J/ψ Photoproduction at 12 GeV

E.Chudakov¹

¹JLab

Small Size Configurations at high-t, Workshop at Jlab, March 2011

E.Chudakov

High-t, Jlab 2011

J/ ψ Photoproduction at 12 GeV

Outline

Introduction 1

- Experimental opportunities
- ψN Interaction

- Experiment in Hall C
- Hall D Potential
- Hall B Potential

Outline

Introduction

- Experimental opportunities
- ψN Interaction

Program at JLab

- Experiment in Hall C
- Hall D Potential
- Hall B Potential

B) Summary

Outline

Introduction

- Experimental opportunities
- ψN Interaction

Program at JLab

- Experiment in Hall C
- Hall D Potential
- Hall B Potential

Charm photoproduction at 12 GeV

Charmed particles have been studied extensively since 1974 Can be used as a tool to study the hadronic structure

- Photoproduction cross section $\sigma_{charm} \sim 10^{-5} 10^{-4} \sigma_{total}$
- Useful decays *BR* < 0.06
- Signal extraction: 2-body decay, small σ_M , leptons, vertex det.

	reaction	E_{γ} GeV	useful decay mode	BR	cross section	
		threshold			E_{γ}, GeV	σ nb
	$\gamma p \rightarrow \eta_{c}(1S)p$	7.7 GeV	$\eta_{\rm c}(1{ m S}) \rightarrow {\sf p}\overline{{ m p}}$	0.12%	-	-
*	$\gamma p \rightarrow J/\psi(1S)p$	8.2 GeV	$J/\psi(1S) \rightarrow e^-e^+/\mu^-\mu^+$	6.0%	11.	$0.5{\pm}0.2$
*	$\gamma p \rightarrow \Lambda_c^+ \overline{\mathrm{D}}^0$	8.7 GeV	$\overline{\mathrm{D}}^0 {\rightarrow} \mathrm{K}^+ \pi^-$	4.0%	20.	\sim 63. \pm 30.
	$\gamma p \rightarrow \Lambda_c^+ D^* (2010)^0$	9.4 GeV	$D^*(2010)^0 \rightarrow \overline{D}^0 X$	100.0%	20.	\sim 63. \pm 30.
	$\gamma p \rightarrow \chi_{c0}(1P)p$	9.6 GeV	$\chi_{c1}(1P) \rightarrow K^+K^-$	0.71%		
	$\gamma p \rightarrow \chi_{c2}(1P)p$	10.3 GeV	$\chi_{c1}(1P) \rightarrow J/\psi(1S)\gamma$	13.0%	90.	$<$ 27% ${ m J}/{ m \psi}$
	$\gamma p \rightarrow \psi(3770)p$	11.0 GeV	$\psi(3770) \rightarrow e^- e^+ / \mu^- \mu^+$	0.8%	21.	$1.1 {\pm} 0.4$
	$\gamma p \rightarrow D\overline{D}p$	11.1 GeV			20.	\sim 63. \pm 30.

Photoproduction measurements

Potential experimental opportunities at 12 GeV JLab

A vertex detector for $\Lambda_c^+, \overline{D}$ can hardly be used.

Best chances:

• $\gamma p \rightarrow p J/\psi(1S) \rightarrow e^-e^+/\mu^-\mu^+$, proved at Cornell 11 GeV

• $\gamma p \to \Lambda_c^+ \overline{D}^0 \to K^+ \pi^- M_{miss} \sim M_{\Lambda_c^+}$ - seems possible

• $\gamma p \rightarrow p \ \eta_c(1S) \rightarrow p\overline{p} < 0.01 \text{ of } J/\psi(1S)$ - harder

Physics with ${\rm J}/\psi$

- Photoproduction of $J/\psi(1S)$ close to threshold (GPD)
- Interaction of $J/\psi(1S)$ a "long living" particle with matter
- Double-spin longitudinal $J/\psi(1S)$ (GPD, for CLAS)

Can we use $J/\psi(1S)$ as a probe for the nucleon/nucleus?

