Nuclear Transparency in $A(e,e' \pi/K)X$

Status and Prospects

Tanja Horn

THE

CATHOLIC UNIVERSITY

of AMERICA

Small size configurations at high-t workshop

26 March 2011
Nuclear Transparency

• Color transparency (CT) is a phenomenon predicted by QCD in which hadrons produced at large Q^2 can pass through nuclear matter with little or no interaction [A.H. Mueller, Proc. 17th rec. de Moriond, Moriond, p13 (1982), S.J. Brodsky, Proc. 13th intl. Symp. on Multip. Dyn., p963 (1982)]
 – At high Q^2, hadron can be created with a small transverse size (PLC)
 – Hadron can propagate through the nucleus before assuming its equilibrium size

• Currently no conclusive evidence of the onset of CT at intermediate energies
 – Proton results negative up to $Q^2 \sim 8 \text{ GeV}^2$

• Advantage of using pions: simple $q \bar{q}$ system
 – Easier to produce a point-like configuration (PLC) of two quarks rather than three
 – Coherence lengths are small ($\sim 1 \text{ fm}$)
Transparency at JLab 6 GeV (E01-107)

- Took data to the highest possible Q^2 with 6 GeV electron beam at JLab in 2004
- Main goal: measurement of the nuclear transparency of pions
- Also: full L/T/LT/TT separation in π^+ production at two values of Q^2

| Q^2 (GeV2) | W (GeV) | $|t|$ (GeV2) | E_e (GeV) | ε |
|-----------------|-----------|----------------|-------------|-------------|
| 1.1 | 2.3 | 0.05 | 4.0 | 0.50 |
| 2.15 | 2.2 | 0.16 | 4.0,5.0 | 0.27,0.56 |
| 3.0 | 2.1 | 0.29 | 5.0 | 0.45 |
| 4.0 | 2.2 | 0.44 | 5.0,5.8 | 0.25,0.39 |
| 4.8 | 2.2 | 0.52 | 5.8 | 0.26 |

- LH$_2$, LD$_2$, 12C, Cu, and Au targets at each kinematic setting
The $A(e,e'\pi^+)$ Reaction

- If π^+ production from a nucleus is similar to that from a proton we can determine nuclear transparency of pions
- Other mechanisms: NN final state interactions, pion excess, medium modifications, etc.
- Assumption is verified by L/T separations
 - Extracted average results over the acceptance

\[
\sigma_{A(e,e'\pi^+)} = \sigma_{p(e,e'\pi^+)} \otimes S(E,p)
\]

\[S(E,p) = \text{Spectral function for proton}\]
Pion Nuclear Transparency - Q^2 Dependence

B. Clasie et al., PRL 99, 242502 (2007)

Inner error bar are statistical uncertainties outer error bar are the quadrature sum of statistical and pt to pt systematic uncertainties.

 - Semiclassical Glauber multiple scattering approximation
 - Dashed: includes CT

 - Relativistic Glauber multiple scattering theory
 - Dash-dot: includes CT+SRC
$\sigma (A) = \sigma_0 \ A^\alpha$

$\therefore \ T = A^{\alpha-1}$

- Fits to π-N scattering cross sections give $\alpha \sim 0.76$
 - Energy independent

- Energy dependence of α, which quantifies the A dependence of nuclear transparency, can be viewed as an indication for CT-like effects

Larson, Miller and Strikman, PRC 74, 018201 (2006)
Cosyn, Ryckebusch et al., PRC 74, 062201R (2006)

B. Clasie et al., PRL 99, 242502 (2007)
`P_π' Dependence of Transparency

- No conflict between pionCT data and recent Hall-B $e,e'\rho$ data
 - $P_\pi > 2.5$ GeV for all pionCT kinematics while for the Hall B $e,e'\rho$ the highest ρ momentum is < 2.5 GeV

- Solid/Dashed lines are predictions with and without CT
 [A. Larson, G. Miller and M. Strikman, nuc-th/0604022]

Inner error bar are statistical uncertainties
outer error bar are the quadrature sum of statistical and pt. to pt. systematic uncertainties.
Kaon Transparency at 6 GeV JLab

• Kaon transparency from electroproduction has never been measured!
• Kaons contain strange quarks and thus have a very long mean free path, which makes kaons a unique probe of the nuclear force
• Kaon transparency from electroproduction may help verify the anomalous strangeness transparency seen in K-nuclei scattering [S.M. Eliseev, NPA 680, 258c (2001)]

Experimental data from 6 GeV JLab also contain significant sample of kaons!

