Nuclear Transparency in A(e,e' π/K)X Status and Prospects

Tanja Horn The CATHOLIC UNIVERSITY of AMERICA

Small size configurations at high-t workshop

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Pion/Kaon Transparency, Small Size Configurations Workshop, 2011 26 March 2011

1

Nuclear Transparency

- Color transparency (CT) is a phenomenon predicted by QCD in which hadrons produced at large Q² can pass through nuclear matter with little or no interaction [A.H.Mueller, Proc. 17th rec. de Moriond, Moriond, p13 (1982), S.J.Brodsky, Proc. 13th intl. Symp. on Multip. Dyn., p963 (1982)]
 - At high Q², hadron can be created with a small transverse size (PLC)
 - Hadron can propagate through the nucleus before assuming its equilibrium size
- Currently no conclusive evidence of the onset of CT at intermediate energies
 - Proton results negative up to Q²~8 GeV²
- Advantage of using pions: simple qq system
 - Easier to produce a point-like configuration (PLC) of two quarks rather than three
 - Coherence lengths are small (~1 fm)

2

Transparency at JLab 6 GeV (E01-107)

- Took data to the highest possible Q² with 6 GeV electron beam at JLab in 2004
- Main goal: measurement of the nuclear transparency of pions
- Also: full L/T/LT/TT separation in π⁺ production at two values of Q²

Q² (GeV²)	W (GeV)	t (Gev)²	E _e (GeV)	3
1.1	2.3	0.05	4.0	0.50
2.15	2.2	0.16	4.0,5.0	0.27,0.56
3.0	2.1	0.29	5.0	0.45
4.0	2.2	0.44	5.0,5.8	0.25,0.39
4.8	2.2	0.52	5.8	0.26

• LH₂, LD₂, ¹²C, Cu, and Au targets at each kinematic setting

THE CATHOLIC UNIVERSITY of AMERICA

The A(e, e' π^+) Reaction

- If π+ production from a nucleus is similar to that from a proton we can determine nuclear transparency of pions
- Other mechanisms: NN final state interactions, pion excess, medium modifications, etc.
- Assumption is verified by L/T separations
 - Extracted average results over the acceptance

$$\sigma_{\mathbf{A}(\mathbf{e},\mathbf{e}'\pi^{+})\mathbf{X}} = \sigma_{\mathbf{p}(\mathbf{e},\mathbf{e}'\pi^{+})\mathbf{n}} \otimes S(\mathbf{E},\mathbf{p})$$

 $S(E, \mathbf{p}) =$ Spectral function for proton

THE CATHOLIC UNIVERSITY of AMERICA

Pion Nuclear Transparency - Q² Dependence

B. Clasie et al., PRL 99, 242502 (2007) Covered in Phys. Rev. Focus 6/2006

Inner error bar are statistical uncertainties outer error bar are the quadrature sum of statistical and pt to pt systematic uncertainties.

- Larson et al., [Phys. Rev. C74, 018201 (2006)]
 - Semiclassical Glauber multiple scattering approximation
 - Dashed: includes CT
- Cosyn et al., [Phys. Rev. C74, 062201R (2006)]
 - Relativistic Glauber multiple scattering theory
 - Dash-dot: includes CT+SRC

A Dependence of Pion Transparency

• Energy dependence of α, which quantifies the A dependence of nuclear transparency, can be viewed as an indication for CT-like effects

 $\sigma(A) = \sigma_0 \mathbf{A}^{\alpha}$

 $\therefore T = A^{\alpha - 1}$

- Fits to π-N scattering cross sections give α~0.76
 - Energy independent

B. Clasie et al., PRL 99, 242502 (2007)

P_{π} Dependence of Transparency

Inner error bar are statistical uncertainties outer error bar are the quadrature sum of statistical and pt. to pt. systematic uncertainties.

