Unraveling hadron P_T in SIDIS: Measurements and non-perturbative dynamics

C. Weiss (JLab), Precision Radiative Corrections Workshop, JLab, 16-19 May 2016

• What measurements can help determine the mechanisms producing hadron P_T in SIDIS?

Charged pion multiplicities: Separating favored-unfavored fragmentation

Lower W: Choice of kinematic variables

Transition photo/hadroproduction \leftrightarrow low- Q^2 electroproduction

Correlations current \leftrightarrow target fragmentation regions

• What does non-pert. QCD tell us about TMDs at low scales?

Short-range interactions in dynamical chiral symmetry breaking Intrinsic $p_T(\text{sea}) \gg p_T(\text{valence})$, parton short-range correlations

Hadron production in high-energy scattering

• High–energy scattering $\nu \gg \Lambda_h$

Large number of hadrons $\sim \log(
u/\Lambda_h)$

- Longitudinal momentum/energy
 - $z = E_h/
 u$ energy fraction rest frame $x_L = P_{hL}/P_{hL}^{\max}$ momentum fraction CM $\eta = \frac{1}{2}\log P_h^+/P_h^-$ rapidity
- Transverse momentum P_{hT} $P_{hT} \sim \Lambda_h$ "soft," $P_{hT} \gg \Lambda_h$ "hard"

• Theoretical approaches

Soft photo/hadroproduction: Regge expansions based on generalized optical theorem, hadronic structure of photon (VMD)

Hard processes $P_{hT} \gg \Lambda_h$: pQCD, collinear factorization

Electroproduction high Q^2 , low P_{hT} : TMD factorization

TMD factorization: Structure

$$egin{array}{rcl} rac{d\sigma}{dP_T} &\sim & \mathrm{FT}\;f(m{b}_T,x,\zeta_1,\mu) \ & imes\;D(m{b}_T,z,\zeta_2,\mu) \end{array}$$

- + "Y-term"
- $(P_T \ll Q, \ \zeta_1 \zeta_2 = Q^2)$

• QCD radiation, real and virtual

Effect different from inclusive σ : Sudakov suppression due to $P_T \ll Q$ Collins, Soper Sterman 84

 Separation in rapidity distribution ↔ fragmentation Collins 11, Collins Rogers. Also SCET-based approaches

Arbitrary, but contolled by ζ_1, ζ_2

• TMD distribution/fragmentation fns

QCD operator definition

Wilson lines describe QCD initial/final state interactions

Universality

• CSS evolution equations govern scale and rapidity dependence

Kernel involves non-perturbative structure: VEV of Wilson lines

TMD factorization: Questions

• Region of applicability?

Effective scale – where do perturbative dependencies become relevant? Is there a "natural" rapidity separation in SIDIS?

- Structure of TMD distribution and fragmentation functions? Relation to inclusive PFDs/FFs, hadronic structure? Valence vs. sea TMD PDFs, favored vs. unfavored TMD FF?
- Transition from low to high Q^2 ?

Matching of TMD factorization with hadronic description? Dynamical origin of soft P_{hT} ?

• Characteristics of small and large x?

 $x \gtrsim 0.1$: Non-singlet structures: valence quarks, non-perturbative sea $x \ll 0.1$: Singlets dominate, large radiative parton densities

† Measurements **†** Knowledge of non-perturbative dynamics

Measurements: Hadron multiplicity distributions 5

- Unpolarized hadron multiplicity distributions are the basic material for studying the mechanisms of P_{Th} generation and the applicability of TMD factorization. Publication of HERMES and COMPASS multiplicities was major advance!
- Need distributions differential in W, Q^2, z, P_{Th}

 $\leftarrow \textbf{QED rad corr}$

- Need actual P_{Th} distributions, not just Gaussian slopes at low P_{Th} . Tail at $P_{Th} \sim \text{few GeV}$ carries important pert & non-pert information
- Need flexible binning, cf. HERMES multiplicity downloader

Experiment	$W\left[\mathrm{GeV} ight]$	$Q^2 [{ m GeV}^2]$	x
HERA H1 Alexa13		5 - 100	$10^{-4} - 10^{-2}$
HERA ZEUS Derrick95	75 - 175	10 - 160	$10^{-4} - 10^{-2}$
E665 Adams97	7.5 - 30	0.15 - 20	$1.5 \times 10^{-4} - 0.6$
EMC Ashman91	6 - 20	2 - 250	0.01 - 1
COMPASS Adolph13	6 - 15	1 - 10	0.004 - 0.12
HERMES Airapetian12		1 - 15	0.023 - 0.6
JLab6 Hall C Mkrtchyan07		2 - 4	0.2 - 0.5
JLab6 CLAS Osipenko08		2 - 7	0.1 - 0.8

Summary of $eN/\mu N$ DIS experiments reporting hadron multiplicity distributions

Measurements: Favored vs. unfavored FFs

• Combined multiplicities $\pi^+ \mp \pi^ N(\pi^+ - \pi^-) \propto [\sum \text{PDFs}](x) \times [D_{\text{fav}} - D_{\text{unf}}](z)$ $N(\pi^+ + \pi^-) \propto [\sum' \text{PDFs}](x) \times [D_{\text{fav}} + D_{\text{unf}}](z)$

$$D_{\text{fav}} \equiv D_{u \to \pi+}, \quad D_{\text{unf}} \equiv D_{u \to \pi-} \quad \text{etc}$$

Separate unfavored and favored FFs. Model-indpendent!

