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Motivation

• Muon physics is a great place for developing tools 
and methods that can be used elsewhere 

• Muons serve well as a QED laboratory 

• Clean theoretical framework — perturbative and 
well measured 

• Easy to test complicated QCD objects/EFT
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Results and methods
2 loops muon decay spin 
asymmetry  
(F. Caola, A. Czarnecki, Y. Liang, 
K. Melnikov, R.S.) 

Bound muon decay 
spectrum in the shape 
function region (A. Czarnecki, 
M. Dowling, X. Garcia i Tormo, 
W. J. Marciano, R.S.) 

Bound muon decay 
spectrum close to the 
endpoint (R.S., A. Czarnecki)  

✦ Structure function  

✦ Perturbative fragmentation 
function 

✦ Shape function 

✦ HQEFT 

✦ Sector decomposition 

✦ Jet algorithm 

✦ Region expansion
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Part I 
Muon spin asymmetry 

or 
What we can learn from 
QCD about asymmetry?
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Muon decay asymmetry
• Measured in TWIST experiment in TRIUMF (2011) 

• NLO with electron mass dependence calculated in 
2001 by Arbuzov 

• Note that the NNLO correction to the total decay 
width was known since 1999 (van Ritbergen, 
Stuart) 

• Useful to study V-A structure of interaction
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NNLO asymmetry
• We used method developed in pQCD to extract 

soft and collinear divergences in a systematic way. 

• sector decomposition 

• phase-space partitioning 

• There is an intrinsic ambiguity in the spin 
asymmetry at the NNLO 

• The ambiguity is related to the          pair production

Czakon, 2010

e+e�

7



Some technical remarks
• Amplitudes were calculated using spinor helicity 

formalism 

• Subtraction terms are lower order amplitudes with 
appropriate splitting function (or eikonal factors) 

• Framework developed for fully differential  decays 
of heavy quarks was used

Brucherseifer, Caola, Melnikov, 2013
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NNLO ambiguity

• Electron positron pair is 
indistinguishable from a photon in a 
collinear limit 

• Which electron should define the muon 
quantization axis?  

• Similar issue: the forward-backward 
asymmetry and possibly other spin-
depend observables.  

 Weinzierl, 2007
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… then the asymmetry is calculated with 
respect to photon momentum…
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… then the asymmetry is calculated with 
respect to photon momentum…

…while in the virtual part there is always 
 one electron and therefore no ambiguity
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Asymmetry at the NNLO
• Ambiguity makes the asymmetry not an infra-red 

safe observable (and we neglected the electron 
mass!)  

• Large logarithmic corrections to asymmetry at the 
NNLO 

• To solve both problems we invoke the jet concept 

‣ Traditional jest algorithms are flavor blind 

‣ Durham algorithm allows tracking the jet “flavor”
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Jet algorithm

• Soft photon + Hard electron 

• Hard photon + Soft electron 

• Collinear electron + Positron

y(F )
ij =

2(1� cos ✓ij)

m2
µ

⇥
⇢

max(E2
i , E

2
j ), softer of i, j is flavored,

min(E2
i , E

2
j ), softer of i, j is flavorless.

electron

no recombination

photon

Guarantees IR and collinear safety 
Banfi, Salam, 

Zanderighi, 2006 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• Iteratively recombine if  

• Physically motivated recombination angle 

• Typical electron jet size  

• Expected correction  

• No resummation needed for muon even though 

Electron jet
y(F )
ij < y

✓ ⇠ me/Ee

y ⇠ ✓2E2
e

m2
µ

⇠ m2
e

m2
µ

⇠ 2⇥ 10�5

⇠ ↵2 ln 1/y

ln 1/y ⇠ 12
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Dependence on the jet 
resolution

• Full NNLO 
calculation 

• Neglected electron 
mass 

• Introduced electron 
jet instead 

• Logarithmic part is 
small for muon 
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Numerical result
Logarithmic fit

a2 = 9.5(1)� 0.14(1) ln y

mµ = 105.658MeV

 Caola, Czarnecki, Liang, 
Melnikov, Szafron, 2014
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• No dependence on the jet resolution in the LO
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• No dependence on the jet resolution in the LO
• Weak dependence in the NLO
• Strong dependence in the NNLO
• The more inclusive is the observable the weaker is the 

dependence and the correction smaller
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The result
� = �0


1� 1.81

↵

⇡
+ 6.74

⇣↵
⇡

⌘2
�

A = A0


1� 2.95

↵

⇡
+ 11.2(1)

⇣↵
⇡

⌘2
�

Corrections to asymmetry are typically larger than correction 
to the total decay width 

Total decay width is infrared finite and independent of y. 

