption of isospin symmetry, the fragmen-

tation functions for neutral pions are assumed equal to the
average of those for charged pions. Factorization of the
semi-inclusive cross section results in the following isospin
relation for the Collins amplitudes for pions:

⟨sin(φ+ φS)⟩
π+

UT + C⟨sin(φ+ φS)⟩
π−

UT

− (1 + C)⟨sin(φ+ φS)⟩
π0

UT = 0 ,
(5)

5

hsin(�+ �S)ihUT ⇠
C[hq

1 H
?h/q
1q ]

C[fq
1 D

h/q
1 ]

• Still Large Uncertainties! 
• Simplistic Approximations !

EMPIRICAL EXTRACTIONS OF TRANSVERSITY

❖Fits to HERMES, COMPASS  and 
BELLE/BaBar: PRD 92, 114023 (2015).
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FIG. 6 (color online). Our best-fit results for the valence u and d quark transversity distributions atQ2 ¼ 2.4 GeV2 (left panel) and for
the lowest p⊥ moment of the favored and disfavored Collins functions at Q2 ¼ 2.4 GeV2 (central panel) and at Q2 ¼ 112 GeV2 (right
panel). The solid lines correspond to the parameters given in Table I, while the shaded areas correspond to the statistical uncertainty on
these parameters, as explained in the text.
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TWO-HADRON FRAGMENTATION

kT = �PT /zh

k = (k�, k+,0)

✦Transformation to frame kT = 0

✦Integrate over one or other momentum:

Dh1h2

q" ('R) = Dh1h2
1,q + sin('R � 'S)F [H^

1 , H?
1 ]

Dh1h2

q" ('T ) = Dh1h2
1,q + sin('T � 'S)F 0[H^

1 , H?
1 ]

PT = P?
h1

+P?
h2

R = (P?
h1

�P?
h2
)/2

A. Bacchetta, M. Radici: PRD 69, 074026 (2004).
✦  The IFF surviving after       integration is redefined askT
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ACCESS TO TRANSVERSITY PDF From DiFF in SIDIS

• In two hadron production from 
polarized target the cross section 
factorizes collinearly - no TMD! 

• Allows clean access to transversity. 
• Unpolarized and Interference 

Dihadron FFs are needed!

M. Radici, et al: PRD 65, 074031 (2002).

A. Bacchetta and M. Radici, PRD 74, 114007 (2006).

• Empirical Model for       has been fitted to PYTHIA simulations.Dq
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FIG. 4: Semi-inclusive dihadron counts from the PYTHIA event generator [53] tuned for HERMES [54] and results of the fit
(a) as a function of Mh, (b) as a function of z. Solid line: p-wave contribution; dashed line: s-wave contribution; dotted line:
sum of the two. The contributions of the η and K0 have been excluded.

which the Monte Carlo generator is actually tuned. The agreement would be improved further if the contribution of
the ω were extended at higher invariant masses by leaving the narrow-width approximation for the ω resonance and
smearing the step function in Eq. (28). Note that the interference is in this case constructive because the signs of the
couplings fρ and f ′

ω have been taken equal. If the two couplings were taken opposite, then a destructive interference
would take place and the model would underestimate the p-wave data at around 0.6 GeV. The agreement with the
total spectrum would then be worsened. Also the fω coupling has been taken to have the same sign of fρ to avoid
destructive interference patterns. It is difficult with the present poor knowledge to make any conclusive statement
about ρ-ω interference in semi-inclusive dihadron production. However, we can at least conclude that in our model
the best agreement with the event generator is achieved when the three couplings fρ, fω and f ′

ω have the same sign.

V. PREDICTIONS FOR POLARIZED FRAGMENTATION FUNCTIONS AND TRANSVERSE-SPIN
ASYMMETRY

Using the parameters obtained from the fit we can plot the results for the fragmentation functions D1,ll, H<)
1,ot, and

D1,ol. The function D1,ll is a pure p-wave function. It depends on |F p|2, the modulus square of Eq. (28), and has
a behavior very similar to Dp

1,oo, the p-wave part of D1,oo. In Fig. 5 (a) we plot the ratio between D1,ll and D1,oo,
integrated separately over 0.2 < z < 0.8. In Fig. 5 (b) we plot the same ratio but with the two functions multiplied
by 2Mh and integrated over 0.3 GeV < Mh < 1.3 GeV. In the same figures, the dotted lines represent the positivity
bound [55]

−
3

2
Dp

1,oo ≤ D1,ll ≤ 3Dp
1,oo. (36)

The functions D1,ol and H<)
1,ot arise from the interference of s and p waves, i.e. from the interferences of channels 1-2,

1-3, and 1-4, proportional to the product (fs fρ), (fs fω), (fs f ′
ω), respectively. Since the relative sign of fs and the

p-wave couplings is not fixed by the fit, we can only predict these functions modulo a sign. For the plots, we assume
that the p-wave couplings have a sign opposite to fs (as suggested by the sign of preliminary HERMES data [48]).

In Fig. 6 (a) we plot the ratio between −|R⃗|/Mh H<)
1,ot and D1,oo, integrated separately over 0.2 < z < 0.8. In Fig. 6

(b) we plot the same ratio but with the two functions multiplied by 2Mh and integrated over 0.3 GeV < Mh < 1.3 GeV.
In the same figures, the dotted lines represent the positivity bound [55]

|R⃗|
Mh

H<)
1,ot ≤

√

3

8
Ds

1,oo

(

Dp
1,oo −

1

3
D1,ll

)

. (37)

As is evident, there are two main contributions:

• the interference between channel 1 (s-wave background) and the imaginary part of 2 (ρ resonance), with a shape
peaked at the ρ mass, i.e. roughly proportional to the imaginary part of the ρ resonance in Eq. (28);

Experiments: 
BELLE, 
HERMES, 
COMPASS.
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‣ SIDIS at HERMES

Empirical Extractions of Transversity from 2h Data

4 Silvia Pisano, Marco Radici: Di-hadron fragmentation and mapping of the nucleon structure

34]

d�

dx dy dz d�R dM2

h

=
↵2

xy Q2

⇥
(

A(y) 2
X

q

e2

q fq
1

(x; Q2) Dq
1

�
z, M2

h ; Q2

�

� |ST | B(y) sin(�R + �S)
⇡

2

|R|
Mh

⇥
X

q

e2

q hq
1

(x; Q2) H^ q
1

�
z, M2

h ; Q2

�
)

, (6)

where ↵ is the fine structure constant, A(y) = 1�y+y2/2,
B(y) = 1 � y, �S = ⇡/2, eq is the fractional charge of
a parton with flavor q, Q2 is the hard scale of the SIDIS
process with spacelike momentum transfer q2 = �Q2, and
the usual invariants are defined as x = Q2/2P · q and
y = P · q/P · `.

The angle �R in Eq. (6) is not the same as the an-
gle �RT that describes the azimuthal orientation of the
plane with the di-hadron momenta in Eq. (3). In a SIDIS
process, two di↵erent transverse projections can be con-
sidered: with respect to the (P, Ph) plane or to the (P, q)
plane (see Fig. 2). The vector RT described in Sec. 2 is
the transverse component of R with respect to the (P, Ph)
plane, and �RT is the azimuthal angle of its spatial com-
ponent RT . However, the cross section depends on the
azimuthal angle of RT with respect to the (P, q) plane
that we indicate with �R. In Ref. [32], a covariant defini-
tion of �R is given starting from the covariant definition of
RT . It is shown that this definition coincides up to 1/Q2

corrections with all the non-covariant definitions adopted
in the literature before, in particular for the experimental
measurements described here below. For convenience, the
explicit expression of �R in the target rest frame (or in
any frame reached from the target rest frame by a boost
along q) is

�R =
(q ⇥ `) · RT

|(q ⇥ `) · RT | arccos
(q ⇥ `) · (q ⇥ RT )

|q ⇥ `| |q ⇥ RT | . (7)

From Eq. (6), we can define the following target-spin
asymmetry [20,33,34]:

A
SIDIS

(x, z, Mh; Q) =

1

|ST |

8

⇡

R
d�R sin(�R + �S) (d�" � d�#)R

d�R (d�" + d�#)

= �B(y)

A(y)

|R|
Mh

P
q e2

q hq
1

(x; Q2) H^ q
1

(z, M2

h ; Q2)
P

q e2

q fq
1

(x; Q2) Dq
1

(z, M2

h ; Q2)
, (8)

which is proportional to the product of the transversity
h

1

and the IFF H^
1

, and not to a convolution on parton
transverse momenta, as it happens in the Collins e↵ect.
This is a direct consequence of the fact that the correlation
Sq ·(k̂⇥RT ) in Eq. (3) produces an asymmetric azimuthal
modulation in the cross section also in collinear kinemat-
ics. No assumptions are necessary about the dependence

of h
1

and H^
1

on the transverse momenta of partons.
As such, the measurement of A

SIDIS

provides a model-
independent cross-check to the extraction of transversity
from the Collins e↵ect in single-hadron fragmentation,
provided that the unknown DiFFs are independently ex-
tracted from another process.

3.2 The HERMES measurement

The first observation of a non-zero A
SIDIS

was reported
by the HERMES collaboration [35]. The analysis was per-
formed on a data set collected by impinging a e± beam of
27.6 GeV on a gaseous hydrogen target transversely polar-
ized (with an average target polarization hST i=0.74). The
final sample of ⇡+⇡� was selected by removing the reso-
nance region through the cut W 2 > 10 GeV2, with W the
invariant mass of the virtual-photon-nucleon system. The
deep-inelastic regime was selected by requiring Q2 > 1
GeV2, and the cut 0.1 < y < 0.85 removed the kinematics
where radiative e↵ects could be dominant, that lies in the
high-y region. The contributions from exclusive two-pion
electro-production were excluded by requiring a missing
mass MX > 2 GeV. In order to select pions coming from
the struck quark fragmentation, a minimum momentum
cut P⇡ > 1 GeV was applied to identify final hadrons.
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Fig. 3. The target-spin asymmetry for semi-inclusive ⇡+⇡�

production o↵ a transversely polarized proton measured by the
HERMES Collaboration as a function of the pair invariant mass
M⇡⇡, of x and z [35]. The bottom panel shows the average
value of the integrated variables. In the x and z dependence
M⇡⇡ is limited to the range 0.5÷1.0 GeV. A scale uncertainty of
8.1% has to be added to account for the uncertainty in the tar-
get polarization. Other systematic uncertainties are summed in
quadrature and displayed by the asymmetric error band.

