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TALK OUTLINE 
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Detectors 

•  Overview of the Small Angle GDH experiment 

•  Overview of the Mo and Tsai radiative corrections scheme 

•  Elastic tail subtraction systematic error 

•  Inelastic radiative corrections systematic error 

•  Results for the Small Angle GDH experiment nitrogen data set 



•  Jefferson Lab Hall A experiment  
•  Polarized He3 gas target 
•  Nitrogen data set as well 
•  Inclusive measurement 

•  Low Q2  data ( 0.02 to 0.35 GeV2)  
•  Systematic error analysis focused on 

low Q2 nitrogen data set 
•  Data set split among 6°/9° 

scattering and also partial/full W 
coverage 

SMALL ANGLE GDH 
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‘Classic’ radiative corrections scheme  
•  L.W. Mo and Y.S. Tsai, Rev. Mod. Phys 41, 205 (1969) 
•  Y.S. Tsai, SLAC-PUB-848 (1971)  

•  Target structure accounted via structure functions 

•  Scheme is model independent 

•  Mathematic formulation is non-covariant 

•  Diff between hard/soft photons done with Δ parameter 

•  Results should be independent of  parameter 
•  Systematic error analysis applies to set of FORTRAN 

codes: ROSETAIL and RADCOR 
•  Your mileage may vary 

MO/TSAI RADIATIVE CORRECTIONS 
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ELASTIC TAIL SUBTRACTION 
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Elastic tail is accounting of all possible ways electron can lose energy 
and then scatter elastically into the detectors. Calculation includes: 

•  Elastic Form Factors 
•  FF’s are calculated in first Born approximation (only single photon exchange) 
•  Correction factor applied to take into account higher order virtual photon diagrams 
•  Ignore anything happening at the hadron vertex 

•  Bremmstrahlung (emission of real photons) 
•  Internal bremm. – occurs within the Coulombic field of the target nucleus 
•  External bremm. – occurs within the Coulombic field of anything but the target 

•  Technically not bremm. but external tail also includes collisional/ionizational energy loss 
(colliding with atomic electrons) 

•  Multiple photon corrections 
•  Mo/Tsai assume single bremm. photon is emitted but in reality an infinite number 

of photons share the energy of that one photon 
•  Mo/Tsai apply correction to both internal/external corrections to account for this 



FORM FACTORS AND THE BORN 
APPROXIMATION 
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Systematic uncertainty to first Born 
approximation assumption? 

•  Should be small because nitrogen is a light 
nucleus and saGDH is at low Q2  

•  Source papers: 
•  P. Barraeau et al., “Deep-Inelastic Scattering from 

Carbon.” Nucl. Phys. A402 515-540 (1983) 
•  E. Borie, “Correction to the Formula for the Radiative Tail 

in Elastic Electron Scattering.” Lettere Al Nuovo Cimento 
1 106 (1971) 

•  They estimate the contribution as: 

 
 
 
 

 

•  Nitrogen form factor fit from E.B. Dally et al., Phys. Rev. C 2 2057 (1970) 
•  Additional data found to check the fit and fill in low Q2 portion 
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Results in systematic error for Z = 7 and θ = 6.0 of δ~0.8% 



Mo/Tsai give their virtual photon corrections as sum of (call it      ) : 
•  Vacuum: 

   
•  Vertex (non-infrared divergent): 

•  Schwinger (soft-photon/non-infrared divergent): 

•  There is also a normalization term for the external bremsstrahlung: 
•  Given as                                     where b=4/3 and t is the sum of the radiation lengths 

•  Obviously could have vacuum loops according to muon and tau leptons 

•  Could also have quark loops in the vacuum diagram  

•  And also hadron vertex photon emission! 

