Φ-meson photo-production on deuteron and future studies using heavier nuclear targets

Haiyan Gao Duke University, TUNL

n

Workshop on probing small-size configurations In high-t photo/electroproduction March 25-26, 2011, Jefferson Lab

Outline

- Φ photo-production on deuteron from γ(d,p k⁺k⁻)n process
- Φ photo-production from deuteron below CLAS threshold from γ(d,pk⁺k⁻)n process
- Φ photo-production from heavy nuclear targets and search for Φ-N bound state
- Search for small configuration at large-t?

Φ-N Total Cross-section (I)

- Vector meson dominance $T_{\gamma N \rightarrow \phi N} = \alpha_{\gamma \phi} T_{\phi N \rightarrow \phi N}$
- Optical model $\sigma_{\phi N} = 4\pi \operatorname{Im}(T_{\phi N \rightarrow \phi N})$
- Differential crosssection at t=0

$$\frac{d\sigma_{\gamma N \to \phi N}}{dt}\bigg|_{t=0} = \alpha_{\gamma \phi}^2 \frac{p_{\phi}^2}{p_{\gamma}^2} (1-\beta^2) \sigma_{\phi N}^2$$

• VMD estimate $\sigma_{\Phi-N} = 10-12 \text{ mb}$

Φ-N Total Cross-section (II)

 σ_{Φ-N}^{inelastic} is measured through nuclear transparency

$$T_A = \frac{\sigma_{\gamma A \to \phi X}}{A \sigma_{\gamma N \to \phi X}}.$$

- Spring-8 data gives $\sigma_{\Phi-N}^{\text{inelastic}} = 35^{+17}_{-11} \text{ mb}$
- Much larger than $\sigma_{\Phi-N} = \sigma_{\Phi-N}^{\text{inelas}} + \sigma_{\Phi-N}^{\text{elas}}$ = 10-12 mb

T. Ishikawa et. al (LEPS) Phys.Lett. B608 (2005) 215

Φ-N Total Cross-section (III)

 σ_{Φ-N} can be extracted from high |t| region of coherent Φ production on deuteron

• Agrees with $\sigma_{\Phi-N} = 10$ or 30 mb, favors 30 mb

T. Mibe , et al. Phys. Rev. C76, 052202R (2007) (CLAS Collaboration) Calculations: M. Sargsian et al.

γ(d,pΦ)n Process in CLAS

Φ Production on Deuteron above CLAS threshold

Event Selection

A triple coincidence detection of proton, K⁺ and K⁻.

Missing Mass to identify undetected neutrons

Invariant mass of $K^{\scriptscriptstyle +}$ and $K^{\scriptscriptstyle -}$ to select φ

Results at high missing momentum

Calculations underestimate data at low spectator nucleon momentum Calculation (J. M. Laget, Phys. Rev. C73, 044003 (2006)) The N-P FSI is under control. (J. M. Laget, Phys. Lett. B609, 49 (2005))

X. Qian et al, PLB 680, 417 (2009)

(a) ,(c), 1.65-2.62 GeV; (b), (d):2.62-3.59 GeV In (a) and (b), missing momentum higher than 180 MeV/c

Ratio

G10 exclusive channel results suggest a larger value of $\sigma_{\Phi\text{-N}}$

Possible explanations

Failure of VMD?

 ω - ϕ mixing? : ω is generated in the first step, followed by a re-scattering.

(a): 1.65-2.62 GeV (b): 2.62-3.59 GeV

Φ Production on Deuteron below CLAS threshold

CLAS g10 results: *Production on Deuteron* below CLAS threshold

 E_{γ}^{boost} is photon energy in the proton-at-rest frame

Conclusion

- See "near-threshold" events,
 - Validity of phi-N bound state search technique, which is to generate a slow phi using fermi momentum of nucleon.
- Differential cross section is consistent with simple quasi-free calculation.
 - Did not rule out any exotic behavior since data is limited by statistics.
 - Good for future design of experiment.

Near threshold results without $E_{\gamma}^{\text{boost}} > 1.75$ GeV cut X. Qian et al, PLB 696, 338 (2011)

T. Sekihara, et al., arXiv:1008.4422

Results different from W.C. Chang et al. PLB684(2010)6, though different kinematics

Question: are there any QCD molecular states? *Answer: maybe*

Discovery of the X(3872)

- In 2003, Belle discovered a new signal in $B^+ \rightarrow X K^+$, $X \rightarrow J/\psi \pi^+ \pi^-$
- Narrow (Γ<2.3MeV) particle with mass m(X)=3871.2+/-0.6 MeV/c²

Confirmed by CDF, D0 and BaBar

X(3872) Interpretation

- X(3872) is puzzling
 - Similar to charmonium, ie: narrow state decaying to J/ $\psi\pi^+\pi^-$
 - However, above DD threshold expect to be wide and X→DD dominant
 - Quantum numbers established: 1⁺⁺
 - It does not fit into the charmonium model
- Note: $m(X) \approx m(D) + m(\overline{D}^{*0})$
- Leading contender: a bound state of two D mesons
 - i.e.: a D⁰D^{*0} molecule
 - Supported by predictions of mass, decay modes, J^{PC}, branching fractions
- Other exotic predictions:
 - "Tetraquark" 4-quark bound state
 - "Glueball" gluon bound state, charmonium-gluon hybrid

Nuclear-Bound Quarkonium

- **Proton-proton scattering:** intriguing behavior in spin correlation, nuclear transparency
- **QCD van der Waals interaction**, mediated by *multi-gluon exchanges*, is dominant when the two interacting color singlet hadrons have **no common quarks**. *QCD analog* of the attractive QED van der Waals potential
- No Pauli blocking, effective quarkonium-nuclear interaction will not have a short-range repulsion
- S. J. Brodsky, I. A. Schmidt, and G.F. de Teramond, Phys. Rev. Lett. **64**, 1011 (1990); Luke, Manohar and Savage
- Suggested a bound state of charm quarkonium to ³He nucleus: η_c -³He by studying proton capture on deuteron
- Binding energy ~ 20 MeV, width \sim tens of keV.
- D. A. Wasson, Phys. Rev. Lett. 67, 2237 (1991).