- No conflict between pionCT data and recent Hall-B e,e'p data
 - P_{π} >2.5 GeV for all pionCT kinematics while for the Hall B e,e'p the highest p momentum is <2.5 GeV
- Solid/Dashed lines are predictions with and without CT [A. Larson, G. Miller and M. Strikman, nuc-th/0604022]

7

THE CATHOLIC UNIVERSITY of AMERICA

Kaon Transparency at 6 GeV JLab

Experimental data from 6 GeV JLab also contain significant sample of kaons!

Q² (GeV²)	-t (GeV²)	E _e (GeV)	p _{K+} (GeV)
1.1	0.05	4.0	2.793
2.1	0.16	5.0	3.187
3.0	0.29	5.0	3.418

Kaon Transparency kinematics

- Kaon transparency from electroproduction has never been measured!
- Kaons contain strange quarks and thus have a very long mean free path, which makes kaons a unique probe of the nuclear force
- Kaon transparency from electroproduction may help verify the anomalous strangeness transparency seen in K-nuclei scattering [S.M. Eliseev, NPA 680, 258c (2001)]

Kaon Transparency Analysis Procedure

Data and simulation for ^{12}C nucleus at Q2=2.1 GeV2

- Build a model for p(e,e'K+)X using hydrogen data that is based on earlier kaon production data
- Monte Carlo simulation includes various corrections, e.g., experimental, reaction mechanism (Coulomb distortion), etc.
- The new parameterization of the kaon production cross section is used as an input for the quasi-free model for all target nuclei

Simulation describes shapes reasonably well for all target nuclei and kinematic settings

Kaon Nuclear Transparency - Q² Dependence

Nuruzzaman et al., arXiv:1103.4120 (2011) Transparency 5.1 🔺 Cu 0.5 2 3 $Q^2[GeV]^2$

Éarlier data on quasi-free kaon production from light nuclei [F. Dohrmann et al., Phys. Rev. C 76, 054004 (2007)]

Transparency extracted as

- Kaon transparency and its Q² dependence for three heavy target nuclei
- Recent JLab data are in agreement
 with earlier JLab low Q² data
 - For recent data ratio of proton number from light nuclei to ²H was taken

No energy dependence within uncertainty of the transparency

Compare to deuterium to reduce impact of non-isoscalar effects

Tanja Horn, Pion/Kaon Transparency, Small Size Configurations Workshop, 2011 CUA

Effective Cross Sections

Nuruzzaman et al., arXiv:1103.4120 (2011)

- Investigate relative trends for $p/\pi^+/K^+$ by extracting effective cross sections
 - Obtained by fitting the measured transparency to an empirical geometrical model
- Energy dependence of effective $p/\pi^+/K^+$ cross sections is consistent with the one of the free cross sections, but absolute magnitudes are different
 - Kaon effective cross section significantly smaller than free cross section compared to size of the effect for p/π^+ -- would require more sophisticated models to study

CUA

A Dependence of Kaon Transparency

 Energy dependence of α, which quantifies the A dependence of nuclear transparency, can be viewed as an indication for CT-like effects

$$\sigma(\mathbf{A}) = \sigma_0 \mathbf{A}^{\alpha} \quad \therefore \quad T = \left(\frac{A}{2}\right)^{\alpha}$$

• Parameter α for p, π^+ , K⁺ from electron scattering is larger compared to highenergy hadron-nucleus collisions

- For kaons, α is significantly larger contrary to traditional nuclear physics expectation \mathbb{CUA}

CATHOLIC UNIVERSITY of AMERICA

CT at 12 GeV JLab

- Goals of the 12 GeV Jlab experiment (E12-06-107)
 - Search for CT with $p/\pi^+/K^+$ in a region of Q²=5-9.5 GeV²
 - For π^+/K^+ , where reaction mechanism not well understood map out both Q² and A dependence