Use deuteron and proton data Strangeness can be included

• Phenomenological analysis HERMES 2012 data. Strikman, CW 14/16

x and z dependences factorize \checkmark

Data reveal different shapes of unfavored and favored FFs \checkmark

6

Measurements: Favored vs. unfavored FFs

- Unfavored/favored FF ratio extracted from $\pi^+ \mp \pi^-$ data

Reasonable agreement between deuteron and proton data

Ratio surprisingly large at z > 0.5Dynamical explanation?

Simple analysis: Just plotting data

- Could be extended to *P*_T-dependent multiplicities
- Alt method: Convolution model fits Torino group: Prokudin et al.; Bacchetta et al. 13

Measurements: Kinematic variables for lower W 8

- Rich SIDIS data will become available at $W \lesssim < 4$ GeV with JLab12. Kinematics challenging for independent fragmentation or QCD factorization
- Size of apparent "change" of P_T distributions at low W depends on choice of longitudinal momentum variable \leftarrow QED rad corr

- Effect of different choices can be studied using data at higher W and/or MC simulations (are they accurate enough?)
- Theoretical models of low-W corrections are ambiguous: No separation between "kinematic" and "dynamical" effects

Measurements: Transition low to high Q^2 in SIDIS

CERN OMEGEA 89 data

Similar plots should be made with low– Q^2 electroproduction data, comparison at fixed W

• Dynamical origin of low- P_T hadrons in DIS at $Q^2 \sim \text{few GeV}^2$?

Non-perturbative dynamics?

Soft gluon radiation – CSS evolution?

• Explore transition between $Q^2 = 0$ and $Q^2 \sim {\rm few}~{\rm GeV}^2$

Photo– and hadroproduction have similar $P_{hT}\ {\rm distributions}$

Expect smooth transition between photoproduction and $Q^2 \sim {\rm few}~{\rm GeV}^2$

Successful studies of soft-hard transition at HERA: inclusive, exclusive, diffractive

• Enable hadronic modeling of P_T distributions at $Q^2 \sim \text{few GeV}^2$

Initial condition of CSS evolution

Measurements: Hadron correlations

• What is source of observed hadron $P_{T,h}$?

 $\left.\begin{array}{l} \text{Intrinsic } p_T \text{ in WF} \\ \text{Final-state interaction} \\ \text{Parton fragmentation} \end{array}\right\}$

obs. $P_{T,h}$

Cannot separate different sources with single-inclusive measurements alone

• Correlation measurements

What "balances" observed $P_{T,h}$?

Is $P_{T,h}$ balanced by broad distribution or single back-to-back hadron?

Where in rapidity is it balanced: Current, central, or target region?

Dynamical pictures: String fragmentation, parton short-range correlations

• Next-generation SIDIS measurements JLab12, EIC

Dynamics: Chiral symmetry breaking in QCD 11

• Chiral symmetry breaking

Non-perturb. gluon fields can flip chirality

Condensate of $q\bar{q}$ pairs $\langle \bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L \rangle$, pion as collective excitation – Goldstone boson

Dynamical mass generation: Constituent quarks, hadron structure Euclidean correlation functions \rightarrow Lattice, analytic methods

- Short–range interactions $\rho\sim 0.3\,{\rm fm}$

New dynamical scale $\rho \ll R$ Shuryak; Diakonov, Petrov 80's

Gauge-invariant measure of $q\bar{q}$ pair size $\langle \bar{\psi} \nabla^2 \psi \rangle / \langle \bar{\psi} \psi \rangle \sim 1 \text{ GeV}^2$ "average virtuality" Lattice: Teper 87, Doi 02, Chiu 03. Instantons: Polyakov, CW 96

• How does it affect partonic structure?