E.Chudakov

High-t, Jlab 2011

 J/ψ Photoproduction at 12 GeV

J/ψ photoproduction at 10 GeV: Scales

- No coherent production on heavy nucleus: $\ell_{coh} \ll R_A$
- No shadowing effects: $\ell_{coh}, \ell_F < R_A$
- VMD not applicable: $\ell_{coh} < 1 \text{ fm}$

J/ψ photoproduction at 10 GeV: Dynamical models

Partonic soft mechanism Frankfurt..2002..

- Well tested at high energies
- 10 GeV: gluons $x_1 \neq x_2 \sim 1$ $|t_{min}| > 0.4$ GeV/c
- **2-gluon formfactor:** $\frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto (1 t/1.0 \text{GeV}^2)^{-4}$

- Hard scattering mechanism Brodsky.., 2001
 - 10 GeV: Quark counting rules
 - 2-gluon exchange $\propto (1 x)^2$
 - 3-gluon exchange $\propto (1-x)^0$

Unique probe of small-size gluon configurations in proton

E.Chudakov

J/ψ photoproduction at 10 GeV: Dynamical models

Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

 Brodsky 2001: 3-gluon exchange alone does not fit the data

J/ψ photoproduction at 10 GeV: Dynamical models

Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

Subthreshold experiment E-03-008

No J/ ψ observed Spectral functions $\otimes \sigma$ not large

Photoproduction on nucleons

• Measure $\frac{d\sigma}{dt}(E)$ for $\gamma + p \rightarrow J/\psi + p$ close to threshold, at $E_{\gamma} \sim 8.5 - 11 \text{ GeV}$ Low energy \Rightarrow sensitive to high-*x* gluons in the nucleon

ψ N Interaction: Physics

- Small size color dipole r_⊥ ~ 1/(α_s·m_c) = 0.3 fm interaction ∝ color dipole moment ∝ r_{cc̄} (small)
 ⇔ color transparency, σ^{ψN}_{tot} ≪σ^{πN}_{tot} ≈30 mb
- Low energy: attractive potential (Luke,Manohar,Savage,1992) similar to Van der Waals, *E_{binding}* ~ 8 *MeV*

• Absorption: breakup to \overline{DD} , $\psi + N \rightarrow \Lambda_c^+ \overline{D}$

ψ N Interaction: $\sigma^{\psi N}$ Theoretical Calculations

Various models:	VMD, exchange meson currents, etc.				
authors	model	\sqrt{s} , GeV	$\sigma^{\psi N}$, mb		
Brodsky,Miller,1997	Van-der-Waals potential	small	7		
Kopeliovich,1994	GVMD, wave functions	10–400	3–10		
Gerland, 1998	VMD, data for VM	>7	3.6		
Sibirtsev, 2001	boson exchange >4		2.2		
	Lattice				

Sibirtsev et al, 2001

- a) FF calculations, $\psi + N \rightarrow \Lambda_c^+ \overline{D} D\overline{D}$
- b) short distance QCD

*ψ*N Interaction: Experimental Access

 Calculated from photoproduction on nucleons using VMD/GVMD

 γN >20 GeV $\sigma_{tot}^{\psi N}$ ~ 2.8 - 4.1 mb model dependent

2 Nuclear absorption: from A-dependence, Glauber model

 $\gamma \textit{\textbf{A}} \qquad 20 \; \text{GeV} \quad \sigma_{\rm abs}^{\psi\textit{N}} {=} 3.5 \pm 0.9 \; \text{mb} \quad \begin{array}{c} \text{clean interpretation} \\ \text{poor accuracy} \end{array}$

$$pA > 100 \text{ GeV}$$
 $\sigma_{abs}^{\psi N} = 4.2 \pm 0.4 \text{ mb}$ not ψN :
 $\ell_{coh}, \ell_F \gg R_A$
contamination $\chi_c, \psi N$