 

MT HIGHER ORDER LOOPS 
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AN UPDATED ‘FBAR’ 
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A full formula (not in limit Q2 >> me
2) for vacuum contribution is given in a 

variety of references: 
•  B. Badalek, D.Bardin, K. Kurek and C. Scholz, “Radiative Corrections Schemes in Deep Inelastic Muon 

Scattering” arxiv:hep-ph/940328v1 (1994). 
•  S. Dasu et al., “Measurement of Kinematic and Nuclear Dependence of R = SL/ST in Deep Inelastic Electron 

Scattering” Phys. Rev. D49 5641 (1994). 

 

•  Ignoring quark loops because they’re sensitive to the quark mass and all 
parameterizations I found of this effect are at Q2 > 1 GeV2 

•  Ignoring γ – Z interference terms as well  
•  Comparison between the M/T and updated vacuum diagram ‘FBar’ (1 + δ): 

•  MT: Q2 = 0.05 GeV2  -> ‘FBar’ =  1.0577 && Q2 = 0.02 GeV2  -> ‘FBar’ =  1.053 
•  Updated: Q2 = 0.05 GeV2  -> ‘FBar’ =  1.0625 && Q2 = 0.02 GeV2  -> ‘FBar’ =  1.056 

Systematic for ‘Fbar’ term is δ~0.4%. 
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TARGET RADIATION 
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MT neglect any kind of target radiation for the internal elastic tail 
•  Sources for including this effect: 

•  G. Miller et al. “Inelastic Electron-Proton Scattering at Large Momentum Transfers and the Inelastic Structure 
Functions of the Proton.” Phys. Rev. D 5 528 (1972). 

•  Guthrie Miller Ph.D thesis: “Inelastic Electron Scattering at Large Angles” Stanford 1971. 
•  S. Stein et al. “Electron Scattering at 4° with Energies of 4.5-20 GeV”, Phys. Rev. D 12 1884 (1975) 
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•  At ν = 1200 MeV (E = 2135 Mev/θ = 6°): 
•  Rt = 1.00019 so the systematic is negligible 

 for nitrogen scattering at saGDH kinematics 



MULTIPLE SOFT-PHOTON 
CORRECTION 
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Multiple photon correction applied to both internal and external tail 

•  Correction given by MT and Stein in the following papers 
•  Y.S. Tsai, “Radiative Corrections to Electron Scattering.” SLAC-PUB-848 1971 
•  S. Stein et al.,”Electron Scattering at 4° with energies of 4.5-20 GeV.” Phys. Rev. D 12 1884 (1975). 

•  MP is sizable correction (at saGDH kinematics) to tail ranging in value from 
~0.60 to ~0.90 as you go from low-ν to high-ν 

•  Especially important where tail is large! 
•  Quoting Tsai: “There is some uncertainty in the validity of the [MP] 

factor. We know that this factor is correct when ws/Es and wp/(Ep+wp) 
are small.” 
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G. MILLER MULTIPLE SOFT-PHOTON 
CORRECTION 
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Guthrie Miller’s thesis offers an alternative MP correction term 
•  Assuming only external effects Miller gives exact external bremm. tail as 

(this includes multiple photon processes) 
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•  k is soft-photon limiting energy 
•  Can compare exact equation to approximate equation to determine k/MP contribution 
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MULTIPLE SOFT-PHOTON 
CORRECTION COMPARISON 
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•  Big difference at large v for nitrogen 
•  Agreement at lower v (all photons are soft) 

•  Tsai (SLAC PUB) stated that MT factor is correct here so this 
makes sense 

•  How does it affect the tail subtraction? 