Experimentally, A
SIDIS

is defined as

A
SIDIS

(x, z,M⇡⇡) ⌘ 1

|ST |
N" � N#

N" + N# , (9)

where N"(#) refers to the number of events collected for
a target polarization with �S = ⇡/2 (�S = 3⇡/2) (in
reality, the target spin direction is relative to the incom-
ing lepton beam, but in deep-inelastic kinematics the lat-
ter can be safely replaced with the virtual-photon direc-
tion [36]). The asymmetry is measured as a function of
x, z,M⇡⇡ ⌘ Mh, and summed over �R and ✓. The results
are shown in Fig. 3. They corresponds to an average kine-
matics of hxi = 0.07, hyi = 0.64,

⌦
Q2

↵
= 2.35 GeV2, hzi

= 0.43.
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towards the boundaries of the phase space (see Ref. [34]
for further details).

In Fig. 7, the ratio |R|/Mh H^ u
1

/Du
1

is shown as a
function of Mh (upper panel) and of z (lower panel) at
Q2

0

= 1 GeV2 [34]. The various bands represent the 68% of
the M = 100 replicas obtained, case by case, with the pro-
cedure explained above. In the upper panel, the shortest
band corresponds to z = 0.25, the lower band at Mh ⇠ 1.2
GeV to z = 0.45, and the upper band at Mh ⇠ 1.2 GeV
to z = 0.65, respectively. In all cases, the peaks corre-
sponding to the ⇢ and ! resonances are clearly visible. In
the lower panel, the lower band at z ⇠ 0.8 corresponds
to Mh = 0.4 GeV, the mid band at z ⇠ 0.8 to Mh = 0.8
GeV, the upper band at z ⇠ 0.8 to Mh = 1 GeV.

3.6 The extraction of transversity

The BELLE measurement of the Artru-Collins asymmetry
Ae+e� [42], and the following parametrization of DiFFs [16,
34], represent a turning point because they have made
possible the extraction of transversity in a collinear frame-
work using Eq. (8) in a model independent way. As before,
for the (⇡+⇡�) case the symmetry properties of DiFFs un-
der isospin transformations and charge conjugation [21,
43] simplify the flavor sum in Eq. (8). Moreover, the x-
dependence of transversity is more conveniently studied
by integrating the z- and Mh-dependences of DiFFs.

The analysis of the HERMES data for the target-spin
asymmetry Ap

SIDIS

for a transversely polarized proton tar-
get (see Sec. 3.2) gives access to the following combina-
tion [43]:

x hp
1

(x; Q2) ⌘ x huv
1

(x; Q2) � 1

4

xhdv
1

(x; Q2)

= �Ap
SIDIS

(x; Q2)

n"
u(Q2)

A(y)

B(y)

9

4

X

q

e2

q nq(Q
2) xfq+q̄

1

(x; Q2) ,

(18)

where hqv
1

⌘ hq
1

�hq̄
1

and fq+q̄
1

⌘ fq
1

+f q̄
1

. Using a common
parametrization for f

1

(x) (for example, the MSTW08 set of
Ref. [44]) and the HERMES data for the target-spin asym-
metry Ap

SIDIS

[35], all the unknowns in the right-hand side
of Eq. (18) are determined because the n"

u(Q2) and nq(Q2)
can be computed for q = u, d, s, at the Q2 of each HERMES
data point from the extracted DiFFs and from their evo-
lution equations [13]. In Ref. [43], the first point-by-point
extraction of xhp

1

was performed in this way and compared
with the corresponding expression built on the transver-
sity extracted from the Collins e↵ect; the agreement was
reasonable, although the small number of experimental
points did not allow to draw any conclusion.

When the COMPASS results for the target-spin asymme-
try became available [39], the analysis included also data
for a transversely polarized deuteron target. These data
can be used in a flavor combination independent from the

Fig. 8. The combinations of Eq. (18) (upper panel) and
Eq. (19) (lower panel). The black circles are obtained from
the HERMES data for the SSA Ap

SIDIS [35]; the lighter squares
from the COMPASS data for both Ap

SIDIS [45] and AD
SIDIS [39].

The uncertainty band represents the selected 68% of all fitting
replicas in the rigid scenario with ↵s(M

2
Z) = 0.125 (see text).

one in Eq. (18), namely [33,34]

x hD
1

(x; Q2) ⌘ x huv
1

(x; Q2) + xhdv
1

(x; Q2)

= �AD
SIDIS

(x; Q2)

n"
u(Q2)

A(y)

B(y)
3

⇥
X

q

⇥
e2

q nq(Q
2) + e2

q̃ nq̃(Q
2)

⇤
xfq+q̄

1

(x; Q2) ,

(19)

where q̃ = d, u, s if q = u, d, s, respectively (i.e., it re-
flects isospin symmetry of strong interactions inside the
deuteron). In Ref. [33], the point-by-point extraction of
xhD

1

was made using the COMPASS data for the deuteron
target in AD

SIDIS

from the 2004 run, and the point-by-point
extraction of xhp

1

was improved by adding to the HERMES
data also the COMPASS data for the proton target in Ap

SIDIS

from the 2007 run for unidentified (h+h�) pairs [39]. In
Ref. [34], the same analysis was repeated by inserting in
Ap

SIDIS

the most recent and more precise COMPASS data for
identified (⇡+⇡�) pairs produced o↵ proton targets from
the 2010 run [45]. In Fig. 8, the point-by-point extrac-
tions of xhp

1

and xhD
1

are shown in the upper and lower
panels, respectively. The black squares in the upper pan-
els correspond to the HERMES data for Ap

SIDIS

[35], all the

‣ SIDIS at COMPASS

• Empirical parametrizations of IFF. 

• Rely on unpolarised DiFF Model!
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According to the Trento conventions [37], the asym-
metry turned out to be positive over the whole range: the
transversity and IFF are di↵erent from zero in the ex-
plored kinematics, and from Eq. (8) we deduce that most
likely they have opposite sign flavor by flavor. Since, e.g.,
the transversity for the up quark is known from the Collins
e↵ect to be positive, a negative IFF H^ u

1

in Eq. (3) indi-
cates that an up quark moving along the ẑ axis and polar-
ized along ŷ fragments in a pair with a ⇡+ preferentially
emitted along x̂ and a ⇡� along �x̂ (if R conventionally
points to the positively charged particle in the pair).

3.3 The COMPASS measurement

A second measurement of A
SIDIS

was performed by the
COMPASS collaboration [39]. Data were collected by letting
the 160-GeV muon beam produced at the CERN SPS hit
solid NH

3

and 6LiD targets with average transverse polar-
ization hST i = 0.83 and hST i = 0.47, respectively. SIDIS
events with the production of unidentified h+h� pairs
were selected through the cuts W 2 > 25 GeV2, Q2 > 1
GeV2, 0.1 < y < 0.9 and MX > 2.4 GeV. Hadrons com-
ing from the actual fragmentation of the struck quark are
selected through the cuts z > 0.1 and xF > 0.1. The pair
invariant mass was limited to Mh < 1.5 GeV in order to
justify the inclusion of only relative s and p waves in the
DiFF partial-wave expansion, as in Eq. (5). In Fig. 4, the
target-spin asymmetry A

SIDIS

is shown as a function of x,
z, Mhh ⌘ Mh, for the deuterium target (6LiD, upper plot)
and for the proton target (NH

3

, lower plot). No significant
asymmetries are observed for the deuterium in any of the
variables, suggesting that an e↵ective cancellation is ac-
tive between the dominant valence up and down contribu-
tions because of the isospin symmetry between the proton
and neutron components. As for the proton target, the
results are consistent with the HERMES findings of Fig. 3
after correcting for the depolarization factor B(y)/A(y) in
Eq. (8) and for a negative sign due to a choice opposite
to the Trento conventions. In the COMPASS kinematics, the
explored range in x is larger than for the HERMES setup.
The lower panel in Fig. 4 shows a strong dependence of
A

SIDIS

on x, which is directly related to the x depen-
dence of transversity, as displayed by Eq. (8). Recently,
a new high-precision measurement on a NH

3

target has
been published by the COMPASS Collaboration [40], that
increased the statistics of the first measurement by a fac-
tor of four. The new results are in good agreement with
the ones discussed above, and provide further constraints
on proton transversity.

The extraction of transversity from the x dependence
of the target-spin asymmetry A

SIDIS

in Eq. (8) implies
determining the unknown DiFFs from a di↵erent source.
Until this was accomplished using the BELLE data for e+e�

annihilation (see next section), predictions for A
SIDIS

were
possible only using model calculations of DiFFs. In Fig. 4,
the solid lines show an example based on a previously re-
leased calculation of DiFFs in the spectator model [21],
and on the transversity distribution extracted from the

Fig. 4. The target-spin asymmetry for semi-inclusive uniden-
tified h+h� production o↵ a transversely polarized target mea-
sured by the COMPASS Collaboration as a function of x, z, and
of the pair invariant mass Mhh ⌘ Mh [39]. Upper panel for the
deuteron target, lower panel for the proton. The grey bands
indicate the systematic uncertainties. Solid lines show the pre-
dictions based on the spectator model of Ref. [21] and on the
transversity extracted from the Collins e↵ect in Ref. [27], dot-
ted lines refer to an analysis based on the pQCD counting
rule [38].

analysis of the Collins e↵ect in single-hadron fragmenta-
tion [27]. The dashed lines refer to an analysis based on
the pQCD counting rule [38].

Ph

RT

�R

Ph

P
1

RT

�R

le�

P
1

⇡ � ✓
2

le+

Fig. 5. Definition of the kinematics for the process e+e� !
(h1h2)jet1(h̄1h̄2)jet2X where no definition of a thrust axis is
needed.

