Coulomb Corrections in Deep Inelastic Scattering from Nuclei

Dave Gaskell

Jefferson Lab

Precision Radiative Corrections for Next Generation Experiments

May 17, 2016

1. Coulomb corrections in electron nucleus scattering
2. Application to inelastic/DIS processes
3. Examples
 → EMC effect measurements
 → Re-analysis of SLAC E140
4. JLab Experiment 12-14-002: Nuclear Dependence of R
Heavy Nuclei and Coulomb Distortion

Electrons scattering from nuclei can be accelerated/decelerated in the Coulomb field of the nucleus. This effect is in general NOT included in most radiative corrections procedures. Important to remove/correct for apparent changes in the cross section due to Coulomb effects.

In a very simple picture – Coulomb field induces a change in kinematics in the reaction:

\[E_e \rightarrow E_e + V_0 \]
\[E_e' \rightarrow E_e' - V_0 \]

\[V_0 = 3\alpha (Z-1)/2R \]

Electrostatic potential energy at center of nucleus
Coulomb Corrections in QE Processes

Importance of Coulomb Corrections in quasi-elastic processes well known

Gueye et al., PRC60, 044308 (1999)

Distorted Wave Born Approximation calculations are possible – but difficult to apply to experimental cross sections

→ Instead use Effective Momentum Approximation (EMA) tuned to agree with DWBA calculations

EMA:

\[E_e \rightarrow E_e + V_0 \]
\[E_e' \rightarrow E_e' - V_0 \]

with “focusing factor” \(F^2 = (1-V_0/E) \)

\[V_0 \rightarrow (4/5)V_0, \quad V_0 = 3\alpha(Z-1)/2R \]

\(V_0 = 10 \text{ MeV for Cu, } 20 \text{ MeV for Au} \)

Coulomb Corrections in Inelastic Scattering

 - Perturbative expansion in powers of strength of Coulomb field
 - Effect of order $\mathcal{O}(Z^2 (Q^2)^2 (E_e + E'_e) / E_e E'_e < r >)$
 - “For any reasonable kinematics, this is completely negligible”

 - Estimates non-zero effect using Eikonal approximation
 - Applies estimates to vector meson production, not DIS

 - Coulomb Corrections for neutrino reactions
 - DWBA calculation that results in modifications to structure functions
 “at most 5%” effects for energies > 1 GeV
 - Final state particle only
Application: EMC Effect

JLab E03-103 measured σ_A/σ_D for light and heavy nuclei
→ Study modification of quark distributions in nuclei → **EMC effect**

σ_A/σ_D for Gold
A=197 Z=79

SLAC E-139
$E_e \sim 8\text{-}25$ GeV
$E_{e'} \sim 4\text{-}8$ GeV

JLab E03-103
$E_e \sim 6$ GeV
$E_{e'} \sim 1\text{-}2$ GeV

No Coulomb Corrections applied
Application: EMC Effect

Coulomb corrections significantly larger for JLab data → 5-10%, SLAC → 1-2%

\[\frac{\sigma_A}{\sigma_D} \] for Gold

A=197 Z=79

SLAC E-139

\[E_e \sim 8-25 \text{ GeV} \]

\[E_{e'} \sim 4-8 \text{ GeV} \]

JLab E03-103

\[E_e \sim 6 \text{ GeV} \]

\[E_{e'} \sim 1-2 \text{ GeV} \]

with Coulomb Corrections (both data sets)
DIS/Inelastic cross section:

\[
\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2(E')^2}{Q^4 \nu} \left[F_2(\nu, Q^2) \cos^2 \theta - \frac{2}{M\nu} F_1(\nu, Q^2) \sin^2 \theta \right]
\]

\[
F_2(x) = \sum_i e_i^2 xq_i(x)
\]

Quark distribution functions

\[
\frac{d\sigma}{d\Omega dE'} = \Gamma \left[\sigma_T(\nu, Q^2) + \varepsilon \sigma_L(\nu, Q^2) \right]
\]

\[F_1 \propto \sigma_T \quad F_2 \text{ linear combination of } \sigma_T \text{ and } \sigma_L\]

Measurements of EMC effect often assume \(\sigma_A/\sigma_D = F_2^A/F_2^D \)

\[\Rightarrow \text{this is true if } R=\sigma_L/\sigma_T \text{ is the same for A and D}\]

SLAC E140 set out to measure \(R=\sigma_L/\sigma_T \) in deuterium and the nuclear dependence of \(R \), i.e., measure \(R_A - R_D \)
$R_A - R_D$: E140 Re-analysis

E140 measured ϵ dependence of cross section ratios σ_A/σ_D for $x=0.2, 0.35, 0.5$
$Q^2 = 1.0, 1.5, 2.5, 5.0$ GeV2
Iron and Gold targets

$R_A - R_D$ consistent with zero within errors

No Coulomb corrections were applied

Large ϵ data: $E_e \sim 6-15$ GeV $E_{e'} \sim 3.6-8$ GeV
Low ϵ data: $E_e \sim 3.7-10$ GeV $E_{e'} \sim 1-2.6$ GeV

[E140 Phys. Rev. D 49 5641 (1993)]
Re-analyzed E140 data using Effective Momentum Approximation for published “Born”-level cross sections.

→ Total consistency requires application to radiative corrections model as well.