Hard-Soft Factorization

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached
- Factorization is not rigorously possible without the onset of CT [Burkhardt et al., Phys.Rev.D74:034015,2006]
- One of the most stringent tests of factorization is the Q² dependence of the π/K electroproduction cross section
 - σ_L scales to leading order as Q^-6

• Factorization theorems for meson electroproduction have been proven rigorously only for longitudinal photons [Collins et al, Phys. Rev. D56, 2982 (1997)]

THE CATHOLIC UNIVERSITY of AMERICA

Q^2 dependence of σ_L and σ_T

- The Q⁻⁶ QCD scaling prediction is consistent with the JLab σ_L data
 - Limited Q² coverage and large uncertainties make it difficult to draw a conclusion
- The two additional predictions that σ_L>>σ_T and σ_T~Q⁻⁸ are not consistent with the data
- Testing the applicability of factorization requires larger kinematic coverage and improved precision

T. Horn et al., Phys. Rev. C 78, 058201, (2008); arXiv:0707.1794 (2007)

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Pion/Kaon Transparency, Small Size Configurations Workshop, 2011 $ep \rightarrow e'\pi^+n$

Kaons: Q-n scaling of σ_L/σ_T in the resonance region • Q-n scaling trough $R=\sigma_L/\sigma_T$ is not as rigorous as the scaling test of the individual cross sections $R=\sigma_L/\sigma_T$ $R=\sigma_L/\sigma_T$

- Current knowledge of σ_L and σ_T *above* the resonance region is insufficient
- Current models not sufficient for understanding reaction mechanism
- Difficult to draw a conclusion from current K⁺ σ_L/σ_T ratios
 - Limited W and Q² coverage
 - Uncertainties from scaling in x, t

High quality σ_L and σ_T data for both kaon and pion would provide important information for understanding the meson reaction mechanism u_A

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Exclusive Meson Production at high Q2 and Factorization, Exclusive Reactions Workshop 2010

16

JLab 12 GeV: Factorization Tests in π^+ Electroproduction

- JLab experiment E12-07-105 will search for the onset of factorization
- Measure the Q² dependence of the p(e,e'π⁺)n cross section at fixed x_B and -t to search for evidence of hard-soft factorization
 - Separate the cross section components: L, T, LT, TT
 - The highest Q^2 for any L/T separation in π electroproduction
- Also determine the L/T ratio for π^{-} production to test the possibility to determine σ_{L} without an explicit L/T separation

Can we extract GPDs from pion production?

x	Q² (GeV²)	W (GeV)	-t (GeV/c)²
0.31	1.5-4.0	2.0-3.1	0.1
0.40	2.1-5.5	2.0-3.0	0.2
0.55	4.0-9.1	2.0-2.9	0.5
			C

17

CATHOLIC UNIVERSITY of AMERICA

Тне

Small Size Configurations Workshop, 2011

JLab 12 GeV: L/T separated kaon cross sections T. Horn et al. σ \mathbf{O} 400 400 Q²=1.0 Ge $Q^2 = 1.0 \text{ GeV}$ Approved experiment E12-09-011 Mohring (1997) do_{L,T}/dΩ (nb/sr) will provide first L/T separated Carman (1999) σ στ A Hall A (2005) 200 **kaon** data above the resonance region п 200 200 Q²=2.0 GeV² Q²=2.0 GeV²

- Ö

do, projecte

2

W(GeV

100

200

0

σ,

σ

Q2=3.0 GeV2

3

100

200

О

do_T projected

- Onset of factorization
- Understanding of hard exclusive reactions
 - QCD model building
 - Coupling constants

E12-09-011: Precision data for W > 2.5 GeV

2

W (GeV)

σ_

σ

Q²=3.0 GeV²

3

CUA

L/T separations from nuclear targets

- L/T separation from nuclear targets from JLab 6 GeV/12 GeV data
- MC model including a parameterization in missing mass, Mx, using fit to data.

THE CATHOLIC UNIVERSITY of AMERICA