3.4 The Artru-Collins asymmetry in e+e� annihilation

The main goal is to obtain a model independent infor-
mation on DiFFs. Similarly to the case of the Collins
function, the DiFFs can be independently extracted from
electron-positron annihilation producing two pairs of hadrons
in opposite hemispheres. The kinematics of the process
e+e� ! (h

1

h
2

)
jet1

(h̄
1

h̄
2

)
jet2

X is depicted in Fig. 5 with

‣Fits to HERMES, COMPASS using 
BELLE DiFF: Radici et al: JHEP 1505 (2015) 123.

Higher harmonics.—The higher-order terms in Eq. (3)
are needed to reproduce the azimuthal variations well.
Generally these different harmonics are orthogonal and
should not interfere with each other, but a limited accep-
tance can introduce other asymmetries. The small differ-
ences in a12ðRÞ of up to 1% between either fitting the first
two terms or all are assigned as a bin-by-bin systematic
uncertainty.

Weighted MC asymmetries.—Artificial asymmetries
were introduced into the MC generator for hadron pairs
around the quark-antiquark axis and then reconstructed to

test the validity of the reconstruction method. The a12
asymmetries, which depend directly on using the thrust
axis as a proxy for the quark-antiquark axis, are recon-
structed to ð92# 1Þ% of the generated value, and the a12R
asymmetries to ð99# 1Þ%. Corresponding correction
factors are applied to the measured asymmetries and the
uncertainties were assigned as a systematic error.
Process contributions.—The thrust selection alone al-

ready reduces the background from !ð4SÞ decays to a
negligible level. The charm contribution, however, has
nearly the same thrust distribution as that for light quarks.
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FIG. 3 (color online). a12 modulations for the 9$ 9 z1, z2 binning as a function of z1 for the z2 bins. The shaded (green) areas
correspond to the systematic uncertainties.
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(SOME of the) MODELS  FOR FRAGMENTATION

•Complete Hadronization:
‣ Lund String, Cluster Hadronization. 
‣ Very Successful: PYTHIA, HERWIG, SHERPA, …
‣ Highly Tunable  - Limited Predictive Power.
‣ No Spin Effects - Formalism X. Artru for Lund model!

•Spectator Models
‣ Quark model calculations with empirical form factors.
‣ No unfavored fragmentations.
‣ Need to tune parameters for small z dependence.

•NJL-jet Model
‣ Multi-hadron emission framework.
‣  Effective quark model input.
‣ Monte-Carlo framework: flexibility in including the 

transverse momentum, spin effects,  two-hadron 
correlations, etc. 

6 M. RADICIA. Bacchetta et al. / Physics Letters B 659 (2008) 234–243 235

Fig. 1. Tree-level diagram for quark to meson fragmentation process.

from gluons. We do not want to promote the specific elements of the model as the “truth”. In fact, it is not unreasonable to expect
that the dynamical mechanism of gluon final-state interactions can be applied also in other models, leading to results similar to
ours. In the future, calculations based on such mechanism might be made more rigorous within a QCD framework.

We also present, for the first time, the Collins function for the fragmentation of quarks into kaons. This calculation is relevant
for the interpretation of recent kaon measurements done at HERMES [16] as well as COMPASS [17] and for future measurements
at BELLE and JLab.

2. Model calculation of the unpolarized fragmentation function

In the fragmentation process, the probability to produce hadron h from a transversely polarized quark q , in, e.g., the qq̄ rest
frame if the fragmentation takes place in e+e− annihilation, is given by (see, e.g., [18])

(1)Dh/q↑
(
z,K2

T

)
= D

q
1

(
z,K2

T

)
+ H

⊥q
1

(
z,K2

T

) (k̂ × KT ) · sq

zMh
,

where Mh the hadron mass, k is the momentum of the quark, sq its spin vector, z is the light-cone momentum fraction of the hadron
with respect to the fragmenting quark, and KT the component of the hadron’s momentum transverse to k. D

q
1 is the unintegrated

unpolarized fragmentation function, while H
⊥q
1 is the Collins function. Therefore, H

⊥q
1 > 0 corresponds to a preference of the

hadron to move to the left if the quark is moving away from the observer and the quark spin is pointing upwards.
In accordance with factorization, fragmentation functions can be calculated from the correlation function [19]

(2)!(z, kT ) = 1
2z

∫
dk+ !(k,Ph) = 1

2z

∑

X

∫
dξ+ d2ξT

(2π)3 eik·ξ ⟨0|Un+
(+∞,ξ)ψ(ξ)|h,X⟩⟨h,X|ψ̄(0)Un+

(0,+∞)|0⟩
∣∣
ξ−=0,

with k− = P −
h /z. A discussion on the structure of the Wilson lines, U , can be found in Ref. [19]. Here, we limit ourselves to

recalling that in Refs. [20,21] it was shown that the fragmentation correlators are the same in both semi-inclusive DIS and e+e−

annihilation, as was also observed earlier in the context of a specific model calculation [20] similar to the one under consideration
here. In the rest of the article we shall utilize the Feynman gauge, in which transverse gauge links at infinity give no contribution
and can be neglected [22–24].

The tree-level diagram describing the fragmentation of a virtual (timelike) quark into a pion/kaon is shown in Fig. 1. In the
model used here, the final state |h,X⟩ is described by the detected pion/kaon and an on-shell spectator, with the quantum numbers
of a quark and with mass ms . We take a pseudoscalar pion–quark coupling of the form gqπγ5τi , where τi are the generators of
the SU(3) flavor group. Our model is similar to the ones used in, e.g., Refs. [25–28]. The most important difference from previous
calculations that included also the Collins function, i.e., those in Refs. [8–12], is that the mass of the spectator ms is not constrained
to be equal to the mass of the fragmenting quark.

The fragmentation correlator at tree level, for the case u → π+, is

(3)!(0)(k,p) = −
2g2

qπ

(2π)4

(/k + m)

k2 − m2 γ5(/k − /P h + ms)γ5
(/k + m)

k2 − m2 2πδ
(
(k − Ph)

2 − m2
s

)

and, using the δ-function to perform the k+ integration,

(4)!(0)(z, kT ) =
2g2

qπ

32π3

(/k + m)(/k − /P h − ms)(/k + m)

(1 − z)P −
h (k2 − m2)2

,

where k2 is related to k2
T through the relation

(5)k2 = zk2
T /(1 − z) + m2

s /(1 − z) + M2
h/z,

which follows from the on-mass-shell condition of the spectator quark of mass ms . We take m to be the same for u and d quarks,
but different for s quarks. Isospin and charge-conjugation relations imply

(6)Du→π+
1 = Dd̄→π+

1 = Dd→π−
1 = Dū→π−

1 ,

Fig. 3. – The spectator approximation for a parton with momentum k fragmenting into a detected
hadron with momentum Ph.

recently published [45], but it is fair to say that a full treatment of TMD evolution in
the Collins e↵ect is still missing.

3. – Models

Since the extraction of fragmentation functions from experimental data is a↵ected
by large uncertainties, as we have seen about the Collins function and, more generally,
about the KT dependence acquired by hadrons during the fragmentation, it is desirable
that this phenomenology is supported by model speculations. In the following, we sketch
three main classes of models that appeared in the recent literature.

3
.1. Spectator approximation. – The spectator approximation amounts to describe the

fragmentation as the decay of a parton with momentum k into the observed hadron h
with momentum Ph leaving a residual system in an on-shell state with momentum k�Ph

(see the diagram in Fig. 3). The latter condition grants that most of the calculations
can be performed analytically, including the expression for the o↵-shellness k2(z) of the
fragmenting parton. The drawback is that only the favoured channel can be taken into
account.

For the typical u ! ⇡+ channel, two main choices have been adopted in the literature
for the quark-pion-spectator vertex: the pseudoscalar coupling g⇡q�5 [46, 47, 48, 49, 50]
and the pseudovector coupling g⇡q�5�µPµ

h [51, 52, 48]. In all cases the coupling was
assumed to be point-like except in Refs. [50, 49], where a gaussian form factor was used
with a z-dependent cut-o↵.

Complicated objects like the Collins function appear if there are nonvanishing in-
terference diagrams involving di↵erent channels. In the spectator approximation, these
final-state interactions can be achieved by adding to the left or right side of the diagram
in Fig. 3 insertions involving pions and/or gluons. As an example, in Fig. 4 the KT - inte-

grated 1
2 -moment H

? ⇡+(1/2)
1,u (normalized to D⇡+

1,u) from Ref. [49] is plotted as a function
of z for three di↵erent hard scales and compared with the parametrization of Ref. [43],
whose statistical error is represented by the uncertainty band. The spectator results were
obtained using a pseudoscalar q⇡ coupling and gluon insertions. The model parameters
were fixed by reproducing the unpolarized D1 at the lowest available Q2 = 0.4 GeV2,
as it was extracted from e+e� data in Ref. [53]. Since the parametrization of H?

1 was
performed using SIDIS data for the Collins e↵ect at Q2 = 2.5 GeV2, the band in Fig. 4
should be compared with the dashed (green) line, showing a substantial agreement with
the spectator model.
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Figure 1. Electroweak boson ! qq̄ ! mesons.

qN ⌘ q�1 is a ”quark propagating backward in time” and kN ⌘ �k(q̄�1).

Kinematical notations :
k0 = k(q0) and k(q̄�1) are in the +ẑ and �ẑ directions respectively. For a quark, tn ⌘ knT .
For a 4-vector, a± = a0 ± az and aT = (ax, ay). We denote by a tilde the dual transverse
vector ãT ⌘ ẑ ⇥ aT = (�a

y, ax).

In Monte-Carlo simulations, the kn are generated according to the splitting distribution

dW ( qn�1 ! hn + qn) = fn(�n, t
2
n�1, t

2
n, p2

nT , ) d�n d2tn , �n ⌘ p+
n /k+

n�1 .

