

Ryan Zielinski Jefferson Lab – Radiative Corrections Workshop

May 16-19, 2016

University of New Hampshire

TALK OUTLINE

- Overview of the Small Angle GDH experiment
- Overview of the Mo and Tsai radiative corrections scheme
 - Elastic tail subtraction systematic error
 - Inelastic radiative corrections systematic error
- Results for the Small Angle GDH experiment nitrogen data set

SMALL ANGLE GDH

- Jefferson Lab Hall A experiment
 - Polarized He3 gas target
 - Nitrogen data set as well
 - Inclusive measurement
- Low Q² data (0.02 to 0.35 GeV²)
- Systematic error analysis focused on low Q² nitrogen data set
 - Data set split among 6°/9° scattering and also partial/full W

coverage

$$Q^2 = -q^2 = 4E_s E_p \sin^2 \frac{\theta}{2}$$
$$W^2 = M_p^2 + 2M_p \nu - Q^2$$
$$\nu = E_s - E_p$$

May 16-19, 2016: JLab RC

saGDH Kinematic Coverage

MO/TSAI RADIATIVE CORRECTIONS

'Classic' radiative corrections scheme

- L.W. Mo and Y.S. Tsai, Rev. Mod. Phys 41, 205 (1969)
- Y.S. Tsai, SLAC-PUB-848 (1971)
- Target structure accounted via structure functions
 - Scheme is model independent
- Mathematic formulation is non-covariant
- Diff between hard/soft photons done with Δ parameter
 - Results should be independent of parameter
- Systematic error analysis applies to set of FORTRAN codes: ROSETAIL and RADCOR
 - Your mileage may vary

ELASTIC TAIL SUBTRACTION

Elastic tail is accounting of all possible ways electron can lose energy and then scatter elastically into the detectors. Calculation includes:

- Elastic Form Factors
 - FF's are calculated in first Born approximation (only single photon exchange)
 - Correction factor applied to take into account higher order virtual photon diagrams
 - Ignore anything happening at the hadron vertex
- Bremmstrahlung (emission of real photons)
 - Internal bremm. occurs within the Coulombic field of the target nucleus
 - External bremm. occurs within the Coulombic field of anything but the target
 - Technically not bremm. but external tail also includes collisional/ionizational energy loss
 (colliding with atomic electrons)
- Multiple photon corrections
 - Mo/Tsai assume single bremm. photon is emitted but in reality an infinite number of photons share the energy of that one photon
 - Mo/Tsai apply correction to both internal/external corrections to account for this

FORM FACTORS AND THE BORN APPROXIMATION

- Nitrogen form factor fit from E.B. Dally *et al.*, Phys. Rev. C 2 2057 (1970)
 - Additional data found to check the fit and fill in low Q² portion

Systematic uncertainty to first Born approximation assumption?

- Should be small because nitrogen is a light nucleus and saGDH is at low Q²
- Source papers:
 - P. Barraeau *et al., "*Deep-Inelastic Scattering from Carbon." Nucl. Phys. A402 515-540 (1983)
 - E. Borie, "Correction to the Formula for the Radiative Tail in Elastic Electron Scattering." Lettere Al Nuovo Cimento 10⁻³ 1 106 (1971)
- They estimate the contribution as:

$$\delta = \pi \alpha Z \sin \frac{\theta}{2} / (1 + \sin \frac{\theta}{2})$$

Results in systematic error for Z = 7 and $\theta = 6.0$ of $\delta \sim 0.8\%$

University of New Hampshire

MT HIGHER ORDER LOOPS

Mo/Tsai give their virtual photon corrections as sum of (call it $ilde{F}$) :

Vacuum:
$$\delta_{\rm vac}=\frac{2\alpha}{\pi}(-5/9+\frac{1}{3}ln(Q^2/m_e^2))$$

• Vertex (non-infrared divergent):

$$\delta_{\text{vertex}} = \frac{2\alpha}{\pi} \left(-1 + \frac{3}{4} ln(Q^2/m_e^2)\right)$$

• Schwinger (soft-photon/non-infrared divergent):

$$\delta_{\rm S} = \frac{\alpha}{\pi} \left(\frac{\pi^2}{6} - \Phi(\cos^2\frac{\theta}{2})\right)$$

- There is also a normalization term for the external bremsstrahlung:
 - Given as $1/\Gamma(1+bt)$ where b=4/3 and t is the sum of the radiation lengths
- Obviously could have vacuum loops according to muon and tau leptons
- Could also have quark loops in the vacuum diagram
- And also hadron vertex photon emission!