Dipole form factors 

saGDH kinematics: 

Nitrogen Proton 



SAGDH N2: 2845/6° 
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Tsai MP Correction Miller MP Correction 

•  Assume MP correction also holds/applies to internal elastic tail 
•  Same effect anywhere the tail is large 
•  Use Miller factor for final analysis 
•   Model: P.E. Bosted, V. Mamyan, “Empirical Fit to Electron-Nucleus Scattering”, arxiv.org/abs/1203.2262 (2012) 



SUMMARY OF ELASTIC TAIL RESULTS 
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Total Elastic Tail Systematic Error for saGDH: 
•  2% for loop diagrams/first Born approximation/internal tail integration/soft-photons/

energy-peaking approximation 

•  Estimate soft-photon systematic error by looking at factor’s sensitivity to form 
factor fit and value of equivalent radiator for internal contribution 

•  Energy-peaking approximation systematic is estimated in Tsai’s SLAC PUB 
•  4-15% for form factor error (comparing world data to fit) 

•  Break it up into internal and external contributions 
•  External limited to world data within Q2 range of data 
•  Internal 1/Q4 weighted over all of world data 

•  1% and less for choice of external straggling function 

•  Compare MT and Miller external straggling functions 
•  Apply bin-by-bin 

•  Elastic tails calculated using monte-carlo 

•  Takes into account acceptance/extended target effects 
•   V. Sulkosky, “Update on Corrections to Radiative Tails for E97-110”, E97-110 Tech-Note (2015). 

http://hallaweb.jlab.org/experiment/E97-110/tech/punchthru_update.pdf 



INELASTIC RADIATIVE CORRECTIONS 
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Some errors carry over from the elastic 
tail so don’t redo them: 

•  ‘Fbar’ (higher order virtual photon corrections) 
•  Energy-peaking approximation used in evaluating 

external corrections 
•  Born approximation  

New potential sources of error 
•  Angle-peaking approximation in internal 

bremsstrahlung 
•  Soft photon correction factor 
•  Interpolation/extrapolation error on unfolding 

procedure 
•  Including using a model as source for lowest 

energy setting to RADCOR input 
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INELASTIC INTERNAL BREMSSTRAHLUNG 
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•  Inelastic isn’t limited to W = MT  so the inelastic internal contribution is the 
elastic internal tail integrated over all possible Mf : 

 

 

 

 

 

•  Δ parameter avoids a divergence at ω = 0 

•   Slightly tweaked version of (B.6) of MT, but it keeps choice of fbar consistent across  
calculations (See B. Badalek et al. arxiv:hep-ph/940328v1 (1994).) 

•  Structure functions evaluated at most probable energy loss kinematics 
•  Takes into account photons radiating away energy 
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INELASTIC PEAKING APPROXIMATION 

May 16-19, 2016: JLab RC 17
 

Detectors 

The equivalent correction in the angle-peaking approximation is 
•  Dropping the soft-photon terms from the integrals. SLAC-PUB-848 (1971) (C.23) 

Angle peaking approximation is used because: 
•  Significantly faster ( <1 min to run compared to multiple hours for full integral)\ 
•  Majority of photon’s are emitted in same direction as incoming/outgoing electrons 
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INELASTIC INTERNAL BREMSSTRAHLUNG 
COMPARISON 
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Use P.E. Bosted and V. Mamyan model for comparison 

•  Full integral computation time 
~one week on my desktop 

•  Python calculation 
•  Proton calculation quicker 

•  Systematic is contribution to 
total radiated cross section 

•  Comparison between:  
•  (Low e + Ext + Int + Coll) 
•  (Low e + Ext + Full Int + Coll) 

•  Assume difference is a function 
of Ep and fit 

 



INELASTIC MULTIPLE SOFT PHOTONS 
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•  Separate but similar soft-photon 
terms for each integral  

•  Difference in soft-photon terms is 
smaller for inelastic 

•  Sufficient to use an approx 
value for Miller k  

•  Systematic error is variance 
between MT term and Miller terms 
for a range of k’s 

Compare soft-photon term from Mo/Tsai to Guthrie Miller 
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UNFOLDING SYSTEMATIC ERROR 
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Bosted 
Model 