In particular the symmetric Lund splitting function [3],

fn � �an�1�an�1
n (1 � �an) exp

⇥�b (m2
n + p2

nT )/�n

⇤
, (3)

inspired by the string model, fulfills the requirement of forward-backward equivalence.
On can also consider [6] the upper part of Fig.1 as a multiperipheral [7] diagram

with the Feynman amplitude

Mq0+q̄�1�h1...+hN = v̄(k�1, S�1) �qN ,hN ,qN�1(kN , kN�1) �qN�1(kN�1) · · ·
· · · �q2(k2) �q2,h2,q1(k2, k1) �q1(k1) �q1,h1,q0(k1, k0) u(k0, S0) . (4)

S0 and S�1 are the polarisation vectors of the intial quark and antiquark. S2 = 1, Sz =
helicity, ST = transversity. � and � are vertex functions and propagators which depend
on the quark momenta and flavors. Note that Fig.1 is a loop diagram : k0 is an integration
variable, therefore the ”jet axis” is not really defined. Furthermore, in Z0 or �� decay,
the spins q0 and q̄�1 are entangled so that one cannot define S0 and S�1 separately.

Collins and jet-handedness e�ects. Let us first assume that the jet axis (quark
direction) is well determined :

- the Collins e�ect [1], in �q ! h+X , is an asymmetry in sin[�(S)��(h)] for a transversely
polarized quark. The fragmentation function reads

F (z, pT ; ST ) = F0(z, p
2
T ) (1 + AT ST .p̃T /|pT |) (p̃T ⌘ ẑ ⇥ pT) . (5)

2

Fig. 7. – The process e+e� ! q0q̄�1 ! h1 + h2 + . . . + hN as a recursive q ! hq0 splitting.

scattering amplitude,

�i ⇡ exp[�bh2
iT /2]

⇥
µ(h2

iT ) + i� · ẑ ⇥ hiT

⇤
,(3)

i.e. with a non-spin-flip complex function µ and a spin-flip part, b being some free
parameter. These prescriptions can be shown to respect invariance under all ”good”
transformations like rotations, boosts, and parity, all considered with respect to the jet
axis ẑ.

If Im(µ) 6= 0, this imaginary part can be shown to act as a source of transverse
polarization at step i even if the quark was unpolarized or longitudinally polarized at
step i � 1 [57]. This means also that during the cascade the helicity of a quark can be
partly converted to its transversity or viceversa. As a consequence, if Im(µ) 6= 0 one can
have for N = 1 a Collins e↵ect S1 · ẑ ⇥ h1T , and for N = 2 an iterated Collins e↵ect
with alternate sign, which could explain the experimental findings H? unf

1 ⇡ �H? fav
1

described in Sec. 2
.3 [38]. This result confirms the outcome of the Lund 3P0 string

mechanism [58]. But in addition it contains the three-particle correlation ẑ · h2T ⇥ h1T

named jet handedness [59], which is interpreted as a two-step mechanism: at i = 1, a
transverse polarization S1T k h1T is generated from the helicity S0z of previous step; at
i = 2, a Collins e↵ect takes place as ẑ·h2T ⇥S1T , which coincides with the jet handedness.

Further work is needed to promote the multiperipheral model of Ref. [57] to a real-
istic Monte Carlo event generator. For example, one should include antiquarks in the
fragmentation cascade, or explore the interference of the amplitude in Fig. 7 with dia-
grams showing di↵erently ordered N hadrons. Preliminary experimental results already
appeared for K� SIDIS production by the HERMES collaboration (an almost vanishing
Collins e↵ect [60] and a large cos 2� asymmetry in the unpolarized cross section [61])
that cannot be easily accommodated in the multiperipheral model in its present version.

4. – Di-hadron Fragmentation Functions

As already sketched in Sec. 2
.3, the extraction of the transversity parton distribution

via the Collins e↵ect su↵ers from several uncertainties and model dependencies, mostly
related to the need of dealing with TMD objects. A complementary approach is provided
by the semi-inclusive process ep" ! e0(h1h2)X where two unpolarized hadrons with

q
Q

Q’ Q’’

p
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FIG. 4. All potential data of the five lattices have been scaled to a universal curve by subtracting Vo and measuring energies and

distances in appropriate units of &E. The dashed curve correspond to V(R)=R —~/12R. Physical units are calculated by exploit-
ing the relation &cr =420 MeV.

AM~a=46. 1A~ &235(2)(13) MeV .

Needless to say, this value does not necessarily apply to
full QCD.
In addition to the long-range behavior of the confining

potential it is of considerable interest to investigate its ul-
traviolet structure. As we proceed into the weak cou-
pling regime lattice simulations are expected to meet per-

turbative results. Although we are aware that our lattice
resolution is not yet really suScient, we might dare to
previe~ the continuum behavior of the Coulomb-like
term from our results. In Fig. 6(a) [6(b)] we visualize the
confidence regions in the K-e plane from fits to various
on- and off-axis potentials on the 32 lattices at P=6.0
[6.4]. We observe that the impact of lattice discretization
on e decreases by a factor 2, as we step up from P=6.0 to

150
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Barkai '84 o
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Our results:---
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80—
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FIG. 5. The on-axis string tension [in units of the quantity c =&E /(a AL ) ] as a function of P. Our results are combined with pre-
vious values obtained by the MTc collaboration [10]and Barkai, Moriarty, and Rebbi [11].

~ Force required to lift a 16-ton truck

LATTICE QCD SIMULATION. 
Bali and Schilling Phys Rev D46 (1992) 2636

What physical!
system has a !
linear potential?

Short Distances ~ “Coulomb”

“Free” Partons

Long Distances ~ Linear Potential

“Confined” Partons 
(a.k.a. Hadrons)

(in “quenched” approximation)

Andersson - Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 7 (1997) 1-471
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Physics now in terms of strings, with kinks, evolving in spacetime 
Very simple space-time picture, few parameters at this point
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Map: 
!
• Quarks → String 

Endpoints 

• Gluons → Transverse 
Excitations (kinks) 

• Physics then in terms of 
string worldsheet 
evolving in spacetime 

• Probability of string 
break (by quantum 
tunneling) constant per 
unit area → AREA LAW

See also Yuri’s 2nd lecture

→ STRING EFFECT
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B

⇤
/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D

⇤
/D, the

effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K

⇤
/K and ⇢/⇡, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p

2
? and m

2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z

(1� z)

a
exp

✓
�b (m

2
h + p

2
?h)

z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q

0
q̄ breakup vertices, or equivalently

� = (⌧)

2, is also obtained, with dP/d� / �

a
exp(�b�) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10

�23
s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent d

¯

d pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the ¯

d from the breakup to form a
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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→ “low-z enhancement”

cuto↵ Q
had

, may be larger than the purely non-perturbative /⇡ above, to account for e↵ects
of additional unresolved soft-gluon radiation below Q

had

. In principle, the magnitude of this
additional component should scale with the cuto↵, but in practice it is up to the user to
enforce this by retuning the relevant parameter when changing the hadronization scale.

Since quark masses are di�cult to define for light quarks, the value of the strangeness
suppression is determined from experimental observables, such as the K/⇡ and K⇤/⇢ ratios.
The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g ! ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.

Baryon production can also be incorporated, by allowing string breaks to produce pairs
of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are di�cult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/⇡ ratio, and since the perturbative shower splittings do not produce
diquarks, the e↵ective value for this parameter is mildly correlated with the amount of g ! qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄0 from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1

z
(1� z)a exp

✓
�b (m2

h

+ p2

?h

)

z

◆
, (1.11)

1
The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1

multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the

lightest spin-1/2 and -3/2 multiplets are included.
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The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g ! ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.
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of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are di�cult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/⇡ ratio, and since the perturbative shower splittings do not produce
diquarks, the e↵ective value for this parameter is mildly correlated with the amount of g ! qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄0 from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution
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multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the
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String Breaks

๏In QCD, strings can (and do) break! 
•(In superconductors, would require magnetic monopoles) 
•In QCD, the roles of electric and magnetic are reversed 
•Quarks (and antiquarks) are “chromoelectric monopoles” 
•There are at least two possible analogies ~ tunneling:
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‣ String breaks: quark-antiquark pair creation 
via tunnelling in strong “chromoelectric” field.

✦ Does NOT depend on the type of produced hadron!
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model.

practice this is only approximately true for B

⇤
/B. For lighter flavours, the difference in phase space

caused by the V –S mass splittings implies a suppression of vector production. Thus, for D

⇤
/D, the

effective ratio is already reduced to about ⇠ 1.0 – 2.0, while for K

⇤
/K and ⇢/⇡, extracted values

range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ⇠
0.075 – 0.15.

With p

2
? and m

2 now fixed, the final step is to select the fraction, z, of the fragmenting end-
point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1
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(1� z)

a
exp

✓
�b (m

2
h + p

2
?h)

z

◆
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time ⌧ of q

0
q̄ breakup vertices, or equivalently

� = (⌧)

2, is also obtained, with dP/d� / �

a
exp(�b�) implying an area law for the colour flux,

and the average breakup time lying along a hyperbola of constant invariant time ⌧0 ⇠ 10

�23
s [68].

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p?, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p?0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent d

¯

d pair from the vacuum is created, with relative
transverse momenta ±p?1. The fragmenting quark combines with the ¯

d from the breakup to form a
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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, may be larger than the purely non-perturbative /⇡ above, to account for e↵ects
of additional unresolved soft-gluon radiation below Q

had

. In principle, the magnitude of this
additional component should scale with the cuto↵, but in practice it is up to the user to
enforce this by retuning the relevant parameter when changing the hadronization scale.

Since quark masses are di�cult to define for light quarks, the value of the strangeness
suppression is determined from experimental observables, such as the K/⇡ and K⇤/⇢ ratios.
The parton-shower evolution generates a small amount of strangeness as well, through per-
turbative g ! ss̄ splittings. The optimal value for the non-perturbative 2s/(u + d) ratio
should therefore exhibit a mild anticorrelation with the amount of quarks produced in the
perturbative stage.

