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@ Look for phenomena predicted in QCD that introduce deviations

from traditional nuclear physics observations
@ the nuclear transparency as a function of a tunable scale
parameter (t or Q) is a good quantity to study the crossover

between the two regimes
Nuclear transparency: effect of nuclear attenuations on escaping

hadrons
cross section on a target nucleus
T(A, Q?) = : -
A x cross section on a free nucleon

@ Onset of color transparency (Brodsky,Mueller) will show as a rise

inT
@ Interpretation of the transparency experiments requires the
availability of reliable and advanced traditional nuclear-physics
E DA

calculations to compare the data with SR IRE-
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x To interpret the data from experiments, comparison
to results from up-to-date nuclear models is
necessary to identify deviations originating from
QCD effects

* Semi-classical models are available

x Develop a relativistic and quantum mechanical
model




x To interpret the data from experiments, comparison
to results from up-to-date nuclear models is
necessary to identify deviations originating from
QCD effects

«x Semi-classical models are available

x Develop a relativistic and quantum mechanical
model

Ingredients

@ Relativistic wave functions for beam, target and
residual nucleus, outgoing particles

@ Impulse approximation: incoming particle (leptonic
or hadronic) interacts with one nucleon

@ Describe the final state interactions of the ejected

particles with Glauber scattering theory
NPA A728 (2003) 226




@ Uses the eikonal approximation, originating from optics:
Cf’out(f) = eIX(F)Sbin(F) = (1 - r(’_;))QSln(F)

experiments!

@ Works when the wavelength of the particle is a lot smaller than the
range of the scattering potential — OK for the performed

@ Particles scatter over small angles and follow a linear trajectory

@ Second order eikonal corrections have been computed — small




@ Profile function can
be related to the

= Uto,tv (1 — iexn) B2 scattering amplitude
Fan(b) = =, ——5— —25 .2 @ Three
N Prn energy-dependent
parameters

total cross section
slope parameter
real to imaginary
ratio
@ Fit parameters to
N—-—Nandr— N
scattering data
. @ range /24 is of the
! P, LGVl 10 order 0.75 fm —
short range
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Multiple scattering

@ Frozen approximation is
adopted

@ Phase-shift additivity
e = I, <1 _ F,-(B,-))




G(b, z)
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Multiple scattering

@ Frozen approximation is
adopted

@ Phase-shift additivity
e = I, (1 _ F,-(B,-))
@ Profile functions are

weighted with the Dirac
wave function

@ Only nucleons in forward
path contribute

[9@ﬂ—4r(8—5ﬂ]
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@ In standard Glauber: effect of intranuclear attenuations is
computed as if the density remains unaffected by the presence of
anucleon at 7 = (b, 2)

® /23 ~ 0.75fm — attenuations will be mainly affected by the
short-range structure of the transverse density in the residual
nucleus

@ Mean field does not contain repulsive short-range behavior of the
N — N force

@ Introduce correlated two-body density

A-1 = = = =) = =
—— (DA ()7 (7)) (F) g (IF-71)

@ -(r) ensures normalization

o (7.F) =
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@ Replace the total cross
section with an effective one

@ Parameters are based on
theoretical grounds but
values are educated guesses




)Q(Ih—z)]+0(z—lh)}i=7rorN. J

@ Replace the total cross
section with an effective one

@ Parameters are based on
theoretical grounds but
values are educated guesses
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@ Replace the total cross
section with an effective one

@ Parameters are based on
theoretical grounds but
values are educated guesses

@ Pion cross section is more

strongly reduced and

formation length is longer
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--- RDWIA

— RMSGA

Transparency

P. Lava et al.

PLB595 (2004),

@ Calculations tend to
underestimate the
measured proton
transparencies

@ In the region of overlap:
RMSGA and RDWIA
predictions are not
dramatically different !!

@ Data from MIT, JLAB
and SLAC

@ CT effects are very
small for Q% < 10 GeV?
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@ Parametrize T = A>1

@ Clear Q? dependence,
deviates from expected
value

@ Models in good
agreement
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The RMSGA model provides an excellent basis to study
the density dependence of removal reactions

@ Variety of reactions

@ Scattering parameters are relatively smooth above
1 GeV — universal statements

@ Density dependence of the attenuation will
determine the effective nuclear density which can
be probed

+ Compare A(e, €p) (1 proton), A(~, pp) (2 protons)
and A(p, 2p) (3 protons) on '2C and *Fe

+ Qutgoing particles have 1.5 GeV kinetic energy

J. Ryckebusch & WC arXiv:1102.0905

WC & JR, PRC80:011602 (2009



o 2Cs,,, RPWIA 2Cs,, (e, p) RMSGA 3 fm?* |

- 2Cs,, (p,2p) RMSGA

[ 2 2
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180, CPua (e¢'p) RMSGA

r[fm]
2C py ), (p,2p) RMSGA

2 4

7[fm] 7|fm]

rms radius of '2C — 2.464 4+ 0.012 fm
@ FSI shift contributions to larger r and upper hemisphere
@ Larger effect for A(p,2p) — surface is probed



2C (51/0,51/) RPWIA sl fim?
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@ Knockout of a
correlated pair

20 3.0py, 40 @ Strength remains in
the high density
regions of the
nucleus
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@ Quantify effect of FSI

@ X7?: details about composition and space-time

evolution (function of (x, @?)) of produced hadronic
system after DIS unknown

@ Use general properties of soft scattering theory,
without specifying X

@ Factorized approach: split photon interaction and
rescattering part
In D(e, & N)N: works well up to ps ~ 400 MeV
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@ Consider only pn component of Deuteron
@ Spectator proton is on-shell

@ Deuteron wf normalization obeys baryon number
conservation [ a|®p(p)?d®p = 1, but violates
momentum sum rule [ o?|®p(p)2a®p < 1

@ Neglect negative energy contribution of virtual
neutron propagator
— ps < 700 MeV

@ Photon interactions with exchanged mesons are

neglected
— @ > 1GeV?
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@ Relate Deuteron structure functions to the neutron ones for a moving
s @ . _x
nucleon at X = 50~ Toan

F2(x, Q) = [2F;n(%, Q7) +

i

m;p

part

Fon(X, @?)] x sD(p,)(2W)3zE,J

@ ..times a distorted spectral function that contains a plane-wave and FSI

FSI
PW
D 1 M Ppy /
o) =5 X [0Bleisi pess) — [ GES xR m)prXI7lpo X'
M,sr,ss

2
Y (py s, Ps Ss)
(P —ps +A)

O» <> <Er«Er» B DAC



@ Scattering amplitude is parametrized with the standard diffractive form

BW,Q%)

Pr, X|Flpr X') = oro(W, Q) (i + (W, GB?))e
of

2 tfss,,s,/ 5S)(SX/
@ Eikonal regime gives approximate conservation law pg = p,, in the high

/

q limit. This leads to 775, > m?,, and yields pole values in the FSI integral

me — 2/ )
=+ T =
p IJ+MD
:+E—m
[G| =0

for m, (py = 0) < m?,

for m2, (py = 0) > m5 .




@ Use SLAC parametrization for neutron structure functions (as in Deeps
data analysis)

@ Take oiot( W, @?) (and B(W, @Q?)) as free parameter in the distorted
spectral function. Fits are done for each W, Q? over the 5 measured
spectator momenta (300-560 MeV).

@ Deuteron wave function: ®p(p) = PR (p) /sl
Obeys baryon number conservation [ a|®p(p)|?d®p = 1



Three approaches: J

@ no off-shell FSI: off-shell rescattering amplitude is zero

off _
fX’N,XN =0

one

@ maximum off-shell FSI: off-shell amplitude is taken equal to the on-shell

foff — fon
X'N,XN — "X"N,XN

J

@ fitted off-shell FSI: off-shell amplitude is parametrized as the on-shell
one with a suppression factor dependent on (x, Q?)

off on —u(x, @)t
fonxn = fxinxne &
= E = Qe




Results from “Deeps”: Comparison w/ FSI model (cda et al)

Q2=18GeV2
W* = 1.25 GeV, ps = 0.3 GeV/c W* = 1.25 GeV, ps = 0.39 GeV/c
s MT=084GeV e , M*=077GeV .
H 23 == §
i 1
i H
i 3
| )
- e m;(vm_pq) * 5 - o8 06 m(:hm_n’q) 0z oa
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Calculation by c. degli Atti et al. [Slide from S. Kuhn]
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»

W=2 GeV, p, =390 MeV, 0,,=50 mb, B=6 GeV 2 @ Plain-wave

calculation shows
little dependence on
spectator angle

--- PW
© 4+ no off-shell FSI
------ + max. off-shell FSI

Fyx p, cos0,) 10*

w

@ FSI effects grow in
forward direction,
different from
quasi-elastic case

@ Small contribution
oo from off-shell
amplitude
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@ Systematic underestimation of data at ps = 560 MeV, breakdown of
factorization

@ Difference between off-shell desciptions diminishes with increasing ps

@ At lowest spectator momentum plain-wave and FSI amplitude
comparable in magnitude, sensitive to small differences

@ Fitted off-shell calculations correspond more with no off-shell ones,
pointing to suppressed off-shell amplitude



No off-shell FSI
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@ o rises with W, no sign of hadronization plateau
@ o drops with Q?, small-sized configuration?
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Max off-shell FSI

o [mb]

—e ’ =1.8GeV?
7l Q* =2.8 GeV?

3
) \l, \\‘//’
W
122 16 20WGev] 2.4 1.2 16 2.0 WGev] 2.4
@ o rises with W, no sign of hadronization plateau

@ o drops with Q?, small-sized configuration?
@ [ largely correlated with o



Max off-shell FSI }

o ° =1.8GeV?
7l Q* =2.8 GeV?

o [mb]
BlGev]

@ More measurements at higher Q®> needed to make more definite
statements

@ These values can be used as input in the computation of FSI effects in
inclusive DIS

=] F = = DEE



A eikonal framework to model the propagation of
fast nucleons and pions through the nuclear medium

@ Glauber approach computes full (A— 1)
multiple-scattering series and has no free parameters

@ Provides common framework to describe a variety of
nuclear reactions with electroweak and hadronic
probes.

@ Effect of central short-range correlations and color
transparency can be implemented. The two can be
clearly separated in results, due to different hard scale
dependence

@ Pion electroproduction data in agreement with CT
calculations, Fair results for A(p, pN)

@ Knockout of a correlated pair and s-shell knockout in
A(p, 2p) probe the high density regions of the nucleus
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@ Model for semi-inclusive DIS on the deuteron based
on general properties of soft rescattering.

@ Fair description of the Deeps data

@ Discrepancies at ps = 300 MeV with high W. Possible
breakdown of factorization at highest ps = 560 MeV.

@ Cross section rises with W and shows no signs of a
plateau (hadronization) yet, drops with Q2.

@ More measurements at higher Q® needed
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