We use arguments from Farrar et al., 1990, Kharzeev et al, 2007

E.Chudakov

High-t, Jlab 2011

 J/ψ Photoproduction at 12 GeV

ψ N Interaction: Experiment at SLAC 1977

- The cleanest method used so far: $\ell_{coh}, \ell_F < R_A$
- Large experimental uncertainties

- 20 GeV e^- on Be and Ta targets
- Detecting only μ^- , through iron
- The background was calculated (decays, Bethe-Heitler)
- Nuclear coherence not measured

 $\sigma(Be)/\sigma(Ta) = 1.21 \pm 0.7$ $\Rightarrow \sigma_{\psi N} = 3.5 \pm 0.8 \pm 0.6 \text{ mb}$

Authors: syst. errors might be larger

• JLab: we can do a much more accurate experiment!

E.Chudakov

High-t, Jlab 2011

 J/ψ Photoproduction at 12 GeV

Photoproduction on Nuclei

 Measure the A-dependence of σ(γ + A → J/ψ + X), extract σ^{ψN}_{abs} at √s ~ 5 GeV Much improved accuracy and a cleaner interpretation.

Experiment in Hall C

PR12-07-106 for Hall C, conditionally approved (questions concerning the the physics/motivation). Dropped by the jeopardy rules.

Objectives:

- Accurate measurement of J/ ψ -nucleon cross-section at $\sqrt{s} = 5 \text{ GeV}$
 - Test theoretical ideas (color dipole model, Van-der-Waals force)
 - Benchmark for future calculations
 - Interest for heavy ion physics.
- 2 Measurement of J/ψ photoproduction cross section $\frac{d\sigma}{dt}(E_{\gamma})$ at $E_{\gamma} \sim 8.8 11$ GeV
 - Input for (1).
 - Probes large-x gluon GPD / small-size gluon configurations in proton.

Experiment: Setup

• Use decays to $e^+e^-(6\%), \mu^+\mu^-(6\%)$ to identify J/ ψ mass

Standard Hall C equipment

- High rate at various targets
- Low background: < 2%, scaled from Cornell, SLAC
- Reconstruction of E_{γ} , identification of $\gamma + p \rightarrow J/\psi + p$

Hall C Spectrometers

- HMS: e^-, μ^- at $\theta > 20^\circ$
- SHMS: *e*⁺, μ⁺ at θ < 20°
- e⁺, e- Gas Cher., Shower
- μ^+, μ^- Gas Cher.

Beam and target

- Bremsstrahlung by 50 μ A beam
- 6 targets *A* = 9 197, 10% r.l. thick
- Each target: 3 plates $\sim 5~\text{cm}$ apart
- 20 cm LH₂ with a 7% radiator
- 20 cm LD₂ with a 7% radiator

Experiment: Rates on Nuclear Targets

- Acceptance $\epsilon \approx 0.03\%$
- Internal Bremsstrahlung 1.6%
- No nuclear absorption is assumed for the moment

	¹ H	² H	Be	С	Al	Cu	Ag	Au
A	1	2	9	12	27	63.5	108	197
Z	1	1	4	6	13	29	47	79
T/T_{RL}	0.022	0.027	0.10	0.10	0.10	0.10	0.10	0.10
J/ψ per h	170	340	560	370	208	112	78	55
Time*, h	24	12	7	11	19	36	51	72