Baryon production can also be incorporated, by allowing string breaks to produce pairs
of diquarks, loosely bound states of two quarks in an overall 3̄ representation. Again, since
diquark masses are di�cult to define, the relative rate of diquark to quark production is
extracted, e.g. from the p/⇡ ratio, and since the perturbative shower splittings do not produce
diquarks, the e↵ective value for this parameter is mildly correlated with the amount of g ! qq̄
splittings occurring on the shower side. More advanced scenarios for baryon production have
also been proposed, see [48]. Within the PYTHIA framework, a fragmentation model including
baryon string junctions [49] is also available.

The next step of the algorithm is the assignment of the produced quarks within hadron
multiplets. Using a nonrelativistic classification of spin states, the fragmenting q may com-
bine with the q̄0 from a newly created breakup to produce a meson — or baryon, if diquarks
are involved — of a given valence quark spin S and angular momentum L. The lowest-lying
pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
independent of the sequence in which breakups are considered (causality) imposes a “left-
right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) / 1
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(1� z)a exp
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1
The PYTHIA implementation includes the lightest pseudoscalar and vector mesons, with the four L = 1

multiplets (scalar, tensor, and 2 pseudovectors) available but disabled by default, largely because several

states are poorly known and thus may result in a worse overall description when included. For baryons, the

lightest spin-1/2 and -3/2 multiplets are included.
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pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are assumed to
dominate in a string framework1, but individual rates are not predicted by the model. This
is therefore the sector that contains the largest amount of free parameters.

From spin counting, the ratio V/P of vectors to pseudoscalars is expected to be 3, but in
practice this is only approximately true for B mesons. For lighter flavors, the di↵erence in
phase space caused by the V –P mass splittings implies a suppression of vector production.
When extracting the corresponding parameters from data, it is advisable to begin with
the heaviest states, since so-called feed-down from the decays of higher-lying hadron states
complicates the extraction for lighter particles, see section 1.2.3. For diquarks, separate
parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have
to be extracted from data.

With p2

? and m2 now fixed, the final step is to select the fraction, z, of the fragmenting
endpoint quark’s longitudinal momentum that is carried by the created hadron, an aspect
for which the string model is highly predictive. The requirement that the fragmentation be
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lightest spin-1/2 and -3/2 multiplets are included.
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String Break

q

z

Note: In principle, a can be flavour-dependent. In practice, we only distinguish between baryons and mesons
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String Breaks
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P.  S k a n d s

String Breaks

๏In QCD, strings can (and do) break! 
•(In superconductors, would require magnetic monopoles) 
•In QCD, the roles of electric and magnetic are reversed 
•Quarks (and antiquarks) are “chromoelectric monopoles” 
•There are at least two possible analogies ~ tunneling:
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Schwinger Effect
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Non-perturbative creation 
of radiation quanta in a 
strong gravitational field
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Thermal (Boltzmann) Factor
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Linear Energy Exponent
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1) 2)

‣ String breaks: quark-antiquark pair creation 
via tunnelling in strong “chromoelectric” field.

✦ Does NOT depend on the type of produced hadron!

The hadron z depends on combined 
TM of antiquark and a quark from 
previous string break!
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What do we see?
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Average pT increases with particle multiplicity and (faster than predicted) with particle mass

without CR

with (tuned) CR

<pT> vs Number of Particles <pT> vs Particle Mass

Note: 
from RHIC 
(200 GeV)



Artru Model
✦      created in        state. 
✦ Local compensation of TM.

✦No quantitative results for Collins FFs: implies opposite signs for 
favoured and unfavored. (Omitting complications from favoured 
production at rank 2, etc .)

✦Simple and intuitive quantum-mechanical picture.

qq̄ 3P0

rank 1rank 2rank 3
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✦ Calculate the FFs at leading-order in favourite quark model.
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✦Use Field-theoretical definition of FFs from a Correlator.

✦ Approximate the remnant X as a “spectator” (quark).
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(a) (b) (c)

Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.

(a) (b) (c) (d)

Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ϵ
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].
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function is

D1!z; z2 ~k2T" # Tr$!!z; ~kT"!%&: (2)

We compute the unpolarized fragmentation functions at
tree level only, i.e. only using the diagram of Fig. 1. This is
not entirely consistent with the fact that one-loop correc-
tions need to be introduced in order to calculate the Collins
function. We believe that the corrections to our final results
will be small, though it would be appropriate to check in
which kinematical region this statement holds. The result
obtained from the calculation of the tree-level diagram is

D1!z; z2 ~k2T" #
1

z
g2

16"3

~k2T 'm2

! ~k2T 'm2 ' 1%z
z2 m

2
""2

: (3)

The integrated unpolarized fragmentation function
D1!z" is defined as

D1!z" # "
Z ~K2

Tmax

0
d ~K2

TD1!z; ~K2
T"; (4)

where ~KT # %z ~kT denotes the transverse momentum of
the outgoing hadron with respect to the quark direction.
The upper limit on the ~K2

T integration is set by the cutoff on
the fragmenting quark virtuality, #2, and corresponds to

~K 2
Tmax # z!1% z"#2 % zm2 % !1% z"m2

": (5)

The analytic result for the integrated fragmentation func-
tion is
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g2
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z ln
"!1% z"!#2 %m2"
z!m2 'm2

"
1%z
z2 "
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""

( m2
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"

1%z
z2 "

$

: (6)

In Fig. 2 we show the result of the model calculation of
the function Du!"'

1 for a choice of the coupling constant

g # 3 and for different values of the parameters # and m.
Our value for g is about 1=3 of the pseudoscalar pion-
nucleon coupling, which can be considered as a reasonable
choice. Of course this value is not extremely well deter-
mined. Nevertheless, most of the pertinent results like the
z-shape of fragmentation functions, and the relative mag-
nitude of various contributions to the Collins function are
not very sensitive to the precise value of g. Keeping in
mind this large value of g it is quite possible that higher
order corrections to the calculation of D1 can be signifi-
cant. However, without performing an explicit calculation
of such corrections one cannot make a definite statement
about their numerical importance.

From Fig. 2 we deduce that, apart from the trivial
dependence on the coupling strength, an increase of the
cutoff or a decrease of the quark mass makes the fragmen-
tation function bigger, without sensibly changing the z
dependence. The shape of the unpolarized fragmentation
function is very far from standard parametrizations ex-
tracted from phenomenology (see, e.g. Ref. [32]), even
from a qualitative point of view. As mentioned before,
different behaviors can be obtained by modifying the
model through the insertion of form factors, as can be
seen comparing our results with those of Ref. [21].

B. Collins function from pion loops

We use the following definition of the Collins function
[2], in agreement with the ‘‘Trento conventions’’ [33],

$ijT kTj
m"

H?
1 !z; z2 ~k

2
T" # Tr$!!z; ~kT"i%i%!5&: (7)

The Collins function receives contributions only from
the interference between two amplitudes with different
imaginary parts. In our case, the tree-level amplitude is
real and the necessary imaginary parts are generated by the
inclusion of one-loop corrections. Such corrections contain
imaginary parts if and only if it is kinematically possible
that the particles in the loop go on shell. In this section, we
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FIG. 2. Unpolarized fragmentation function Du!"'
1 in a fragmentation model with pseudoscalar pion-quark coupling. Left panel:

dependence on the parameter # (for m # 0:3 GeV). Right panel: dependence on the parameter m (for # # 1 GeV).
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Fig. 1. Tree-level diagram for quark to meson fragmentation process.

from gluons. We do not want to promote the specific elements of the model as the “truth”. In fact, it is not unreasonable to expect
that the dynamical mechanism of gluon final-state interactions can be applied also in other models, leading to results similar to
ours. In the future, calculations based on such mechanism might be made more rigorous within a QCD framework.

We also present, for the first time, the Collins function for the fragmentation of quarks into kaons. This calculation is relevant
for the interpretation of recent kaon measurements done at HERMES [16] as well as COMPASS [17] and for future measurements
at BELLE and JLab.

2. Model calculation of the unpolarized fragmentation function

In the fragmentation process, the probability to produce hadron h from a transversely polarized quark q , in, e.g., the qq̄ rest
frame if the fragmentation takes place in e+e− annihilation, is given by (see, e.g., [18])

(1)Dh/q↑
(
z,K2

T

)
= D

q
1

(
z,K2

T

)
+ H

⊥q
1

(
z,K2

T

) (k̂ × KT ) · sq

zMh
,

where Mh the hadron mass, k is the momentum of the quark, sq its spin vector, z is the light-cone momentum fraction of the hadron
with respect to the fragmenting quark, and KT the component of the hadron’s momentum transverse to k. D

q
1 is the unintegrated

unpolarized fragmentation function, while H
⊥q
1 is the Collins function. Therefore, H

⊥q
1 > 0 corresponds to a preference of the

hadron to move to the left if the quark is moving away from the observer and the quark spin is pointing upwards.
In accordance with factorization, fragmentation functions can be calculated from the correlation function [19]

(2)!(z, kT ) = 1
2z

∫
dk+ !(k,Ph) = 1

2z

∑

X

∫
dξ+ d2ξT

(2π)3 eik·ξ ⟨0|Un+
(+∞,ξ)ψ(ξ)|h,X⟩⟨h,X|ψ̄(0)Un+

(0,+∞)|0⟩
∣∣
ξ−=0,

with k− = P −
h /z. A discussion on the structure of the Wilson lines, U , can be found in Ref. [19]. Here, we limit ourselves to

recalling that in Refs. [20,21] it was shown that the fragmentation correlators are the same in both semi-inclusive DIS and e+e−

annihilation, as was also observed earlier in the context of a specific model calculation [20] similar to the one under consideration
here. In the rest of the article we shall utilize the Feynman gauge, in which transverse gauge links at infinity give no contribution
and can be neglected [22–24].

The tree-level diagram describing the fragmentation of a virtual (timelike) quark into a pion/kaon is shown in Fig. 1. In the
model used here, the final state |h,X⟩ is described by the detected pion/kaon and an on-shell spectator, with the quantum numbers
of a quark and with mass ms . We take a pseudoscalar pion–quark coupling of the form gqπγ5τi , where τi are the generators of
the SU(3) flavor group. Our model is similar to the ones used in, e.g., Refs. [25–28]. The most important difference from previous
calculations that included also the Collins function, i.e., those in Refs. [8–12], is that the mass of the spectator ms is not constrained
to be equal to the mass of the fragmenting quark.

