Nuclear transparency of small-size configurations

Wim Cosyn

Florida International University Ghent University, Belgium

JLab, March 25, 2011

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

Outline

Motivation

Transparencies in a Glauber Model (Ghent group)

- Model
- Applications and Results
- Density Dependence

3 Semi-inclusive DIS off deuteron (w M. Sargsian)

- Model: Ingredients and approximations
- Comparison with Deeps
- Q², W evolution of rescattering parameters

Conclusions

글 > < 글 >

• • • • • • • • •

Motivation

- Look for phenomena predicted in QCD that introduce deviations from traditional nuclear physics observations
- the nuclear transparency as a function of a tunable scale parameter (*t* or *Q*²) is a good quantity to study the crossover between the two regimes

Nuclear transparency: effect of nuclear attenuations on escaping hadrons

 $T(A, Q^2) = \frac{\text{cross section on a target nucleus}}{A \times \text{cross section on a free nucleon}}$

 Onset of color transparency (Brodsky,Mueller) will show as a rise in T

 Interpretation of the transparency experiments requires the availability of reliable and advanced traditional nuclear-physics calculations to compare the data with

Wim Cosyn (FIU/UGent)

Building a Model

- To interpret the data from experiments, comparison to results from up-to-date nuclear models is necessary to identify deviations originating from QCD effects
- * Semi-classical models are available
- * Develop a relativistic and quantum mechanical model

ngredients

- Relativistic wave functions for beam, target and residual nucleus, outgoing particles
- Impulse approximation: incoming particle (leptonic or hadronic) interacts with one nucleon
- Describe the final state interactions of the ejected particles with Glauber scattering theory NPA A728 (2003) 226

Building a Model

- To interpret the data from experiments, comparison to results from up-to-date nuclear models is necessary to identify deviations originating from QCD effects
- * Semi-classical models are available
- * Develop a relativistic and quantum mechanical model

Ingredients

- Relativistic wave functions for beam, target and residual nucleus, outgoing particles
- Impulse approximation: incoming particle (leptonic or hadronic) interacts with one nucleon
- Describe the final state interactions of the ejected particles with Glauber scattering theory NPA A728 (2003) 226

Wim Cosyn (FIU/UGent)

- Uses the eikonal approximation, originating from optics: $\phi_{out}(\vec{r}) = e^{i\chi(\vec{r})}\phi_{in}(\vec{r}) = (1 - \Gamma(\vec{r}))\phi_{in}(\vec{r})$
- Works when the wavelength of the particle is a lot smaller than the range of the scattering potential → OK for the performed experiments!
- Particles scatter over small angles and follow a linear trajectory
- \bullet Second order eikonal corrections have been computed \rightarrow small

Profile function in N - N and $\pi - N$ scattering

$$\Gamma_{\pi N}(\vec{b}) = \frac{\sigma_{\pi N}^{\text{tot}}(1 - i\epsilon_{\pi N})}{4\pi \beta_{\pi N}^2} exp\left(-\frac{\vec{b}^2}{2\beta_{\pi N}^2}\right)$$

- Profile function can be related to the scattering amplitude
- Three energy-dependent parameters
 - total cross section
 - slope parameter
 - real to imaginary ratio
- Fit parameters to N N and πN scattering data
- range $\sqrt{2}\beta$ is of the order 0.75 fm \rightarrow short range

Relativistic Multiple-Scattering Glauber Approximation

Multiple scattering

- Frozen approximation is adopted
- Phase-shift additivity $e^{i\chi_{\text{tot}}} = \prod_i \left(1 - \Gamma_i(\vec{b}_i) \right)$
- Profile functions are weighted with the Dirac wave function
- Only nucleons in forward path contribute

$\mathcal{G}(ec{b},z) = \prod_{lpha m err eq lpha} \left[1 - \int dec{r}' \left| \phi_{lpha_{ m occ}}\left(ec{r}' ight) ight|^2 \left[heta\left(z'-z ight) igcap \left(ec{b}'-ec{b} ight) ight] ight]$

Relativistic Multiple-Scattering Glauber Approximation

Multiple scattering

- Frozen approximation is adopted
- Phase-shift additivity $e^{i\chi_{\text{tot}}} = \prod_i \left(1 - \Gamma_i(\vec{b}_i)\right)$
- Profile functions are weighted with the Dirac wave function
- Only nucleons in forward path contribute

$$\mathcal{G}(\vec{b}, z) = \prod_{\alpha \text{ or } \neq \alpha} \left[1 - \int d\vec{r}' \left| \phi_{\alpha_{occ}} \left(\vec{r}' \right) \right|^2 \left[\theta \left(z' - z \right) \mathsf{\Gamma} \left(\vec{b}' - \vec{b} \right) \right] \right]$$

