

Measurement of Target Single-Spin Asymmetries using Polarized ³He in Quasi-Elastic and DIS Scattering

Todd Averett, *College of William and Mary* on behalf of the Jefferson Lab Hall A and Polarized ³He collaborations

- Jefferson Lab Hall A
- ³He(e,e'), target polarized <u>normal</u> to electron scattering plane
- > Unpolarized e^{-} beam, E= 1-6 GeV

Two-photon Exchange

N

l(k)

Ν

- Typically dominates unpolarized polarized N(e,e') scattering.
- $G_{E}, G_{M}, F_{1}, F_{2}, g_{1}, g_{2}, SIDIS$

Two-photon exchange Loop contains:

- entire elastic and inelastic nucleon response
- New tool to test nucleon models.

N

Elastic Form Factor Ratio, G_E^p/G_M^p vs. Q^2

A. J. R. Puckett, Phys. Rev. C85 (2012) 045203

- Rosenbluth Separation vs.
 Recoil Polarimetry
- Inconsistency dramatically increases with Q²
- Dominated by one-photon exchange
 - Difference largely due to TPEX

$$\sigma_{R} = G_{M}^{2} + \frac{\varepsilon}{\tau}G_{E}^{2} + 2G_{M}\mathcal{R}\left(\frac{\delta\tilde{G}_{M}}{\delta} + \varepsilon\frac{\nu}{M^{2}}\tilde{F}_{3}\right) + 2\frac{\varepsilon}{\tau}G_{E}\mathcal{R}\left(\frac{\delta\tilde{G}_{E}}{\delta} + \frac{\nu}{M^{2}}\tilde{F}_{3}\right) + \mathcal{O}(e^{4}),$$
OPEX TPEX TPEX

T. Averett 5/18/16

A. Afanasev et al., Phys. Rev. D72 (2005) 013008

Two-photon Exchange in Target SSA Measurements

 $d\sigma_{UU} \propto \operatorname{Re}(\mathcal{M}_{1\gamma}\mathcal{M}_{1\gamma}^*)$

 $d\sigma_{UT} \propto \operatorname{Im}(\mathcal{M}_{1\gamma}\mathcal{M}_{2\gamma}^*)$

Unpolarized cross-section dominated by 1-photon exchange,
 *M*_{IY} is real (time-reversal invariance)*

Leading contribution to target SSA contains two-photon contribution
 *M*_{2y} is complex

Quasi-elastic Scattering

When two photon exchange is included, we can write

$$\begin{split} A_y &= \sqrt{\frac{2\,\varepsilon\,(1+\varepsilon)}{\tau}} \,\frac{1}{\sigma_R} \left\{ -\,G_M\,\mathrm{Im}\left(\delta\tilde{G}_E + \frac{\nu}{M^2}\tilde{F}_3\right) \right. \\ &+ \left.G_E\,\mathrm{Im}\left(\delta\tilde{G}_M + \left(\frac{2\varepsilon}{1+\varepsilon}\right)\frac{\nu}{M^2}\tilde{F}_3\right) \right\} \,, \\ \tau &\equiv Q^2/4M^2, \, \nu \,= \,\frac{1}{4}(k_\mu + k'_\mu)(p^\mu + p'^\mu) \qquad \varepsilon \equiv (1+2(1+\tau)\tan^2\frac{\theta}{2})^{-1} \end{split}$$

> The following contributions are <u>complex</u> and arise from two-photon exchange

Exactly zero for one-photon exchange

$$\delta \tilde{G}_E, \, \delta \tilde{G}_M \text{ and } \tilde{F}_3$$

- Inelastic contribution <u>modeled</u> at large Q² assuming interaction with a single quark and <u>using weighted moments of GPDs</u> (parameterization).
- Same model used for estimating two-photon exchange contribution to the unpolarized cross-section (G_e^p/G_M^p vs. Q²).
- > Measurement of A_{y} provides independent constraint of GPDs.

Polarized ³He Target

> Alkali-hybrid Spin-exchange Optical Pumping

Transfer tube

scattered e-

- Line narrowed lasers >100 Watts CW
- Effectively a polarized neutron target

Typical glass target cell

Target chamber

Laser ligh

e. hean

Experimental Setup

Beam Dump

- Spin flip every 20 minutes using RF-sweep NMR
- Calibrate polarization with EPR
- Minimize false asymmetries
- Small polarization losses

Using LHRS and RHRS in singles mode

E (GeV)	$\langle E' \rangle ~({ m GeV})$	$\langle \theta \rangle$ deg.	$\left< Q^2 \right> ({ m GeV}^2)$
1.245	1.167	17.0	0.127
2.425	2.170	17.0	0.460
3.605	3.070	17.0	0.967

Events Selection

Quasi-elastic Results for ³He

Smoking gun for large two-photon exchange contribution

> Large and negative at ~9 σ level (statistical)

- > Christ-Lee holds for (e,e') on ³He: $A_y=0$ for OPEX
- > No theory for A_y on ³He Theorists Please