The fragmentation correlator at tree level, for the case u → π+, is

(3)!(0)(k,p) = −
2g2

qπ

(2π)4
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k2 − m2 γ5(/k − /P h + ms)γ5
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2 − m2
s

)

and, using the δ-function to perform the k+ integration,

(4)!(0)(z, kT ) =
2g2

qπ

32π3
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(1 − z)P −
h (k2 − m2)2

,

where k2 is related to k2
T through the relation

(5)k2 = zk2
T /(1 − z) + m2

s /(1 − z) + M2
h/z,

which follows from the on-mass-shell condition of the spectator quark of mass ms . We take m to be the same for u and d quarks,
but different for s quarks. Isospin and charge-conjugation relations imply

(6)Du→π+
1 = Dd̄→π+

1 = Dd→π−
1 = Dū→π−

1 ,
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: (1)

Since the two quark fields  !0" and  !!" transform differ-
ently under color gauge transformations a gauge link is
included in order to ensure color gauge invariance of the
correlator. The notation U$'a$; b$; cT( indicates a gauge
link running along the plus direction from (0%, a$, cT) to
(0%, b$, cT), while UT'aT; bT ; c$( indicates a gauge link
running along the transverse direction from (0%, c$, aT) to
(0%, c$, bT). The specific path of the link connecting the
quark fields follows from the derivation of QCD factoriza-
tion. The definition written above applies to the correlation
function appearing in semi-inclusive DIS, while in e$e%

annihilation all occurrences of %1$ in the gauge links
should be replaced by 1$. However, in Ref. [27] it was
shown that by means of a certain contour deformation one
can derive factorization in such a way that both the frag-
mentation functions in semi-inclusive DIS and in e$e%

annihilation have future-pointing gauge links. This univer-
sality of fragmentation functions was also observed earlier
in the context of a specific model calculation [28].

It is convenient to evaluate the correlator in Eq. (1) in
Feynman gauge, which we shall utilize in the rest of the
article. In Feynman gauge one has only to consider those
pieces of the link that run along the light-cone while the
transverse gauge links UT give no contribution and can be
neglected [29,30].

The tree-level diagram describing the fragmentation of a
virtual (timelike) quark into a pion is depicted in Fig. 1. In
the models used here the final state j"Xi is described by
the detected pion and a (unobserved) quark. Once higher
order corrections are included the quark together with
additional pions and/or quark-antiquark pairs form the
unobserved state. In the first part of this work, the pion-
quark vertex is taken to be g#5$i, where $i are the gen-
erators of the SU(2) flavor group.1 We assume the coupling

to be pointlike. This assumption is of course not appropri-
ate at large transverse momenta of the pion. In fact, when
integrating the fragmentation functions over kT divergen-
ces occur. Therefore, we impose a cutoff on the virtuality
of the incoming quark, and study the dependence on the
cutoff in some detail. A different approach would be to
insert form factors. This could sensibly change the behav-
ior of the fragmentation functions compared to our results.

Before entering the details of the calculation it is worth-
while to add some comments on the general philosophy
underlying the model calculations. As a matter of princi-
ple, fragmentation functions cannot be computed by means
of perturbative QCD. They either have to be fitted to data
or computed in some effective approach to nonperturbative
QCD. It is well known that in the low energy domain of
QCD the Goldstone bosons, most notably the pions, play a
crucial role. Therefore, in the model calculation of frag-
mentation functions they are considered as (effective) de-
grees of freedom, which at low scales appear in addition to
the partonic degrees of freedom of QCD. This is, e.g., also
the underlying picture of the chiral quark model of
Manohar and Georgi [31] which we are going to use in
the next section. In such an approach there is of course
always a danger of double counting (for details on this
issue we refer here also to Ref. [31]). On the other hand,
one has to keep in mind that the gauge-link contribution to
the fragmentation functions cannot directly be modeled by
pion exchange, but rather the exchange of a spin-1 particle
is required. Moreover, as we discuss in more detail below,
pionic and gluonic contributions to the Collins function
tend to have opposite signs. Therefore, in the case of our
particular calculation of the Collins function we see no
direct indication of double counting.

A. Unpolarized fragmentation function

We briefly reproduce the results already obtained in
Ref. [19], but we present also a discussion of the parameter
dependence of our results. Here and in the next sections, all
results are for, e.g., the transition u! "0. An additional
isospin factor of 2 has to be included for, e.g., the transition
u! "$. The definition of the unpolarized fragmentation

k

p

FIG. 1 (color online). Tree-level cut diagram describing the
fragmentation of a quark into a pion. This diagram is common to
all models, but the specific form of the pion-quark vertex can
change.

1Note that in Ref. [19] the isospin structure was neglected,
since it was not relevant to the purpose of that paper. This leads
to different overall numerical factors in some of the final results.
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✦ Empirical meson-quark coupling:
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It is convenient to evaluate the correlator in Eq. (1) in
Feynman gauge, which we shall utilize in the rest of the
article. In Feynman gauge one has only to consider those
pieces of the link that run along the light-cone while the
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ate at large transverse momenta of the pion. In fact, when
integrating the fragmentation functions over kT divergen-
ces occur. Therefore, we impose a cutoff on the virtuality
of the incoming quark, and study the dependence on the
cutoff in some detail. A different approach would be to
insert form factors. This could sensibly change the behav-
ior of the fragmentation functions compared to our results.
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ple, fragmentation functions cannot be computed by means
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QCD. It is well known that in the low energy domain of
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Fig. 2. Unpolarized fragmentation function zD1(z) vs. z for the fragmentation (a) u → π+, (b) u → K+ , (c) s̄ → K+ in the spectator model (solid line), with
parameters fixed from a fit to the parametrization of [29] (dashed line).

+ + + + H.c.
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Fig. 3. Single gluon-loop corrections to the fragmentation of a quark into a pion contributing to the Collins function in the eikonal approximation. “H.c.” stands for
the Hermitian conjugate diagrams which are not shown.

Q0 = 0.4 GeV2. The resulting values for the parameters are

(20)gqπ = 4.78, λ = 3.33 GeV, α = 0.5 (fixed), β = 0 (fixed),

which are common to both pion and kaon fragmentation functions. The only parameters that change according to the type of
fragmentation function are

(21)u → π+: ms = 0.792 GeV, m = 0.3 GeV (fixed),

(22)u → K+: ms = 1.12 GeV, m = 0.3 GeV (fixed),

(23)s̄ → K+: ms = 0.559 GeV, m = 0.5 GeV (fixed).

Obviously, also the mass of the hadron changes: we take mh = 0.135 GeV for the pions and mh = 0.494 GeV for the kaons. We
remark that it is not possible to estimate the errors in the parameters in a meaningful way because the fragmentation functions in
Ref. [29] have no error bands. It could be in principle possible to use the recent parametrizations with error bands [30], but the
lowest scale they reach is 1 GeV2, which we consider to be too high to compare to our model.

Fig. 2 show the plots of the unpolarized fragmentation function D1(z) multiplied by z for u → π+, u → K+, and s̄ → K+. The
parametrization of [29] (NLO set, Q0 = 0.4 GeV2) is also shown for comparison.

3. Model calculation of the Collins fragmentation function

We use the following definition of the Collins function [12]1

(24)
ϵ
ij
T kTj

Mh
H⊥

1
(
z, k2

T

)
= 1

2
Tr

[
&(z, kT )iσ i−γ5

]
.

As is well known [12], using the tree-level calculation of the correlator function is not sufficient to produce a non-vanishing Collins
function, due to the lack of imaginary parts in the scattering amplitude. In order to obtain the necessary imaginary part, we take
into account gluon loops. In fact, gluon exchange is essential to ensure color gauge invariance of the fragmentation functions.
Contributions come from the four diagrams in Fig. 3. Diagrams (a) and (b) represent the quark self-energy and vertex diagrams,
respectively. Diagrams (c) and (d) can be called hard-vertex and box diagrams, respectively. For the calculation of the diagrams

1 The factor 1/2 is due to a slightly different definition of the correlator in Eq. (2) with respect to Ref. [12].
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(a) (b)

Fig. 4. Half moment of the Collins function for u → π+ in our model. (a) H
⊥(1/2)
1 at the model scale (solid line) and at a different scale under the assumption in

Eq. (37) (dot-dashed line), compared with the error band from the extraction of Ref. [6], (b) H
⊥(1/2)
1 /D1 at the model scale (solid line) and at two other scales

(dashed and dot-dashed lines) under the assumption in Eq. (38). The error band from the extraction of Ref. [7] is shown for comparison.

In Fig. 4(a), we have plotted the half moment of the Collins functions vs. z for the case u → π+. In the same panel, we plotted the
1−σ error band of the Collins function extracted in Ref. [6] from BELLE data, collected at a scale Q2 = (10.52)2 GeV2. In order to
achieve a reasonable agreement with the phenomenology, we choose a value of the strong coupling constant αs = 0.2. Such a value
is particularly small, especially when considering that our model has been tuned to fit the function D1 at a scale Q2

0 = 0.4 GeV2,
where standard NLO calculations give αs ≈ 0.57 [29,32]. In any case, the problem of the choice of αs is intimately related with the
problem of the evolution of the Collins function (see below).

In Fig. 4(b), we have plotted the ratio H
⊥(1/2)
1 /D1 and compared it to the error bands of the extraction in Ref. [7]. Also in this

case the agreement is good, with the above mentioned choice of αs = 0.2.
At this point, some comments are in order concerning the evolution of the Collins function (or of its half-moment) with the

energy scale. Such evolution is presently unknown, except for some work done in Ref. [33], which is however based on questionable
assumptions. Some authors (e.g., Refs. [6,7]) assume

(37)
H

⊥(1/2)
1

D1

∣∣∣∣
Q2

0

= H
⊥(1/2)
1

D1

∣∣∣∣
Q2

,

i.e., that the evolution of H
⊥(1/2)
1 is equal to that of D1. This seems unlikely, in view of the fact that the Collins function is chiral-odd

and thus evolves as a non-singlet. An alternative choice could be to assume

(38)H
⊥(1/2)
1

∣∣
Q2

0
= H

⊥(1/2)
1

∣∣
Q2,

i.e., that H
⊥(1/2)
1 does not evolve with the energy scale. This is an extreme hypothesis, which cannot be true because at some point

the positivity bound (35) would be violated at large z. We demonstrate this in Fig. 4(b) where we show how the ratio H
⊥(1/2)
1 /D1

behaves at three different energy scales if only D1 is evolved (we use the unpolarized fragmentation function of Ref. [29] for this
purpose). Clearly, in this case the ratio grows more steeply with z at higher energies, due to the decreasing of D1 in the large-z
region. While the evolution of the T-odd parton distribution and fragmentation functions remain an outstanding issue, these results
show that different assumptions on the Collins function scale dependence have a significant impact and should be considered with
care.

For the fragmentation u → K+ and s̄ → K+, the same analytic formulas are used but with the other sets of parameter values.
The results are shown in Figs. 5 and 6 for the u and s̄ quarks, respectively.

4. Asymmetries in e+e− annihilation

The BELLE Collaboration has reported measurements of various asymmetries in e+ + e− → π± + π± + X that can isolate the
Collins functions [4]. In particular, the number of pions in this case has an azimuthal dependence [34]

(39)Nh1h2(z1, z2) ∝
∑

q

eq
2
(

D1(q→h1)(z1)D1(q̄→h2)(z2) + sin2 θ

1 + cos2 θ
cos(φ1 + φ2)H

⊥(1/2)
1(q→h1)

(z1)H̄
⊥(1/2)
1(q̄→h2)

(z2)

)
,
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(7)Du→K+
1 = Dū→K−

1 ,

(8)Ds̄→K+
1 = Ds→K−

1 .

For later purposes it is useful to spell out the relations coming from isospin and charge-conjugation relations for the unfavored
functions

(9)Dū→π+
1 = Dd→π+

1 = Dd̄→π−
1 = Du→π−

1 ,

(10)Ds→π+
1 = Ds̄→π+

1 = Ds→π−
1 = Ds̄→π−

1 ,

(11)Dū→K+
1 = Dd̄→K+

1 = Dd→K+
1 = Dd̄→K−

1 = Dd→K−
1 = Du→K−

1 ,

(12)Ds→K+
1 = Ds̄→K−

1 .

We assume the above relations hold for all fragmentation functions, in particular for the Collins function.
The unpolarized fragmentation function is projected from Eq. (4)

(13)D1
(
z, k2

T

)
= Tr

[
"0(z, kT )γ +]

/2,

leading to the result

(14)D1
(
z, k2

T

)
=

g2
qπ

8π3

[z2k2
T + (zm + ms − m)2]

z3(k2
T + L2)2

,

with

(15)L2 = (1 − z)

z2 M2
h + m2 + m2

s − m2

z
.

In the limit ms = m and setting the form factor to 1, our result for D1 reduces to Eq. (3) of Ref. [12] (multiplied by two because in
that paper the results refer to u → π0). The two nonzero kaon fragmentation functions Du→K+

1 and Ds̄→K+
1 are given by the same

functional form, but with different masses m, ms , Mh.
The integrated unpolarized fragmentation function is defined as

(16)D1(z) = πz2

∞∫

0

dk2
T D1

(
z, k2

T

)
.

Here the integration is over the transverse momentum of the produced hadron KT = −zkT with respect to the quark direction,
which is why an extra factor of z2 appears in the above equation. The above integral is divergent. In Ref. [12], a cutoff on kT has
been used. On the other hand, in Ref. [10], a Gaussian form factor depending on k2

T has been introduced at the pion–quark vertex,
which effectively cuts off the higher kT region in the integration. Similarly, in this work we use a Gaussian form factor of the form

(17)gqπ $→ gqπ

z
e
− k2

Λ2 with Λ2 = λ2zα(1 − z)β

at the pion–quark vertex. Due to Eq. (5), the above form factor effectively cuts off the higher kT region of the integration. The form
of the vertex is chosen merely on the basis of phenomenological motivations, in order to reasonably reproduce the unpolarized
fragmentation function. With the chosen form factor, the integration in Eq. (16) can be carried out analytically and yields:

D1(z) =
g2

qπ

8π2

e
− 2m2

Λ2

z3L2

[
(1 − z)

(
(ms − m)2 − M2

h

)
exp

(
− 2zL2

(1 − z)Λ2

)

(18)+
(
z2Λ2 − 2z

(
(ms − m)2 − M2

h

)) L2

Λ2 (

(
0,

2zL2

(1 − z)Λ2

)]
,

where the incomplete gamma function is,

(19)((0, z) ≡
∞∫

z

e−t

t
dt.

The parameters of the model are λ, α, β , together with the mass of the spectator ms and the mass of the initial quark m. For
the latter, we choose a constituent quark mass m = 0.3 GeV for the u and d quarks, and m = 0.5 GeV for the s quark. To fix the
values of the other parameters, we performed a fit to the parametrization of Ref. [29] (NLO set) at the lowest possible scale, i.e.,
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1 ,

(8)Ds̄→K+
1 = Ds→K−

1 .

For later purposes it is useful to spell out the relations coming from isospin and charge-conjugation relations for the unfavored
functions

(9)Dū→π+
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fitted to unpolarised FFs:

✦ Calculated Collins FF.

‣ No direct access to unfavored FFs.
✦Missing multi-hadron emission effect:

‣ Description of small-z region.

✦ Can calculate TM-dependence of FF, Dihadron FFs, etc.



THE NJL-jet MODEL

q Q Q’ Q’’



z D
π+ u
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Integral Equations
Monte Carlo Simulations

COLLINEAR FRAGMENTATIONS FROM MC
• Input: One hadron emission probability

q Q Q’ Q’’

Dh
q (z)�z =

⌦
Nh

q (z, z +�z)
↵
⌘

P
NSims

Nh
q (z, z +�z)

NSims

dhq (z)

• Sample the emitted hadron type and z 
according to input splitting.

• CONSERVE: Momentum and Quark 
Flavor in each step.

• Repeat for decay chains with the same 
initial quark.

H.M., Thomas, Bentz, PRD. 83:07400; PRD.83:114010, 2011.
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• Calculate quark splittings to vector mesons, Nucleon Anti-
Nucleon: 

MORE CHANNELS

• Add the decay of the resonances:

• Decay cross-section in light-front variables:

dhq (z)

h = ⇢0, ⇢±,K⇤0,K
⇤0
,K⇤±,�, N, N̄

H.M., Thomas, Bentz, PRD. 83:074003, 2011

dPh!h1,h2
(z1) =

(
C

h1h2
h
8� dz1 if z1z2 m2

h � z2m2
h1 � z1m2

h2 � 0; z1 + z2 = 1,

0 otherwise.



‣TMD splittings: 

‣Conserve transverse momenta at each link.

‣Calculate the Number Density

INCLUDING THE TRANSVERSE MOMENTUM

k
k ’

p h

k

p

P

k’ z

xy

d(z, p2?)

Dh
q (z, P

2
?)�z ��P 2

? =

P
NSims

Nh
q (z, z +�z, P 2

?, P
2
? +�P 2

?)

NSims
.

k? = P? + k0
?

q
Q

Q’ Q’’

p

H.M.,Bentz, Cloet, Thomas, PRD.85:014021, 2012

P? = p? + zk?
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AVERAGE  Transverse Momenta vs z
FRAGMENTATION

π+
π-
K+
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u h
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2 )
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✦Indications from HERMES 
data: A. Signori, et al: JHEP 1311, 194 (2013)
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✓Multiple hadron emissions: broaden the TM dependence at low z!
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TRANSVERSELY POLARIZED QUARK FRAGMENTATION: 
COLLINS EFFECT AND TWO-HADRON CORRELATIONS

 31



RECENT COMPASS RESULTS

R
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z
x

l'l

q
2
ξ   p 1

ξ   p 21
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S
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R

COMPASS,  PLB736, 124-131 (2014).

Asin�RS

UT =

|p1 � p2|
2Mh+h�

P
q e

2
q · h

q
1(x) ·H^

1,q(z, M
2
h+h� , cos ✓)P

q e
2
q · f

q
1 (x) ·D1,q(z, M2

h+h� , cos ✓)

RArtru =
z2P 1 � z1P 2

z1 + z2

✦SIDIS with transversely polarized target.

✦Two hadron single spin asymmetry: 

✦Note the choice of the vector

✦Collins single spin asymmetry: 

A
Coll

=

P
q

e2
q

hq

1 ⌦H
?h/q

1
P

q

e2
q

fq

1 ⌦D
h/q

1
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COLLINS EFFECT - NJL-jet MKII

MKII Model Assumptions:

✦ The results for NL=2,              .PSF = 1

F (c0, c1) = c0 � c1 sin(')

q
Q

p

l

Dh/q"(z, P
2
?,')�z

�P 2
?

2
�' =

D
Nh

q"(z, z +�z;P 2
?, P

2
? +�P 2;','+�')

E

1. Allow for Collins Effect only in a SINGLE emission 
vertex    (         scaling of the resulting Collins function). 

2. Use constant values for spin flip probability:          .PSF

N�1
L

H.M., Kotzinian, Thomas, PLB731 208-216 (2014).

✦ Use fit form to extract unpol. and Collins FFs 
from           .Dh/q"
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POLARIZED QUARK DIFF IN QUARK-JET.

• Use the NJL-jet Model including Collins effect (MKII) to study DiFFs.

H.M., Kotzinian, Thomas, PLB731 208-216 (2014).

Dh1h2

q" (z,M2
h ,'R) �z �M2

h �'R =
D
Nh1h2

q" (z, z +�z;M2
h ,M

2
h +�M2

h ;'R,'R +�'R)
E
.

• Choose a constant Spin flip probability: PSF

• Simple model to start with: 
  Only pions and extreme ansatz for the
  Collins term in elementary function.

dh/q"(z,p?) = dh/q1 (z, p2?)(1� 0.9 sin')

Unpol
!SF=0
!SF=0.5
!SF=1

u π+ π -, NL=2

 D
q

 h 1
 h

2

0.04

0.06

0.08

0.10

"R

-π - π2 0 π
2 π
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INTEGRATED ANALYZING POWERS
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✓ NJL-jet model results are consistent with COMPASS measurements on 
interplay between one- and two- hadron SSAs.

H.M., Kotzinian, Thomas, PLB731 208-216 (2014).
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NJL-jet MKIII
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New Developments
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Modelling Hadronization with Spin:  The Objectives.

NJL-jet Complete Hadronization Model with Spin. Input from 
QCD-inspired effective Quark Model. 

1) Predictions for full set of polarised FFs. 
‣Quantitative extract. of fav. and unfav. polarised TMD FF. 
‣ Include resonance productions and decays. 
‣Should explain possible connections between single and 

dihadron FFs! 
‣The correspondence to FFs in limited z region (            ). 

2) Interpretation in Full Event Generators:  
‣Number density interpretation. 
‣ Iterative picture: spin transfer! Should be adaptable to the MC 

framework. 
‣Should not break any of the unpolarised observables! (PYTHIA fits 

to existing data, etc.)
 37
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TMD FFs for Spin 1/2 Particles

✦ TMD Polarized Fragmentation Functions at LO. 
‣Only two for unpolarised final state hadrons. 

N/q U L T
U
L
T

f1
g1L

h?
1Th1

h?
1L

h?
1

g?1Tf?
1T

PDFs
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TMD FFs for Spin 1/2 Particles

✦ TMD Polarized Fragmentation Functions at LO. 
‣Only two for unpolarised final state hadrons. 
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h/q U L T
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T

D1 H?
1

D?
1T

G1L

G1T

H?
1L

H?
1TH1T

Fragment. Functions

‣8 for spin 1/2 final state (including quark). Similar to TMD PDFs. 



Field-Theoretical Definitions

 39

•The definitions of FFs from the quark correlator

•We can use the same “spectator” type calculations as for pion.

�[�+�5] = SLGL(z, p
2
?) +

kT · ST

M
GT (z, p

2
?)

�[i�i+�5] =Si
THT (z, p

2
?) +

SL

M
kiTH

?
L (z, p2?)

+
kiT (kT · ST )

M2
H?

T (z, p2?)�
✏ijkTj

M
H?(z, p2?)

�[�+] = D(z, p2?)�
1

M
✏ijkTiSTjD

?
T (z, p

2
?)

�[�](z, ~pT ) ⌘
1

4

Z
dp+

(2⇡)4
Tr[��]|p�=zk�

=
1

4z

X

X

Z
d⇠+d2~⇠T
2(2⇡)3

ei(p
�⇠+/z�~⇠T ·~pT )h0| (⇠+, 0, ~⇠T )|p, Sh, Xihp, Sh, X| ̄(0)�|0i



Spin Transfer in quark-jet Framework.
✦NJL-jet MKIII: 
‣The probability for the process            ,  initial spin    to     

‣ Intermediate quarks in quark-jet are unobserved! 

‣Remnant quark’s     uniquely determined by           and    ! 

‣Process probability is the same as transition to unpolarized state.

z,p?

F q!Q(z,p?; s,S) = ↵s + �s · S

q ! Q s S

s

F q!Q(z,p?; s,0) = ↵s

Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii: QUANTUM ELECTRODYNAMICS (1982).

F q!Q(z,p?; s,S) ⇠ Tr[⇢S
0
⇢S] ⇠ 1 + S0 · S

S0 =
�s

↵s

S0
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Bentz et al, arXiv:1603.08333 (2016).



Field-Theoretical Definitions

F (z,p?;S, s) = D(z,p2
?) +

1

z M (p? ⇥ ST ) · ẑD?
T (z,p

2
?)

+ (sLSL) GL(z,p
2
?)�

1

zMsL(p? · ST )GT (z,p
2
?)

+ (sT · ST ) HT (z,p
2
?)�

1

zMSL(p? · sT )H?
L (z,p2

?)

+
1

z2M2
(p? · sT )(p? · ST ) H

?
T (z,p2

?) +
1

zM (p? ⇥ sT ) · ẑ H?(z,p2
?).

‣The probability for the process            ,  initial spin    to   q ! Q s S

↵q ⌘D(z,p2
?) + (p? ⇥ sT ) · ẑ

1

zM H?(z,p2
?)

�qk ⌘sL GL(z,p
2
?)� (p? · sT )

1

zMH?
L (z,p2

?)

�q? ⌘p0
?

1

z MD?
T (z,p

2
?)� p?

1

zMsLGT (z,p
2
?)

+ sT HT (z,p
2
?) + p?(p? · sT )

1

z2M2
H?

T (z,p2
?)

F q!Q(z,p?; s,S) = ↵s + �s · S‣ Rewriting in terms of
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Example: Pion production.

Q/q U L T
U
L
T

D1 H?
1

D?
1T

G1L

G1T

H?
1L

H?
1TH1T

F q!Q(z,p?; s,S) F q!⇡(z,p?; s)

/q U L T
U D1 H?

1

⇡

Fragment. Functions
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Example: Pion prod. up to Rank 2
✦ Only consider pion produced 
in the first two emission steps!

✦Then the polarised number density is

✦It is shown analytically that only Collins modulations appear!

F (2)q!⇡(z, p2?,'C) = F (2)
0 (z, p2?)� sin('C)F

(2)
1 (z, p2?)

1st rank 2nd rank

F (2)q!⇡ = fq!⇡ + fq!Q ⌦ fQ!⇡

fq!⇡ = dq!⇡ � p?
zMh

sTh
?q!⇡
1

✦ “Elementary” number densities: only favoured types are non-zero.

fu!⇡�
= 0
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Example: Pion prod. up to Rank 2
✦It is shown analytically that only Collins modulations appear!

F (2)q!⇡(z, p2?,'C) = F (2)
0 (z, p2?)� sin('C)F

(2)
1 (z, p2?)

✦Up to unspecified coefficients, using.

“Recoil” TM contribution

Unpolarised term:

Collins term:

Transferred Spin of intermediate quark

F (2)q!⇡
1 ⇠h?q!⇡ + [h?q!Q ⌦ dQ!⇡ + (hq!Q

T + h?q!Q
T )⌦ h?Q!⇡]

Q/q U L T
U
L
T

D1 H?
1

D?
1T

G1L

G1T

H?
1L

H?
1TH1T

✦ Reminder

F (2)q!⇡
0 = dq!⇡ + (dq!Q ⌦ dQ!⇡ + d?q!Q

T ⌦ h?Q!⇡)

From TM-induced Spin of intermediate quark
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Full Hadronization
✦ We can consider many (infinite) number of emissions.

✦ Then the polarised number density is

F q!h = fq!h + fq!Q ⌦ FQ!h

✦ Also applicable for polarised hadron production. 

✦ We can also employ MC approach. 

✦ We only need the “elementary” splittings.

fq!h fq!Q

✦ Again, only Collins modulations appear for unpolarised h!
F q!h(z, p2?,'C) = F0(z, p

2
?)� sin('C)F1(z, p

2
?)
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Model Calculations of         Splittings

 46

✦We can use the same “spectator” type calculations as for pion.

q ! Q

T-even T-odd

k

p p

k

k−p

k

p p

k

k−p

q ! h

q ! Q

E.G. - Meissner et al, PLB 690, 296 (2010).



Positivity and Polarisation of Quark
✦ The probability density is Positive Definite: constraints on FFs.

Bacchetta et al,  PRL 85, 712 (2000) .

✦ Average value of remnant quark’s spin.
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hST iQ = sT

R
dz

h
h(q!Q)
T (z) + 1

2z2M2
Q

h?[1](q!Q)
T (z)

i

R
dz d(q!Q)(z)

hT (z) = �d(z)✦  In spectator model, at leading order:

✦ Non-zero        means                           (full flip of the spin)!h?
T hST iQ 6= �sT

✦ Leading-order T-Even functions FULLY Saturate these bounds!

H? D?
T✦ For non-vanishing        and      , need to calculate T-Even FFs at 

next order!



MC Simulation in Toy Model

✦ FFs vs NL

✦ Results for NL=4.
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π+, NL=1
π+, NL=2
π+, NL=3
π+, NL=4

u h

z D
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H
⊥

 (1
/2
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1
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z
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π -

π+
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H
⊥

 (1
/2
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 / 
D
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z
0 0.2 0.4 0.6 0.8 1.0

✦Allow                                         ,h? = �d?T = 0.1 dTree d = 1.2 dTree



MC Simulation - Polarisation Evolution
✦ Number of Event in SL vs ST, after NL emissions: NO T-ODD.
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NL =2NL =1

NL =3 NL =4

‣ Start with ST=1, SL=0.



MC Simulation - Polarisation Evolution
✦ Number of Event in SL vs ST, after NL emissions: WITH T-ODD.
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NL =2NL =1

NL =3 NL =4

‣ Start with ST=1, SL=0.



Conclusions
❖ (Polarised) TMD FFs provide a wealth of information about the spin-spin and 

spin-momentum correlations in hadronisation.

❖ They are essential in describing DIS structure functions with hadronic final 
states.

❖  Modelling (Polarised) Quark Hadronization is needed for both  calculations 
of polarised FFs and phenomenological studies of various correlations 
(Collins and IFF, etc).

❖  Incorporating  polarised parton hadronisation into MC generators is needed 
for supporting future experiments in mapping out the 3D structure of nucleon 
(JLab12, BELLE II, EIC).

❖  The NJL-jet model provides a robust and extendable framework for 
microscopic description of various fragmentation phenomena using MC 
simulations: TMD, Collins, DiHadron.

❖  The extension of the underlying quark-jet mechanism to include polarisation 
can be readily incorporated in other MC frameworks.
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