* - in order to detect 4000 events per target

200 hours on nuclear targets

E.Chudakov

Program at JLab

Hall C: acceptance

Fermi motion Correction and Hydrogen Measurements

മ225 ₹200 ≥175 Fermi motion $\otimes \sigma_{\gamma N \to \psi X}(E_{\gamma})$: . ยายา $Au/C \approx 1.10$ sensitive to $\sigma(E_{\gamma})$ 2125 й 100 ДР/Ир 7 Need to measure $\sigma(E_{\gamma})$ Plan for $\sigma_{\gamma p \to \psi p}(E_{\gamma})$ measurement 25 3 endpoints at 8.8, 10.2, 11.0 GeV 10 12 E photon (target nucleon at rest), GeV/c "Elastic" $\gamma p \rightarrow \psi p$ dominates Use reconstructed photon energy \mathcal{E}_{γ} Measurements on LH₂ $\mathcal{E}_{\gamma} > E_{e^-} - 0.3$ GeV: pure "elastic" Constraints from SLAC $E_{\gamma} > 15 \text{ GeV}$ $\langle E_{\gamma} \rangle GeV \quad \sigma_{\psi}(E)$ error Simulation shows: $\delta(Au/C) < 0.01$ 8.7 15% 10.0 3% 10.8 3%

Experiment: Expected Results on $\sigma^{\psi N}$

Total error per target \sim 3%

- beam flux $\sim 1\%$
- target thickness < 1.5%
- Fermi correction < 1.%

- statistics $\sim 1.5\%$
- acceptance: nearly cancels
- other $\sim 0.5\%$

Glauber model used to extract $\sigma^{\psi N}$ Expected transparencies $T_N(A) = \sigma_A / A \sigma_N$

	$\sigma^{\psi N}$	A					$\delta(\sigma^{\psi N})$	
	mb	9	12	27	63	108	197	mb
	1.0	0.982	0.980	0.974	0.963	0.952	0.931	0.29
T	3.5	0.938	0.931	0.908	0.870	0.833	0.760	0.25
	7.0	0.876	0.863	0.816	0.740	0.665	0.519	0.18

 $\sigma^{\psi N}$ ≈ (3.5) ± 0.12 ± 0.20 mb at \sqrt{s} ~ 5 GeV SLAC: 0.80 ± 0.60

Hall D Potential for Heavy Quark Physics

Obvious advantages to Hall C

- Large uniform acceptance for all particles, including the recoil: potentially a good measurement of ^{dσ}/_{dΩ}(E, t, cos θ)
- 2 Separation "elastic"/"inelastic" $\gamma p \rightarrow \psi p$ vs $\gamma p \rightarrow \psi N \pi$
- Tagged photon beam of the highest flux usable
- Possibility to run in parallel with the main program
- Fast DAQ no need for a special trigger

Disadvantages to Hall C

- Lower beam photon flux
- Worse mass/energy resolution
- Linear polarization is useless at 8.4-9 GeV

Introduction

Hall D: detecting $\gamma + p \rightarrow p + J/\psi \rightarrow e^+e^-$

Hall D J/ ψ rate, standard collimation

Double Spin Asymmetry

Longituninally polarized beam, target:

 $egin{aligned} &\mathcal{A}_{LL}\sim rac{ ilde{H}(x,\xi,t)}{H(x,\xi,t)} \ & ilde{H}(x,\xi
ightarrow 0,t
ightarrow 0)
ightarrow x\Delta g(x) \end{aligned}$

Pre-LOI by M.Osipenko et al for Hall B

- **()** Luminocity 10^{35} cm⁻²s⁻¹: 100 nA, 3 cm target
- 2 Polarized target: ammonia < 100 nA, dilution \sim 0.2
- $\textcircled{O} A symmetry \sim 0.05 \Rightarrow >1 \ M \ events \ needed$
- Large acceptence (? need a number)
- About 10⁶ events in 6 months
- Muon detector needed

SoLID (Hall A) may run at 10^{37} cm⁻²s⁻¹

Summary for J/ ψ Physics

Potential measurements at 12 GeV:

- $\frac{d\sigma}{d\Omega}(E, t, cos\theta)$ for $9.5 < E_{beam} < 11.4$ GeV
- The cross section for ψN
- ? Double-spin asymmetries (Hall B)
- Organization
 - Program well developed for Hall C
 - The dσ/dΩ (E, t, cosθ) can be measured in Hall D parazitically needs to be elaborated
 - Hall B?