Neutron Extraction

T. Averett 5/18/16

Two-photon Exchange in DIS

Kinematics

Measured ³He(e,e') SSA using

Large Acceptance BigBite Spectrometer and Left High Resolution Spectrometer

ſ	Detector	W	x	Q^2	$A_y^{^{3}\mathrm{He}} \pm (\mathrm{stat}) \pm (\mathrm{sys})$	$A_y^n \pm (\text{stat}) \pm (\text{sys})$	Pair-produced background	
		GeV		GeV^2	$(\times 10^{-3})$	$(\times 10^{-2})$	contamination $(\%)$	
ĺ	BigBite	1.72	0.65	3.98	$-0.45 \pm 2.79 \pm 0.53$	$-0.50 \pm 1.85 \pm 0.60$	1.0 ± 0.8	
l	BigBite	2.17	0.46	3.24	$-6.21 \pm 2.45 \pm 0.64$	$-3.78 \pm 1.49 \pm 0.50$	3.1 ± 1.1	
l	BigBite	2.46	0.34	2.65	$-8.52 \pm 1.98 \pm 1.52$	$-4.10 \pm 0.95 \pm 0.80$	9.5 ± 2.0	
l	BigBite	2.70	0.24	2.08	$-2.61 \pm 2.47 \pm 1.52$	$-1.21 \pm 1.18 \pm 0.71$	22.0 ± 4.5	
l	BigBite	2.89	0.17	1.58	$-8.35 \pm 4.35 \pm 5.36$	$-3.80 \pm 2.00 \pm 2.43$	48 ± 10	
ľ	LHRS	2.54	0.16	1.05	$-1.57 \pm 0.99 \pm 0.2$	$-0.64 \pm 0.41 \pm 0.09$	1.3 ± 0.05	

Luminosity Asymmetry

Small Downstream Luminosity Asymmetry

Consistently negative and non-zero for W>2 GeV

 Consistent with Metz et al. prediction using Sivers input for q-g-q correlator

J. Katich et al., Phys. Rev. Lett. 113 (2014) 022502

HERMES proton Consistent with zero for $Q^2 > 1$ GeV²

A. Airapetian et al., Phys. Lett. B682, 351 (2010)

DIS Results

Future DIS Measurements

- Calculation by M. Schlegel includes interactions between one and multi-quarks.
- > Proton asymmetry ~10⁻⁴ ; Neutron asymmetry ~10⁻²
- > Measure both targets with high precision vs. Q^2 .

Future DIS Measurement

- SoLID spectrometer, 2 approved experiments
- \rightarrow $\phi = 2 \pi$ coverage
- \succ E_{beam} = 8 and 11 GeV
- Transversely polarized proton and <u>neutron</u> (³He) targets
- > 7 bins in Q^2 , 1 8 GeV²
- Expected statistical uncertainty $2 \times 10^{-5} \rightarrow 4 \times 10^{-4}$

Quasi-elastic 3 He(e,e'n)

- > Detect recoil neutron during QE scattering.
- > Christ-Lee theorem doesn't apply for semi-inclusive scattering.
 - A_y can be non-zero for OPEX.
- > However, PWIA predicts $A_v = 0$.
- Sensitive to final state interactions/nuclear effects.
- > Unpublished NIKHEF result showed $A_v = 50\%$ at $Q^2 = 0.1$ GeV².
- > Precise tool for studying details of ³He wavefunction.

Preliminary Results

Summary

- First measurements of the inclusive target SSA using vertically polarized ³He in QE, DIS scattering.
- Quasi-elastic: Large SSA observed at Q² = 1 GeV²; Predicted by GPD moment model.
 - > Remains large down to $Q^2 = 0.14 \text{ GeV}^2$
 - TPEX important at low Q²
- > DIS: $\langle A_v \rangle = (-1.04 \pm 0.38) \times 10^{-2}$
 - > Much larger than predicted by Afanasev et al.
 - > Agreement with magnitude of Metz et al. prediction.
 - Sign agrees with Metz using Sivers SIDIS input; disagrees with sign using data from hadron-hadron collisions (KQVY).
- Precision DIS measurements of φ -dependence at high Q^2 possible with SOLID spectrometer at Jefferson Lab at 12 GeV.
- Precision results for SSA in 3 He(e,e'n). Strong Q² dependence.
 - \succ Sensitive to MEC and FSI in ³He.

DIS Backgrounds

- > BigBite: Pair produced e^+/e^- pairs from π^o decay.
 - Measure using positive polarity
 - >50% contamination in lowest momentum bin
 - 1% in largest momentum bin
 - Largest systematic uncertainty
- BigBite: π^{+/-} in e^{+/-} spectrum. No Cherenkov detector. Relatively poor PID using only EM pre-shower and shower calorimeter.
- > LHRS spectrometer, virtually background free.
 - Good PID
 - Highest momentum = negligible pair-electron contamination

Quasi-elastic Details

E (GeV)	$\langle E' \rangle ~({ m GeV})$	$\langle \theta \rangle$ deg.	$\left< Q^2 \right> ({ m GeV}^2)$	$A_y^{^{3}\mathrm{He}}(\%)$	f_n (Kelly)	$A_y^n(\%)$ (Kelly)	f_n (Deltuva)	$A_y^n(\%)$ (Deltuva)
1.245	1.167	17.0	0.127	$-0.126 \pm 0.015 \pm 0.027$	0.050	$-2.92{\pm}0.36{\pm}0.64$	0.044	$-3.32 \pm 0.40 \pm 0.72$
2.425	2.170	17.0	0.460	$-0.185 {\pm} 0.020 {\pm} 0.013$	0.117	$-1.78 \pm 0.26 \pm 0.16$	0.104	$-2.00\pm0.29\pm0.18$
3.605	3.070	17.0	0.967	$-0.199{\pm}0.019{\pm}0.013$	0.159	$-1.35 {\pm} 0.25 {\pm} 0.16$	-	-