<table>
<thead>
<tr>
<th>Q² (GeV²)</th>
<th>-t (GeV²)</th>
<th>E_e (GeV)</th>
<th>p_K⁺ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0.05</td>
<td>4.0</td>
<td>2.793</td>
</tr>
<tr>
<td>2.1</td>
<td>0.16</td>
<td>5.0</td>
<td>3.187</td>
</tr>
<tr>
<td>3.0</td>
<td>0.29</td>
<td>5.0</td>
<td>3.418</td>
</tr>
</tbody>
</table>
Kaon Transparency Analysis Procedure

Data and simulation for 12C nucleus at $Q^2=2.1$ GeV2

- Build a model for $p(e,e'K^+)X$ using hydrogen data that is based on earlier kaon production data
- Monte Carlo simulation includes various corrections, e.g., experimental, reaction mechanism (Coulomb distortion), etc.
- The new parameterization of the kaon production cross section is used as an input for the quasi-free model for all target nuclei

Simulation describes shapes reasonably well for all target nuclei and kinematic settings
Kaon Nuclear Transparency - Q^2 Dependence

Nuruzzaman et al., arXiv:1103.4120 (2011)

- Kaon transparency and its Q^2 dependence for three heavy target nuclei
- Recent JLab data are in agreement with earlier JLab low Q^2 data
 - For recent data ratio of proton number from light nuclei to 2H was taken

No energy dependence within uncertainty of the transparency

Earlier data on quasi-free kaon production from light nuclei

Transparency extracted as

\[T = \frac{\sigma_A^{\text{Exp}}}{\sigma_D^{\text{Exp}}} \times \frac{\sigma_A^{\text{Model}}}{\sigma_D^{\text{Model}}} \]

Compare to deuterium to reduce impact of non-isoscalar effects
Effective Cross Sections

Nuruzzaman et al., arXiv:1103.4120 (2011)

- Investigate relative trends for p/π⁺/K⁺ by extracting effective cross sections
 - Obtained by fitting the measured transparency to an empirical geometrical model

- Energy dependence of effective p/π⁺/K⁺ cross sections is consistent with the one of the free cross sections, but absolute magnitudes are different
 - Kaon effective cross section significantly smaller than free cross section compared to size of the effect for p/π⁺ -- would require more sophisticated models to study
• Energy dependence of α, which quantifies the A dependence of nuclear transparency, can be viewed as an indication for CT-like effects

$$\sigma (A) = \sigma_0 \ A^\alpha \quad \therefore \quad T = \left(\frac{A}{2} \right)^{\alpha-1}$$

• Parameter α for p, π^+, K^+ from electron scattering is larger compared to high-energy hadron-nucleus collisions

 – For kaons, α is significantly larger contrary to traditional nuclear physics expectation.
Goals of the 12 GeV Jlab experiment (E12-06-107)

- Search for CT with p/π^+K^+ in a region of $Q^2=5-9.5$ GeV2
- For π^+/K^+, where reaction mechanism not well understood map out both Q^2 and A dependence
Hard-Soft Factorization

• To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
 – No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q^2 scaling regime has been reached

• Factorization is not rigorously possible without the onset of CT [Burkhardt et al., Phys.Rev.D74:034015,2006]

• One of the most stringent tests of factorization is the Q^2 dependence of the π/K electroproduction cross section
 – σ_L scales to leading order as Q^{-6}

• Factorization theorems for meson electroproduction have been proven rigorously only for longitudinal photons [Collins et al, Phys. Rev. D56, 2982 (1997)]
The Q^2 scaling prediction is consistent with the JLab σ_L data

- Limited Q^2 coverage and large uncertainties make it difficult to draw a conclusion

The two additional predictions that $\sigma_L >> \sigma_T$ and $\sigma_T \sim Q^{-8}$ are not consistent with the data

Testing the applicability of factorization requires larger kinematic coverage and improved precision
Kaons: Q^{-n} scaling of σ_L/σ_T in the resonance region

- Q^{-n} scaling through $R=\sigma_L/\sigma_T$ is not as rigorous as the scaling test of the individual cross sections

- Current knowledge of σ_L and σ_T above the resonance region is insufficient

- Current models not sufficient for understanding reaction mechanism

- Difficult to draw a conclusion from current $K^+ \sigma_L/\sigma_T$ ratios
 - Limited W and Q^2 coverage
 - Uncertainties from scaling in x, t

High quality σ_L and σ_T data for both kaon and pion would provide important information for understanding the meson reaction mechanism.
JLab 12 GeV: Factorization Tests in π^+ Electroproduction

- JLab experiment E12-07-105 will search for the onset of factorization
- Measure the Q^2 dependence of the $p(e,e'\pi^+)n$ cross section at fixed x_B and $-t$ to search for evidence of hard-soft factorization
 - Separate the cross section components: L, T, LT, TT
 - The highest Q^2 for any L/T separation in π electroproduction
- Also determine the L/T ratio for π^- production to test the possibility to determine σ_L without an explicit L/T separation

<table>
<thead>
<tr>
<th>x</th>
<th>Q^2 (GeV2)</th>
<th>W (GeV)</th>
<th>$-t$ (GeV/c)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>1.5-4.0</td>
<td>2.0-3.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.40</td>
<td>2.1-5.5</td>
<td>2.0-3.0</td>
<td>0.2</td>
</tr>
<tr>
<td>0.55</td>
<td>4.0-9.1</td>
<td>2.0-2.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Is the partonic description applicable at JLab?
Can we extract GPDs from pion production?
Approved experiment E12-09-011 will provide first L/T separated kaon data above the resonance region.

- Onset of factorization
- Understanding of hard exclusive reactions
 - QCD model building
 - Coupling constants

E12-09-011: Precision data for $W > 2.5$ GeV
L/T separations from nuclear targets

- L/T separation from nuclear targets from JLab 6 GeV/12 GeV data
- MC model including a parameterization in missing mass, Mx, using fit to data.