AN UPDATED 'FBAR'

A full formula (not in limit $Q^2 >> m_e^2$) for vacuum contribution is given in a variety of references:

- B. Badalek, D.Bardin, K. Kurek and C. Scholz, "Radiative Corrections Schemes in Deep Inelastic Muon Scattering" arxiv:hep-ph/940328v1 (1994).
- S. Dasu *et al.,* "Measurement of Kinematic and Nuclear Dependence of R = SL/ST in Deep Inelastic Electron Scattering" Phys. Rev. D49 5641 (1994).

$$\delta_{\rm vac}^{e,\mu,\tau} = \frac{2\alpha}{\pi} \left[\frac{-5}{9} + \frac{4m_l^2}{3Q^2} + \frac{1}{3}\sqrt{1 + \frac{4m_l^2}{Q^2} \left(1 - \frac{2m_l^2}{Q^2}\right) \ln\left(\frac{\sqrt{1 + 4m_l^2/Q^2} + 1}{\sqrt{1 + 4m_l^2/Q^2} + 1}\right)} \right]$$

- Ignoring quark loops because they're sensitive to the quark mass and all parameterizations I found of this effect are at Q² > 1 GeV²
 - Ignoring γZ interference terms as well
- Comparison between the M/T and updated vacuum diagram 'FBar' (1 + δ):
 - MT: Q² = 0.05 GeV² -> 'FBar' = 1.0577 && Q² = 0.02 GeV² -> 'FBar' = 1.053
 - Updated: Q² = 0.05 GeV² -> 'FBar' = 1.0625 && Q² = 0.02 GeV² -> 'FBar' = 1.056

Systematic for 'Fbar' term is $\delta \sim 0.4\%$.

TARGET RADIATION

MT neglect any kind of target radiation for the internal elastic tail

- Sources for including this effect:
 - G. Miller *et al.* "Inelastic Electron-Proton Scattering at Large Momentum Transfers and the Inelastic Structure Functions of the Proton." Phys. Rev. D 5 528 (1972).
 - Guthrie Miller Ph.D thesis: "Inelastic Electron Scattering at Large Angles" Stanford 1971.
 - S. Stein et al. "Electron Scattering at 4° with Energies of 4.5-20 GeV", Phys. Rev. D 12 1884 (1975)

$$\begin{split} R_t &= 1 + \frac{\alpha}{\pi b t_r} \bigg[\bigg(\frac{1 + 2\tau}{2\tau \sqrt{1 + 1/\tau}} \bigg) \ln(1 + 2\tau + 2\tau \sqrt{1 + 1/\tau}) - 1 + 2\ln(\eta_s) \bigg] \\ bt_r &= \frac{2\alpha}{\pi} (\ln(Q^2/m_e^2) - 1) \\ \tau &= Q^2/4M_T^2 \\ \eta_s &= 1 + 2\frac{E}{M_T} \sin^2 \frac{\theta}{2} \end{split} \quad \text{At } v = 1200 \text{ MeV } (\text{E} = 2135 \text{ Mev}/\theta = 6^\circ): \\ \cdot R_t &= 1.00019 \text{ so the systematic is negligible} \\ \text{for nitrogen scattering at saGDH kinematics} \end{split}$$

MULTIPLE SOFT-PHOTON CORRECTION

Multiple photon correction applied to both internal and external tail

- Correction given by MT and Stein in the following papers
 - Y.S. Tsai, "Radiative Corrections to Electron Scattering." SLAC-PUB-848 1971
 - S. Stein *et al.*,"Electron Scattering at 4° with energies of 4.5-20 GeV." Phys. Rev. D 12 1884 (1975).
- MP is sizable correction (at saGDH kinematics) to tail ranging in value from ~0.60 to ~0.90 as you go from low-v to high-v
 - Especially important where tail is large!
- Quoting Tsai: "There is some uncertainty in the validity of the [MP] factor. We know that this factor is correct when w_s/E_s and $w_p/(E_p+w_p)$ are small."