NNLO corrections to asymmetry are more important than the 
finite electron mass corrections
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Part II 
Bound muon decay 

or 
What we can learn from 

QED about heavy mesons?
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Muon DIO

Muon DIO: standard muon 
decay into an electron and two 
neutrinos, with the muon and a 
nucleus forming a bound state 

For DIO momentum can be 
exchanged between the 
nucleus and both the muon 
and the electron 

Al

μ

e

⌫̄e ⌫µDIO — Decay In Orbit

22



Muon
Heavy 

quark of 
QED

Muonic 
atom

QED 
heavy 
meson
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DIO Spectrum

1

2
mµ mµ

24



Characteristic scales of 
muonic atom

Al

μ

MAl � mµ � mµZ↵ � mµ(Z↵)2

MAl

mµ

Z↵mµ

(Z↵)2mµ

nucleus mass

muon mass

muon momentum

muon binding energy

electron cloud ⇠ me
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Endpoint energy
E

max

= m
µ

+ E
b

+ E
rec

Eb ⇡ �mµ
(Z↵)2

2
Binding energy

Erec ⇡ �
m2

µ

2mN

Recoil energy 

Both corrections decrease the endpoint energy

(kinetic energy of the nucleus)(+ higher orders)
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MAl ! 1

A. Neglect recoil corrections — nucleus is a static  
 source of EM field

mµ(Z↵)2,me ! 0

B. Neglect higher orders in Z↵ and me

Two scales and the external Coulomb potential 

hard scale 

soft scale
mµ

Z↵mµ

Schwinger background 
 field method

Simplification
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Comparison with mesons 
containing heavy quarks

• Decay of a heavy particle in the presence of soft 
background 

• No dependence on the nucleus spin in the LO 

• Muon momentum  

mµ  ! mq Z↵mµ  ! ⇤QCD

Pµ = mµvµ + kµ k ⇠ mµZ↵
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How to describe the central 
region of the spectrum

Typical momentum 
transfer between 
nucleus and muon is of 
the order of 

We need resummation 

Dominant effect — 
muon motion in the 
initial state

Central  
Region

mµZ↵
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Shape function 
In QCD part of the decay spectrum can be described by the 
shape function 

QED muon shape function  

 
 
 

S(�) =

Z
d3x ?(x)�(�� n · ⇡) (x)

Muon wave-
function Covariant 

derivativeLight-like vector 
(electron velocity)

30

Neubert 1993; Mannel, Neubert 1994; Bigi, 
Shifman,Uraltsev, Vainshtein, 1994



Shape function — basic idea

• Electron propagator in the external field 

• We are interested only in the leading corrections

µ e

ν

ν

⇡µ = i@µ � eAµ

1

(pe + ⇡)2
⇡ 1

p2e + 2pe · ⇡
! �(p2e + 2pe · ⇡)
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Shape function
For a point-like nucleus the shape function can be 
calculated analytically

S(�) =
8m5

µZ
5↵5

3⇡
⇥
�2 +m2

µZ
2↵2

⇤3 .
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Szafron, Czarnecki 2015

Shape function 
 describes muon 

momentum distribution
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Power counting
•                                 (muon momentum in an atom) 

• Shape function behaves as 

• First moment is zero in the leading order  

• Second moment 

� ⇠ p2e
2Ee

⇠ mµZ↵

S(�) ⇠ 1

Z↵

Z
d��2S(�) =

1

3
(mµZ↵)2

Z
d��S(�) = 0 Bigi, Uraltsev, Vainshtein, 1992

Remember Z↵mµ  ! ⇤QCD
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Endpoint 
expansion

Near the endpoint the dominant 
contribution comes form the 
exchange of hard virtual 
photons. 

mµ

�Free

d�

dEe
⇡ 1024

5⇡
(Z↵)5

✓
�

mµ

◆5

� = E
max

� E
e

µ

Nucleus

eµ µ ee

q2 = �m2
µ

End- 
point 

Region

Szafron, Czarnecki 2015

Like a tail of  
heavy quark  

spectrum



Endpoint Radiative 
corrections

Two large effects: 

a) Emission of collinear photons reduces 
the number of events in the endpoint 
region 

b) Large vacuum polarization correction 
increases the spectrum near the 
endpoint 

⇠ ln
mµ

me

⇠ ln
mµ

me
⇠ ln

Z↵mµ

me

1

me
� 1

mµZ↵
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Endpoint region
• Large higher order corrections in  

• Very sensitive to the nucleus charge distribution

Z↵ (~20%)

(~50%)

Both corrections can be easily incorporated 
into the numerical computation 

q2 = �m2
µPhotons with                      can probe nucleus interior
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Fragmentation function

with the perturbative fragmentation function

De(x) = �(1� x) +
↵

2⇡
ln

 
m

2
µ

m

2
e

!
P

(0)
ee (x) + . . .

P

(0)
ee (x) is the electron splitting function

d�LL

dEe
=

d�LO

dEe
⌦De
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Arbuzov, Czarnecki,  
Gaponenko 2002 
Arbuzov, Melnikov 2002  
Arbuzov, 2003
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Summary
• There is a large overlap between methods used to 

solve different problems 

• Large corrections to asymmetry at the NNLO can 
be expected 

• We can improve the DIO spectrum prediction with 
the help of shape function and fragmentation 
function and we can better understand the 
structure functions
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