Radiated 
Bosted 
Model 

Unfold/RC 
Bosted 
Model 

Compare 
•  Vary lowest energy model input 

•  Values for scale guided by 
comparison of radiated Bosted 
model vs. data 

Interpolated/smoothed data 



SUMMARY OF INELASTIC RESULTS 
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Total Inelastic Systematic Error for saGDH: 
•  1.5% for loop diagrams/first Born approximation/energy-peaking approximation 

•  Energy-peaking approximation systematic is estimated in Tsai’s SLAC PUB 
•  <1 – 3% differences in soft-photon terms 

•  <1 – 4% for angle peaking approximation 

•  <1 – 2% error in the unfolding procedure (driven by extrapolation) 

•  <1 – 8% error from the use of an input model for the lowest extrapolation energy 
•  Note: variance on unfolding procedure with different scattering angles within the 

angular acceptance is negligible  



CONCLUSION 
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•  Biggest potential systematic error in the 
Mo and Tsai inclusive radiation scheme 
comes from handling of soft-photon 
corrections 

•  Error coming from form factor 
parameterization isn’t a limitation of MT 

•  With requisite hardware possible to 
replace all peaking approximations with 
full integrations 

•  Did not consider removing energy-
peaking approximation in this analysis 

•  Full results written up and can be found in 
my tech-note at 

•  R. Zielinski,E08-027 (G2P) Tech-Note, 
https://hallaweb.jlab.org/wiki/index.php/
G2p_technotes#E08-027_Technical_Notes (2016). 



BACK-UP SLIDES 
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FULL INTERNAL BREMSSTRAHLUNG 
INTEGRAL 
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For the elastic tail, the full expression for the internal bremsstrahlung is 

 
 

 



EXACT INTERNAL ELASTIC TAIL 
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MT give an exact form of the internal bremm. in eq. B5  
•  Exact means 1st Born approximation and no target radiation 

•  The equation is an integral with potential for a divide by zero error. MT say to 
ignore this small point in numerical integration.  
•  ROSETAIL has custom integration routine to account for this  
•  What about using a more modern integration method?  

•  Potentially big enough deal that Maximon /Williamson wrote a paper on how 
to avoid divide by 0. (Paper also helped speed up the calculation) 

•  L.E Maximon and S.E Williamson, “Piecewise Analytic Evaluation of the Radiative Tail from Elastic and Inelastic 
Electron Scattering”, Nucl. Instrum. Meth. A258 95 (1987) 

•  Comparison between ROSETAIL/python integration of B5 (nb/MeV sr): 
•  RT: ν = 10 MeV -> XS =  2282 && ν = 1200 MeV  -> XS =  329 
•  PY: ν = 10 MeV  -> XS =  2290 && ν = 1200 MeV  -> XS =  330 

•  Systematic for numerical integration is ~0.4%. 
•  Systematic contribution to total tail (internal + external) is ~0.2% 



A FEW ODDS AND ENDS 
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Inelastic RC Process •  Use difference method to 
correct quasi-elastic peak and 
ratio method for rest of 
spectrum  

•  Helps control systematic error 

•  Systematic errors are applied to 
the RC correction factor and then 
propagated in the standard 
fashion 

•  Use the Bosted model method 
for bin-centering 

•  Small correction 
•  Kept the absolute value of the 

statistical uncertainty constant 



BOSTED RATIO METHOD SYSTEMATIC 
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Comparison of the two gives the 
systematic 

•  Take weighted average (RC_Bosted/
RC_Unfold) for each spectrum  

•  Weight is 1 over the propagated 
systematic error on the above 
ratio 

•  Then average each spectrum to get 
systematic 

•  Limit comparison to lowest W of 
spectrum I ultimately want to apply 
this method to 

•  4209 / 6 degrees:  
•  W > 1575 -> Sys = 4.7% 

•  3775 / 9 degrees:  
•  W > 1281 -> Sys = 6.5% 

•  4404 / 9 degrees:  
•  W > 1641 -> Sys = 4.5% 

Determine systematic by applying Bosted ratio method to data I could unfold 