$$\delta_{MP} = \left(\frac{\omega_s}{E_s}\right)^{(b(t_a+t_b)+bt_r/2)} \left(\frac{\omega_p}{E_p+\omega_p}\right)^{(b(t_a+t_b)+bt_r/2)}$$
$$\omega_s = E_s - \frac{E_p}{1-2E_p/M_T \sin^2\frac{\theta}{2}}$$
$$\omega_p = \frac{E_s}{1-2E_s/M_T \sin^2\frac{\theta}{2}} - E_p$$
$$bt_r = 2\alpha/\pi [\ln(Q^2/m^2) - 1]$$
Energy of in

Energy of incoming (outgoing) photon

G. MILLER MULTIPLE SOFT-PHOTON CORRECTION

Guthrie Miller's thesis offers an alternative MP correction term

• Assuming only external effects Miller gives exact external bremm. tail as (this includes multiple photon processes)

Exact Tail

$$\frac{d\sigma}{d\Omega dE'} = \int_{E-\omega}^{E} \pi(E, E_1, t_b) \frac{d\sigma}{d\Omega}(E_1, \theta) \pi(E'_1, E', t_a) dE_1$$

$$= \underbrace{\left(\frac{k}{\sqrt{EE'}}\right)^{bt_a + bt_b}}_{\times [t_b w(E, E - \omega)\eta'^2 \frac{d\sigma}{d\Omega}(E - \omega, \theta)} + t_a w(E' + \omega, E') \frac{d\sigma}{d\Omega}(E, \theta)]} \quad \text{Straggling function}$$

- *k* is soft-photon limiting energy
- Can compare exact equation to approximate equation to determine *k*/MP contribution

Flastic XS

MULTIPLE SOFT-PHOTON CORRECTION COMPARISON

saGDH kinematics:

- Big difference at large *v* for nitrogen
- Agreement at lower v (all photons are soft)
 - Tsai (SLAC PUB) stated that MT factor is correct here so this makes sense
- How does it affect the tail subtraction?

SAGDH N2: 2845/6°

SUMMARY OF ELASTIC TAIL RESULTS

Total Elastic Tail Systematic Error for saGDH:

- 2% for loop diagrams/first Born approximation/internal tail integration/soft-photons/ energy-peaking approximation
 - Estimate soft-photon systematic error by looking at factor's sensitivity to form factor fit and value of equivalent radiator for internal contribution
 - Energy-peaking approximation systematic is estimated in Tsai's SLAC PUB
- 4-15% for form factor error (comparing world data to fit)
 - Break it up into internal and external contributions
 - External limited to world data within Q² range of data
 - Internal 1/Q⁴ weighted over all of world data
- 1% and less for choice of external straggling function
 - Compare MT and Miller external straggling functions
 - Apply bin-by-bin
- Elastic tails calculated using monte-carlo
 - Takes into account acceptance/extended target effects
 - V. Sulkosky, "Update on Corrections to Radiative Tails for E97-110", E97-110 Tech-Note (2015). <u>http://hallaweb.jlab.org/experiment/E97-110/tech/punchthru_update.pdf</u>

INELASTIC RADIATIVE CORRECTIONS

Inelastic continuum can be regarded as a summation of many discrete levels...

Some errors carry over from the elastic tail so don't redo them:

- 'Fbar' (higher order virtual photon corrections)
- Energy-peaking approximation used in evaluating external corrections
- Born approximation

New potential sources of error

- Angle-peaking approximation in internal bremsstrahlung
- Soft photon correction factor
- Interpolation/extrapolation error on unfolding procedure
 - Including using a model as source for lowest energy setting to RADCOR input

INELASTIC INTERNAL BREMSSTRAHLUNG

Full expression of the inelastic internal bremsstrahlung

• Inelastic isn't limited to $W = M_T$ so the inelastic internal contribution is the elastic internal tail integrated over all possible M_f :

$$\frac{d\sigma_{r}}{d\Omega dE}(\omega > \Delta) = \frac{\alpha^{3}}{2\pi} \frac{E_{p}}{E_{s}M_{T}} \int_{-1}^{1} d(\cos\theta_{k}) \int_{\Delta}^{\omega_{\max}(\cos\theta_{k})} \frac{\omega d\omega}{q^{4}} B_{\mu\nu}T^{\mu\nu}$$
Soft photons
Contains the inelastic structure functions
$$\frac{d\sigma_{r}}{d\Omega dE}(E_{s}, E_{p}) = e^{-\delta_{r}(\Delta)}\tilde{F}(q^{2}) \frac{d\sigma}{d\Omega dE} + \frac{d\sigma_{r}}{d\Omega dE}(\omega > \Delta)$$
A percentage quive generation of $\omega = 0$
Unradiated XS