E. Fuchey Z.-E. Meziani , E. Chudakov

φ-N Bound State (suggested by Isgur)?

- H. Gao, T.-S. H. Lee, and V. Marinov, Phys. Rev. C 63, 022201R (2001).
 - The interaction is expected to be enhanced by $(m_c/m_s)^3$, following Brodsky *et al.* PRL 64, 1011 (1990) $V_{(q\bar{q})A} = -\frac{\alpha e^{-\mu r}}{r}$, $\alpha = 1.25$, $\mu = 0.6$
 - Varitional method with
 - Binding energy ~ 2 MeV
 - $-\phi$ -N can be formed inside heavy nuclei through quasi-free ϕ photoproduction.

Creation of $\phi\text{-}N$ Bound State in Heavy Nuclei

H. Gao, T.-S. H. Lee, and V. Marinov, Phys. Rev. C **63**, 022201 (2001)

- "Sub-threshold" generated ϕ is slow enough to bound with nucleon
- $\sigma^{\text{tot}} \sim 1.4$ nb on ¹²C nucleus.

φ-*N* bound state in chiral quark model

- Huang, Zhang and Yu, Phys. Rev. C 73, 025207 (2006)
- Chiral SU(3) quark model and the extended chiral SU(3) quark model solving the Resonant Group Method (RGM) equation
- Model parameters from previous work give good descriptions of
 - Baryon ground states
 - Deuteron binding energy
 - NN scattering phase shifts
- Extended chiral quark model plus channel coupling effect $\rightarrow \phi$ -N quasi-bound state with several MeV of binding energy

Possible Way to Detect $\boldsymbol{\varphi}\text{-}N$

- "Sub-threshold" ϕ production in nuclei.
 - Can use real photon, electron or proton beam.
 - Need to tag energy of real/virtual photon.
- Detect all final states of ϕ -N bound state decay to reconstruct its invariant mass.
 - $-\phi N \rightarrow p_2' + K^+ + K^-$: triple coincidence
 - Other decay channels (suggested by M. Strikman)
- Jefferson Lab Hall B CLAS12 is a possible place to search for such particle:
 - Large acceptance detector and tagged photon beam.
 - Good particle identification.

Background Channels

- Four major background channels
 - Direct production:

$$\gamma + p_1 \rightarrow p_1' + K^+ + K^-$$

- No Bound State:

$$\gamma + p_1 \rightarrow p_1' + \phi \rightarrow p_1' + K^+ + K^-$$

- $\Lambda(1520)$ Production:

$$\gamma + p_1 \rightarrow \Lambda(1520) + K^+ \rightarrow p_1' + K^- + K^+$$

- a_0/f_0 production

$$\gamma + p_1 \rightarrow p_1' + a_0 / f_0 \rightarrow p_1' + K^+ + K^-$$

• Bound state formed but $K^+ K$ coincide with the recoil proton p_1 '.

Phase Space simulation results

5 MeV width assumed for the bound state, photon energy 1.5-1.55 MeV, Cu target

Other decay channels of phi-N?

- Two channels have larger phase spaces
 - Decay into Lambda and kaon:

$$\phi - N \rightarrow \Lambda^0 + K^+ \rightarrow p + \pi^- + K^+$$

- Decay into Sigma and kaon:

$$\phi - N \rightarrow \Sigma^0 + K^+ \rightarrow \Lambda^0 + \gamma + K^+ \rightarrow p + \pi^- + \gamma + K^+$$

• Simulations carried for these two decay channels

Phase Space Simulation

- Performed by Y. Qiang.
- One nuclear target as a test case: ⁶³Cu.
- Fermi motion and missing energy distributions were taken into account in the simulation of quasi-free process.
- Simulations also taken into account two phi-N state widths: 5 MeV and 50 MeV
- The following results were from 63 Cu target with photon energy E $\gamma = 1.50 \sim 1.55$ GeV.

Results shown with 5 MeV width

Theoretical issues and help needed

- Final state interaction of the bound state with other nucleons inside the nucleus
 - Light nuclei better suggested by Strikman
 - CLAS g3 (S. Malace et al.)
- Theoretical investigation of the width and the decay branching ratio of the bound state
- More theoretical study of the production cross section
- Can one observe such a state on the lattice (private communications with K.F. Liu)?

Summary

- Φ -meson production from nuclear targets is a rich area of research
 - Larger φ-N total cross section
 - Observed below CLAS threshold phi-meson production
- φ-N bound state predicted to have moderate cross section in subthreshold φ photo-production
- Potential decay channels of KK, KLambda, and KSigma investigated, promising for identifying the bound state
- Jefferson Lab Hall B CLAS12- an excellent place to carry out the search
- Ongoing study with Anke at COSY (Q.J. Ye, H. Gao, M. Hartmann)
- Study of smalll configuration at high t

Supported by U.S. DOE under contract number DE-FG02-03ER41231 Acknowledgement: S. Malace, Y. Qiang, X. Qian, S. Kuhn, J. Zhang, Thia Keppel, M. Sargsian, M. Strikman, K.F. Liu, Q. Zhao, and others