Implementing Short-Range Correlations

- In standard Glauber: effect of intranuclear attenuations is computed as if the density remains unaffected by the presence of a nucleon at $\vec{r} = (\vec{b}, z)$
- $\sqrt{2}\beta \sim 0.75$ fm \rightarrow attenuations will be mainly affected by the short-range structure of the transverse density in the residual nucleus
- Mean field does not contain repulsive short-range behavior of the N – N force
- Introduce correlated two-body density

$$\rho_{A}^{[2]}\left(\vec{r}',\vec{r}\right) = \frac{A-1}{A}\gamma\left(\vec{r}\right)\rho_{A}^{[1]}\left(\vec{r}\right)\gamma\left(\vec{r}'\right)\rho_{A}^{[1]}\left(\vec{r}'\right)g\left(\left|\vec{r}-\vec{r}'\right|\right)$$

• $\gamma(\vec{r})$ ensures normalization

< ロ > < 同 > < 回 > < 回 > < 回 > <

Color Transparency: Quantum diffusion parametrization

$$\sigma_{iN}^{\text{eff}}(z) = \sigma_{iN}^{\text{tot}} \left\{ \left[\frac{z}{I_h} + \frac{\langle n^2 k_t^2 \rangle}{\mathcal{H}} \left(1 - \frac{z}{I_h} \right) \theta(I_h - z) \right] + \theta(z - I_h) \right\} i = \pi \text{ or } N.$$

- Replace the total cross section with an effective one
- Parameters are based on theoretical grounds but values are educated guesses
- Pion cross section is more strongly reduced and formation length is longer

< ロ > < 同 > < 回 > < 回 >

Color Transparency: Quantum diffusion parametrization

$$\sigma_{iN}^{\text{eff}}(z) = \sigma_{iN}^{\text{tot}} \left\{ \left[\frac{z}{I_h} + \frac{\langle n^2 k_t^2 \rangle}{\mathcal{H}} \left(1 - \frac{z}{I_h} \right) \theta(I_h - z) \right] + \theta(z - I_h) \right\} i = \pi \text{ or } N.$$

- Replace the total cross section with an effective one
- Parameters are based on theoretical grounds but values are educated guesses
- Pion cross section is more strongly reduced and formation length is longer

< ロ > < 同 > < 回 > < 回 >

Color Transparency: Quantum diffusion parametrization

$$\sigma_{iN}^{\text{eff}}(z) = \sigma_{iN}^{\text{tot}} \left\{ \left[\frac{z}{l_h} + \frac{\langle n^2 k_l^2 \rangle}{\mathcal{H}} \left(1 - \frac{z}{l_h} \right) \theta(l_h - z) \right] + \theta(z - l_h) \right\} i = \pi \text{ or } N.$$

- Replace the total cross section with an effective one
- Parameters are based on theoretical grounds but values are educated guesses
- Pion cross section is more strongly reduced and formation length is longer

• • • • • • • • •

The nuclear transparency from A(e, e'p)

- Calculations tend to underestimate the measured proton transparencies
- In the region of overlap: RMSGA and RDWIA predictions are not dramatically different !!
- Data from MIT, JLAB and SLAC

< < >> < <</>

• CT effects are very small for $Q^2 \le 10 \text{ GeV}^2$

∃ → < ∃</p>

⁴He(γ , $p\pi^{-}$) transparencies

Theory: W. Cosyn et al., PRC74 (2006) 062201
 Data: D. Dutta et al., PRC68 (2003) 021001
 Semiclassical theory: H. Gao et al., PRC54 (1996) 2779 [normalized to first data point]

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

$A(e, e'\pi^+)$ transparencies: Q^2 dependence

 $A(e, e'\pi^+)$ data from JLab, B. Clasie *et al.*, PRL99 (2007) 242502 Dashed lines from semi-classical calc. by A. Larson *et al.*, PRC79 (2006) 018201

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 12 / 34

$A(e, e'\pi^+)$ transparencies: A dependence

GI.+SRC+CT Semi-classical Larson Hatched area: value from $\pi - A$ scatt. • Parametrize $T = A^{\alpha-1}$

- Clear *Q*² dependence, deviates from expected value
- Models in good agreement

March 25, 2011 13 / 34

The nuclear transparency from ${}^{12}C(p, 2p)$

Parameterization of the CT effects compatible with pion production results!