- Δ parameter avoids a divergence at $\omega = 0$
 - Slightly tweaked version of (B.6) of MT, but it keeps choice of fbar consistent across calculations (See B. Badalek *et al.* arxiv:hep-ph/940328v1 (1994).)
- Structure functions evaluated at most probable energy loss kinematics

• Takes into account photons radiating away energy May 16-19, 2016: JLab RC

INELASTIC PEAKING APPROXIMATION

The equivalent correction in the angle-peaking approximation is

• Dropping the soft-photon terms from the integrals. SLAC-PUB-848 (1971) (C.23)

$$\frac{d\sigma_r}{d\Omega dE}(E_s, E_p) = \tilde{F}(q^2) \left[\left(\frac{R\Delta}{E_s} \right)^{bt_r} \left(\frac{\Delta}{E_p} \right)^{bt_r} \frac{d\sigma}{d\Omega dE}(E_s, E_p) + \int_{E_p + \Delta}^{E_{pmax}} dE'_p \frac{d\sigma}{d\Omega dE}(E_s, E'_p) \frac{bt_r}{2(E'_p - E_p)} \phi(\frac{E'_p - E_p}{E'_p}) + \int_{E_s \min}^{E_s - R\Delta} dE'_s \frac{d\sigma}{d\Omega dE}(E'_s, E_p) \frac{bt_r}{2(E_s - E'_s)} \phi(\frac{E_s - E'_s}{E_s}) \right]$$

Angle peaking approximation is used because:

- Significantly faster (<1 min to run compared to multiple hours for full integral)\
- · Majority of photon's are emitted in same direction as incoming/outgoing electrons

INELASTIC INTERNAL BREMSSTRAHLUNG COMPARISON

Use P.E. Bosted and V. Mamyan model for comparison

- 7000 (nb/Mev-sr) 6000 Full Integral 5000 Peaking Approx 4000 No Rad 3000 $\frac{25}{\rho p}$ 200 400 600 800 1000 1200 1400 0 ν (MeV) 1.10 Ratio 1.00 0.95 2^{nd} order poly fit 0.95 0.90 1000 1200 1400 800 1600 1800 2000 2200 E_p (MeV) Contrib. (%) $\begin{array}{c}
 10 \\
 8 \\
 6 \\
 4 \\
 2 \\
 0
 \end{array}$ 2^{nd} order poly fit 800 1000 1200 1400 1600 1800 2000 2200 E_p (MeV)
- n2: 2135 Mev/ 6 degrees

- Full integral computation time ~one week on my desktop
 - Python calculation
 - Proton calculation quicker
- Systematic is contribution to total radiated cross section
 - Comparison between:
 - (Low e + Ext + Int + Coll)
 - (Low e + Ext + Full Int + Coll)
- Assume difference is a function of *E_p* and fit

INELASTIC MULTIPLE SOFT PHOTONS

Compare soft-photon term from Mo/Tsai to Guthrie Miller

- Separate but similar soft-photon terms for each integral
- Difference in soft-photon terms is smaller for inelastic
 - Sufficient to use an approx value for Miller *k*
- Systematic error is variance between MT term and Miller terms for a range of *k*'s

May 16-19, 2016: JLab RC

University of New Hampshire

n2: 2135 Mev/ 6 degrees

UNFOLDING SYSTEMATIC ERROR

[•] Vary lowest energy model input

 Values for scale guided by comparison of radiated Bosted model vs. data

n2: saGDH 2135 MeV/ 6 degrees

SUMMARY OF INELASTIC RESULTS

Total Inelastic Systematic Error for saGDH:

- **1.5%** for loop diagrams/first Born approximation/energy-peaking approximation
 - Energy-peaking approximation systematic is estimated in Tsai's SLAC PUB
- <1 3% differences in soft-photon terms
- <1 4% for angle peaking approximation
- <1 2% error in the unfolding procedure (driven by extrapolation)
- <1 8% error from the use of an input model for the lowest extrapolation energy
- Note: variance on unfolding procedure with different scattering angles within the angular acceptance is negligible

CONCLUSION

- Biggest potential systematic error in the Mo and Tsai inclusive radiation scheme comes from handling of soft-photon corrections
 - Error coming from form factor parameterization isn't a limitation of MT
- With requisite hardware possible to replace all peaking approximations with full integrations
 - Did not consider removing energypeaking approximation in this analysis
- Full results written up and can be found in my tech-note at
 - R. Zielinski,E08-027 (G2P) Tech-Note, <u>https://hallaweb.jlab.org/wiki/index.php/</u> <u>G2p_technotes#E08-027_Technical_Notes</u> (2016).