Including Coulomb Corrections yields result 1.5σ from zero when averaged over x.
Interesting result from E140 re-analysis motivated more detailed study
→ $x=0.5$, $Q^2=5$ GeV2

→ Include E139 Fe data
→ Include JLab data
 Cu, $Q^2=4-4.4$ GeV2

Normalization uncertainties between experiments treated as extra point-to-point errors

No Coulomb Corrections → combined analysis still yields
$R_A-R_D \sim 0$

$R_A-R_D = -0.035 +/- 0.042$

No Coulomb Corrections
Interesting result from E140 re-analysis motivated more detailed study
→ $x=0.5$, $Q^2=5$ GeV2

→ Include E139 Fe data
→ Include JLab data
 → Cu, $Q^2=4-4.4$ GeV2

Normalization uncertainties between experiments treated as extra point-to-point (between data sets) errors

Application of Coulomb Corrections → R_A-R_D 2 σ from zero
2007 Nuclear target ratios
→ 300 LT separations for $R_A - R_D$ for $Q^2 > 1.5$ GeV2

Additional beam energies from 2005 not shown

→ Precision extraction of separated structure functions on D, Al, C, Fe/Cu
→ Search for nuclear effects in F_L, R
→ Neutron and p-n moment extractions (compare to lattice calculations)
→ Allow study of quark-hadron duality for neutron, nuclei separated structure functions

F_2, F_L, R on Deuterium and heavier targets
Prefatory text: Preliminary results from E02-109/E04-001/E06-009 also suggest $R_A - R_D < 0$ at large x.

→ Resonance region

→ Similar results for heavier targets

\[\Delta R \text{ in Resonance Region} \]

\[\xi_{TM} = \frac{Q^2}{M \nu [1 + \sqrt{1 + Q^2 / \nu^2}]} \]

A. Bodek, PoS DIS2015 (2015) 026
$R_A - R_D$ at Large x

- Evidence is suggestive that $R_A - R_D < 0$ at large x
 - Effect is not large – depends on precision of the experimental data
 - Coulomb corrections are crucial to observation/existence of this effect \rightarrow CC has significant dependence on electron energy, varies between ϵ settings
- Implications of $R_A - R_D < 0$
 - F_1, F_2 not modified in the same way in nuclei
 - What does this mean for our understanding of the EMC effect?
- Additional data (dedicated measurement) in DIS region required
Precision Measurements and Studies of a Possible Nuclear Dependence of $R = \sigma_L / \sigma_T$
(S. Malace, M.E. Christy, D. Gaskell, C. Keppel, P. Solvignon)

Measurements of nuclear dependence of structure functions, $R_A - R_D$ via direct L-T separations

Detailed measurements of x and Q^2 dependence for Copper target
→ A dependence at select kinematics using C and Au
Experiment will study $R_A - R_D$ in both the EMC effect and anti-shadowing regions.

Overlap previous L-T separated data but will extend to both smaller and larger x.
Coulomb corrections play important role in extraction of $R_A - R_D$

The procedure we use currently is *ad-hoc*

→ Application of modified EMA not rigorously justified for inelastic scattering

For new, precision data from Hall C, we would like to be on firmer theoretical footing

Coulomb Corrections and $R_A - R_D$

\[R_A - R_D = -0.035 \pm 0.042 \]

\[\epsilon' = \frac{\epsilon}{1 + \epsilon R_D} \]

No Coulomb Corrections

With Coulomb Corrections

\[R_A - R_D = -0.084 \pm 0.04 \]

\[\epsilon' = \frac{\epsilon}{1 + \epsilon R_D} \]
Summary

• Coulomb acceleration from “extra” protons in nucleus often neglected in analysis of DIS/Inelastic electron scattering data

• Formalism for applying Coulomb corrections in QE processes under control (EMA vs. DWBA comparison)
 – No simple prescription rigorously demonstrated for inelastic scattering

• Re-analysis of SLAC E140, combined analysis with E139+JLab data suggests non-zero R_A-R_D
 – JLab/Hall C data from 2005/2007 will address this with superior systematic and statistical errors
 – Non-zero R_A-R_D has important ramifications for understanding the origins of the EMC effect

• JLab Experiment 12-14-002 will provide new, precise data to measure R_A-R_D at large x
 – Correct/tested Coulomb Corrections procedure needed to properly interpret this data
Extra
Heavy Targets - Coulomb Corrections

• Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons
 – Not accounted for in typical radiative corrections
 – Usually, not a large effect at high energy machines – **not true at JLab (6 GeV!)**

• E03-103 uses modified Effective Momentum Approximation (**EMA**), *Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)*
 – $E \rightarrow E+\Delta, E' \rightarrow E'+\Delta$
 – $\Delta = -\frac{3}{4} V_0$, $V_0 = 3\alpha(Z-1)/(2r_c)$

![Graph showing the comparison of $\sigma_{\text{Born}}/\sigma_{\text{CC}}$ for Au at 50 and 40 degrees](image)
New measurement of the EMC effect in light nuclei in Hall C

- Both A and density dependent fits fail
- **Be structure suggests “local density” picture**
 - Cluster structure dominated by $2\alpha + n$
 - Ave. density low, but all protons in α-like clusters

Linear fit between $x=0.3-0.7$

[J. Seely et al, 103:202301 (2009)]