Valence quark mostly in configurations of size $\sim R$

Sea quarks in correlated pairs of size $\lesssim \rho$

Dynamics: Non-perturbative p_T distributions

$$f^{\bar{u}+\bar{d}}(x,p_T) \sim \frac{C^{\bar{u}+\bar{d}}(x)}{p_T^2 + M_{\text{const}}^2}$$

Power-like tail of sea quarks

• Dynamical model of χSB Diakonov, Eides 83; Diakonov, Petrov 86

Effective degrees of freedom: Constituent quarks, Goldstone bosons

Strongly coupled system, solved non-perturbatively in $1/N_c$ expansion $_{\rm Nucleon\ as\ chiral\ soliton}$

PDFs at scale $\mu^2 \sim \rho^{-2} \approx 0.5 \, {\rm GeV}^2$

Transverse momentum distributions
 Schweitzer, Strikman, Weiss, JHEP 1301 (2013) 163

Valence quarks: Drops steeply, $\langle p_T^2 \rangle \approx 0.15 \, {\rm GeV}^2 = O(R^{-2})$

Sea quarks: Power-like tail extends up to cutoff scale ρ^{-2}

Generic feature, rooted in $\chi {\rm SB}$ and dynamical scales $\rho \ll R$

Similar tail in $\Delta \bar{u} - \Delta \bar{d}$

Dynamics: Non-perturbative p_T consequences

 $P_T(pp) > P_T(\bar{p}p)$ seen in FNAL DY data Aidala, Field, Gamberg, Rogers 14

• SIDIS: Different $P_{T,h}$ distributions of hadrons produced from valence and sea quarks Schweitzer, Strikman, CW 13

 $\begin{array}{ll} \pi^+ - \pi^- \sim u - \bar{u}, \ d - \bar{d} & \mbox{valence} \\ \pi^+ + \pi^- \sim u + \bar{u}, \ d + \bar{d} & \mbox{valence} + \mbox{sea} \\ \\ K^+ \sim u & \mbox{mostly valence} \\ K^- \sim \bar{u} & \mbox{sea} \end{array}$

Need better understanding of fav/unfav FF at $z\,>\,0.5$ to make quantitative predictions

• Dileptons: Different $P_{T, \text{pair}}$ distns in $pp/p\bar{p}$

 $egin{array}{lll} pp & ext{valence} imes ext{sea} & x_{1,2} \gtrsim 0.1 \ ar{p}p & ext{valence} imes ext{valence} \end{array}$

Need $pp/\bar{p}p$ in same kinematics, $P_{T,\mathrm{pair}} \lesssim 1~\mathrm{GeV}$

• Large p-n differences, isovector structures, in longitud. polarized SIDIS at $P_{T,h} \gtrsim 1 \text{ GeV}$

Dynamics: Parton short-range correlations

• Parton short-range correlations

Sea quarks in nucleon LC wave function in correlated pairs of size $\rho \ll R$ Explains high-momentum tail of p_T distribution

Pairs have distinctive spin-isospin structure: Scalar–isoscalar σ , pseudoscalar–isovector π

Restoration of chiral symmetry at high p_T : $|\Psi_\sigma|^2 = |\Psi_\pi|^2$ at $p_T^2 \sim \rho^{-2}$

• Cf. NN short-range correlations in nuclei

Mean field $\Psi(\boldsymbol{r}_1, ... \boldsymbol{r}_N) \approx \prod_i^N \Phi(\boldsymbol{r}_i)$

Rare configs with $|\boldsymbol{r}_i - \boldsymbol{r}_j| \ll$ average experience short-range NN interaction, generate high momentum components

Indirect probes: Momentum distributions, x>1 Direct probes: $(e,e^\prime NN)$ in special kinematics JLab Hall A, CLAS, Hall C at 12 GeV

Dynamics: Hadron correlation measurements

• Back-to-back P_T correlations between hadrons in current and target regions

15

Require special kinematics

Other possible sources of correlations

• Kinematics for nonperturbative correlations

Sufficient separation in rapidity $\Delta y \approx \ln [W^2/(P_{T,h}^2+m_h^2)]\gtrsim 4$

Moderate virtuality to avoid pQCD radiation $Q^2 \sim {\rm few}~{\rm GeV}^2$

Momentum fractions of nonperturbative sea $x \sim 0.05\text{--}0.1$

 $\label{eq:Kinematic window"} \begin{array}{l} \rightarrow & \text{``Kinematic window''} \text{ at } W^2 \approx \ 30 \ {\rm GeV}^2, \\ P_{T,h}^2 \approx 0.5 \ {\rm GeV}^2 \end{array}$

COMPASS: Detection of target fragments? EIC: Medium energies ideal JLab12: Probably marginal, but should be explored

Summary

- Determining the dynamical origin of soft hadron P_T in SIDIS remains challenging . . . very interesting problem!
- Unfavored fragmentation looks surprisingly strong at $z\gtrsim 0.5$ and $P_T\sim 1\,{\rm GeV}$

Dynamical reason? Impact on TMD extraction? Should be tested with e^+e^- hadron correlation data

- Qualitative differences predicted between non-perturbative p_T distributions of valence and sea quarks
- Unpolaried SIDIS multiplicity data with separated dependences and flexible binning are essential for further progress, together with Drell-Yan, e^+e^- , and photo/hadroproduction data
- Large p-n difference (isovector) expected in longit. pol. SIDIS at $P_T \gtrsim 1$ GeV