 B. Van Overmeire and J.R., PLB644 (2007) 304

 → ▲ □ → ■ □ → □

Density Dependence

The RMSGA model provides an excellent basis to study the density dependence of removal reactions

- Variety of reactions
- Scattering parameters are relatively smooth above 1 GeV \rightarrow universal statements
- Density dependence of the attenuation will determine the effective nuclear density which can be probed
- Compare A(e, e'p) (1 proton), A(γ, pp) (2 protons) and A(p, 2p) (3 protons) on ¹²C and ⁵⁶Fe
- Outgoing particles have 1.5 GeV kinetic energy
- J. Ryckebusch & WC arXiv:1102.0905

WC & JR, PRC80:011602 (2009)

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

イロト イポト イヨト イヨト 三日

Density Dependence: ${}^{12}C(e, e'p)$ and ${}^{12}C(p, 2p)$

rms radius of $^{12}C \rightarrow 2.464 \pm 0.012$ fm

- FSI shift contributions to larger r and upper hemisphere
- Larger effect for $A(p, 2p) \rightarrow$ surface is probed

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 16 / 34

Density Dependence: ${}^{12}C(\gamma, pp)$

- Knockout of a correlated pair
- Strength remains in the high density regions of the nucleus

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 17 / 34

A dependence 1 nucl knockout: s-shell

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 18 / 34

A dependence 1 nucl knockout: valence shell

Wim Cosvn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 18/34

A dependence 2 nucl knockout

March 25, 2011 18/34

Outline

Motivation

Transparencies in a Glauber Model (Ghent group)

- Model
- Applications and Results
- Density Dependence

3 Semi-inclusive DIS off deuteron (w M. Sargsian)

- Model: Ingredients and approximations
- Comparison with Deeps
- Q², W evolution of rescattering parameters

Conclusions

4 3 5 4 3

Image: A math

Model Ingredients

Quantify effect of FSI

- X?: details about composition and space-time evolution (function of (*x*, *Q*²)) of produced hadronic system after DIS unknown
- Use general properties of soft scattering theory, without specifying *X*
- Factorized approach: split photon interaction and rescattering part In D(e, e'N)N: works well up to $p_s \approx 400 \text{ MeV}$

イロト イポト イラト イラ

Virtual Nucleon Approximation

- Consider only *pn* component of Deuteron
- Spectator proton is on-shell
- Deuteron wf normalization obeys baryon number conservation $\int \alpha |\Phi_D(p)|^2 d^3p = 1$, but violates momentum sum rule $\int \alpha^2 |\Phi_D(p)|^2 d^3p < 1$
- Neglect negative energy contribution of virtual neutron propagator

 $ightarrow
ho_{s} \leq$ 700 MeV

 Photon interactions with exchanged mesons are neglected

 $\rightarrow Q^2 > 1 \text{GeV}^2$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Reaction diagrams

$$\frac{d\sigma}{dxdQ^2d\phi_{e'}\frac{d^3p_s}{2E_s(2\pi)^3}} = \frac{2\alpha_{EM}^2}{xQ^4}(1-y-\frac{x^2y^2m_n^2}{Q^2})\left(F_L^D(x,Q^2) + v_TF_T^D(x,Q^2) + v_{TL}\cos\phi F_{TL}^D(x,Q^2) + \cos 2\phi F_{TT}^D(x,Q^2)\right)$$

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 22 / 34

э

<ロ> <同> <同> < 回> < 回><<

Factorization

• Relate Deuteron structure functions to the neutron ones for a moving nucleon at $\hat{x} = \frac{Q^2}{2p_i \cdot q} \approx \frac{x}{2 - \alpha_s} \dots$

$$F_{T}^{D}(x, Q^{2}) = \left[2F_{1N}(\hat{x}, Q^{2}) + \frac{p_{T}^{2}}{m_{i}\hat{\nu}}F_{2N}(\hat{x}, Q^{2})\right] \times S^{D}(p_{r})(2\pi)^{3}2E_{r}$$

...times a distorted spectral function that contains a plane-wave and FSI part

$$S^{D}(p_{r}) = \frac{1}{3} \sum_{M,s_{r},s_{s}} \left| \overbrace{\Phi_{D}^{M}(p_{i}s_{i},p_{s}s_{s})}^{PW} - \int \underbrace{\frac{d^{3}p_{s'}}{(2\pi)^{3}} \chi(p_{s'},m_{x'}) \langle p_{r}X|\mathcal{F}|p_{s'}X'\rangle}_{(p_{s'}^{Z}-p_{s}^{Z}+\Delta')} \right|^{2}$$

< ロ > < 同 > < 回 > < 回 >

FSI: Generalized eikonal approximation

Scattering amplitude is parametrized with the standard diffractive form

$$\langle p_r, X | \mathcal{F} | p_{r'} X'
angle = \sigma_{\mathsf{tot}}(W, Q^2) (i + \epsilon(W, Q^2)) e^{rac{eta(W, Q^2)}{2}t} \delta_{s_r, s_{r'}} \delta_{s_X s_{X'}}$$

• Eikonal regime gives approximate conservation law $p_s^- = p_{s'}^-$ in the high q limit. This leads to $m_X^2 > m_{\chi'}^2$, and yields pole values in the FSI integral of

$$\begin{split} \Delta' &= \frac{\nu + M_D}{\mid \vec{q} \mid} (E_s - m_p) + \frac{m_X^2 - m_{X'}^2 (p_{i'} = 0)}{2 \mid \vec{q} \mid} \quad \text{for } m_{X'}^2 (p_{i'} = 0) \le m_X^2 \,, \\ \Delta' &= \frac{\nu + M_D}{\mid \vec{q} \mid} (E_s - m_p) \quad \text{for } m_{X'}^2 (p_{i'} = 0) > m_X^2 \,. \end{split}$$

< ロ > < 同 > < 回 > < 回 > .