n2: 3319 Mev/ 9 degrees

May 16-19, 2016: JLab RC

University of New Hampshire

BACK-UP SLIDES

FULL INTERNAL BREMSSTRAHLUNG INTEGRAL

For the elastic tail, the full expression for the internal bremsstrahlung is

$$\begin{split} \sigma_{\text{exact}} &= \left(\frac{d^2\sigma}{d\Omega dE_p}\right)_{\text{ex}} = \frac{\alpha^3}{2\pi} \left(\frac{E_p}{E_s}\right) \int_{-1}^1 \frac{2M_T \omega d(\cos\theta_k)}{q^4(u_0 - |\vec{u}| \cos\theta_k)} \\ &\times \left(\tilde{W}_2(q^2) \left\{\frac{-am^2}{x^3} \left[2E_s(E_p + \omega) + \frac{q^2}{2}\right] - \frac{a'm^2}{y^3} \left[2E_p(E_s + \omega) + \frac{q^2}{2}\right] \right] \\ &- 2 + 2\nu(x^{-1} - y^{-1}) \{m^2(s \cdot p - \omega^2) + (s \cdot p)[2E_sE_p - (s \cdot p) + \omega(E_s - E_p)]\} \\ &+ x^{-1} \left[2(E_sE_p + E_s\omega + E_p^2) + \frac{q^2}{2} - (s \cdot p) - m^2\right] \\ &- y^{-1} \left[2(E_pE_s + E_p\omega + E_s^2) + \frac{q^2}{2} - (s \cdot p) - m^2\right] \\ &+ \tilde{W}_1(q^2) \left[\left(\frac{a}{x^3} + \frac{a'}{y^3}\right)m^2(2m^2 + q^2) + 4 + 4\nu(x^{-1} - y^{-1})(s \cdot p)(s \cdot p - 2m^2) \\ &+ (x^{-1} - y^{-1})(2s \cdot p + 2m^2 - q^2)\right] \right), \end{split}$$

EXACT INTERNAL ELASTIC TAIL

MT give an exact form of the internal bremm. in eq. B5

- Exact means 1st Born approximation and no target radiation
- The equation is an integral with potential for a divide by zero error. MT say to ignore this small point in numerical integration.
 - ROSETAIL has custom integration routine to account for this
 - What about using a more modern integration method?
- Potentially big enough deal that Maximon /Williamson wrote a paper on how to avoid divide by 0. (Paper also helped speed up the calculation)
 - L.E Maximon and S.E Williamson, "Piecewise Analytic Evaluation of the Radiative Tail from Elastic and Inelastic Electron Scattering", Nucl. Instrum. Meth. A258 95 (1987)
- Comparison between ROSETAIL/python integration of B5 (nb/MeV sr):
 - RT: v = 10 MeV -> XS = 2282 && v = 1200 MeV -> XS = 329
 - PY: v = 10 MeV -> XS = 2290 && v = 1200 MeV -> XS = 330
- Systematic for numerical integration is ~0.4%.
 - Systematic contribution to total tail (internal + external) is ~0.2%

A FEW ODDS AND ENDS

- Use difference method to correct quasi-elastic peak and ratio method for rest of spectrum
- Helps control systematic error
 - Systematic errors are applied to the RC correction factor and then propagated in the standard fashion
- Use the Bosted model method for bin-centering
 - Small correction
- Kept the absolute value of the statistical uncertainty constant

Inelastic RC Process

University of New Hampshire

BOSTED RATIO METHOD SYSTEMATIC

Determine systematic by applying Bosted ratio method to data I could unfold Comparison of the two gives the systematic

- Take weighted average (RC_Bosted/ RC_Unfold) for each spectrum
 - Weight is 1 over the propagated systematic error on the above ratio
- Then average each spectrum to get systematic
- Limit comparison to lowest W of spectrum I ultimately want to apply this method to
 - 4209 / 6 degrees:
 - W > 1575 -> Sys = 4.7%
 - 3775 / 9 degrees:
 - W > 1281 -> Sys = 6.5%
 - 4404 / 9 degrees:
 - W > 1641 -> Sys = 4.5%

University of New Hampshire