- Use SLAC parametrization for neutron structure functions (as in Deeps data analysis)
- Take $\sigma_{tot}(W, Q^2)$ (and $\beta(W, Q^2)$) as free parameter in the distorted spectral function. Fits are done for each W, Q^2 over the 5 measured spectator momenta (300-560 MeV).
- Deuteron wave function: $\Phi_D(p) = \Phi_D^{NR}(p) \sqrt{\frac{M_D}{2(M_D E_s)}}$ Obeys baryon number conservation $\int \alpha |\Phi_D(p)|^2 d^3p = 1$

Parametrization of the off-shell rescattering amplitude

Three approaches:

• no off-shell FSI: off-shell rescattering amplitude is zero

$$f^{\rm off}_{X'N,XN}\equiv 0$$

 maximum off-shell FSI: off-shell amplitude is taken equal to the on-shell one

$$f_{X'N,XN}^{\mathrm{off}} = f_{X'N,XN}^{\mathrm{on}}$$

• fitted off-shell FSI: off-shell amplitude is parametrized as the on-shell one with a suppression factor dependent on (x, Q^2)

$$f_{X'N,XN}^{\text{off}} = f_{X'N,XN}^{\text{on}} e^{-\mu(x,Q^2)t}$$

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 26 / 34

Situation before

Results from "Deeps": Comparison w/ FSI model (CdA et al.)

Calculation by C. degli Atti et al. [Slide from S. Kuhn]

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

3

Calculation without fits

- Plain-wave calculation shows little dependence on spectator angle
- FSI effects grow in forward direction, different from quasi-elastic case
- Small contribution from off-shell amplitude

< ロ > < 同 > < 回 > < 回 >

$Q^2 = 1.8 \text{GeV}^2$: σ and β free, $\epsilon = -0.5$

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

$Q^2 = 2.8 \text{GeV}^2$: σ and β free, $\epsilon = -0.5$

Wim Cosyn (FIU/UGent)

Small-sized configurations, JLab

March 25, 2011 30 / 34

- Systematic underestimation of data at $p_s = 560$ MeV, breakdown of factorization
- Difference between off-shell desciptions diminishes with increasing ps
- At lowest spectator momentum plain-wave and FSI amplitude comparable in magnitude, sensitive to small differences
- Fitted off-shell calculations correspond more with no off-shell ones, pointing to suppressed off-shell amplitude

σ and β parameters, $\epsilon = -0.5$

- σ rises with W, no sign of hadronization plateau
- σ drops with Q^2 , small-sized configuration?
- β largely correlated with σ

σ and β parameters, $\epsilon = -0.5$

- σ rises with W, no sign of hadronization plateau
- σ drops with Q^2 , small-sized configuration?
- β largely correlated with σ

σ and β parameters, $\epsilon = -0.5$

- More measurements at higher *Q*² needed to make more definite statements
- These values can be used as input in the computation of FSI effects in inclusive DIS

Э

< □ > < □ > < □ > < □ > < □ >

Conclusions

GATE CLOSING Last Call Boarding

GATE OPEN

A "flexible" eikonal framework to model the propagation of fast nucleons and pions through the nuclear medium

- Glauber approach computes full (A 1) multiple-scattering series and has no free parameters
- Provides common framework to describe a variety of nuclear reactions with electroweak and hadronic probes.
- Effect of central short-range correlations and color transparency can be implemented. The two can be clearly separated in results, due to different hard scale dependence
- Pion electroproduction data in agreement with CT calculations, Fair results for A(p, pN)
- Knockout of a correlated pair and *s*-shell knockout in A(p, 2p) probe the high density regions of the nucleus

Conclusions (II)

GATE CLOSING GATE CLOSING GATE CLOSING GATE CLOSING GATE CLOSING GATE CLOSING

GATE CLOSING Last Call Boarding

GATE OPEN

- Model for semi-inclusive DIS on the deuteron based on general properties of soft rescattering.
- Fair description of the Deeps data
- Discrepancies at $p_s = 300$ MeV with high *W*. Possible breakdown of factorization at highest $p_s = 560$ MeV.
- Cross section rises with W and shows no signs of a plateau (hadronization) yet, drops with Q².
- More measurements at higher Q² needed

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >