

High-t meson electroproduction. Experimental status and prospects

Valery Kubarovsky Jefferson Lab

Newport News March 25, 2011

Pseudoscalar mesons

Vector mesons

$$ep \to en\pi^+$$
$$ep \to ep\pi^0, \quad \pi^0 \to \gamma\gamma$$
$$ep \to ep\eta, \quad \eta \to \gamma\gamma$$

$$ep \to en\rho^{+}, \quad \rho^{+} \to \pi^{+}\pi^{0}$$
$$ep \to ep\rho^{0}, \quad \rho^{0} \to \pi^{+}\pi^{-}$$
$$ep \to ep\omega, \quad \omega \to \pi^{+}\pi^{-}\pi^{0}$$
$$ep \to ep\phi, \quad \phi \to K^{+}K^{-}$$

CLAS6: lots of data. CLAS12: Exp. # E12-06-108

New proposal being prepared for PAC 38

$\pi^0, \eta, \rho^0, \omega, \phi...$

Q²

6

5

4

3

0

Deeply Virtual Meson Electroproduction

0.5

1.5

- High Q² Low -t Complement DVCS experiment.
 Unique access to spin dependent GPDs
- Low Q² High -t
 New form factors
 related to 1/x
 moments of GPDs
- High Q² High -t Region never accessed.

Kinematic regions in meson electroproduction

W>2 GeV High Q ² Low - <i>t</i>	Complement <i>DVCS</i> experiment. Unique access to spin dependent <i>GPD</i> s.
W>2 GeV Low Q ² High - <i>t</i>	New form factors related to 1/x moments of GPD s
W>2 GeV High Q ² High - <i>t</i>	Region never before accessed. Small initial configurations and small reaction size.
W<2 GeV High Q ² - High - <i>t</i>	Resonance form factors. Subject of proposal PR12-06-116

High Q², Low t Region

Collins, Frankfurt, Strikman -1997

• Factorization theorem states that in the limit $Q^2 \rightarrow \infty$ exclusive electroproduction of mesons is described by hard rescattering amplitude, generalized parton distributions (GPDs), and the distribution amplitude Φ (z) of the outgoing meson.

 The prove applies only to the case when the virtual photon has longitudinal polarization

• Q² $\rightarrow \infty \sigma_L \sim 1/Q^6$, $\sigma_T / \sigma_L \sim 1/Q^2$

How are the proton's charge densities related to its quark momentum distribution?

D. Mueller, X. Ji, A. Radyushkin, ...1994 -1997 M. Burkardt, A. Belitsky... Interpretation in impact parameter space

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & spin distributions

GPDs

- GPD is Fourier Transform of matrix elements
- t-dependence of GPDs maps transverse position of quarks
- GPDs at zero skewedness (ξ=0) is the probability to find quark with momentum x and impact parameter b_x
- Generalize at $\xi \neq 0 \rightarrow$ Quantum femtophotography
- DGLAP region (x>ξ) quark femtophotography
- ERBL region (x<ξ) quark-antiquark femtophotography pair of the size 1/Q

Deeply Virtual Meson production

$$ep \rightarrow ep\pi^0, \ \pi^0 \rightarrow \gamma\gamma$$

$$ep \rightarrow ep\eta, \ \eta \rightarrow \gamma\gamma$$

$$ep \rightarrow en\rho^+, \ \rho^+ \rightarrow \pi^+\pi^0$$

· ·	/	
Meson	GPD flavor	
	composition	
π^+	$\Delta u - \Delta d$	$\hat{\tau}$
π^0	$2\Delta u + \Delta d$	
η	$2\Delta u - \Delta d$	
$ ho^0$	2u+d	7
$ ho^+$	u-d	
ω	2u-d	

- DVCS is the cleanest way of accessing GPDs. However, it is difficult to perform a flavor separation.
- Vector and pseudoscalar meson production allows one to separate flavor and isolate the helicitydependent GPDs.

$π^{0}$ electroproduction $γ^{*}p \rightarrow p\pi^{0}$ Handbag predictions

Kroll, Goloskokov, 2009.

Predictions for the cross section (left) and A_{UT} (right) for the π^0 electroproduction versus –t. The unseparated(σ_L, σ_T) cross section was calculated as well as σ_T and σ_{LT} . At W=2.2 GeV the cross section will be a factor of 10 larger. We can check it at Jlab.

Transition from "hadronic" to the partonic degrees of freedom

Regge Model

J.M. Laget 2010

(a) Regge poles (vector and axial vector mesons)(b) and (c) pion cuts

Vector meson cuts

* $\gamma p \rightarrow p\pi^0$

 $d\sigma_{\scriptscriptstyle LI}$

 $\cos\phi$)

Structure Functions $\sigma_T + \epsilon \sigma_L \sigma_{TT} \sigma_{LT}$

 $\delta\sigma_T$

 2π

 $d\sigma_L$

dt

 $d\sigma_{TI}$

dt

- E

 $d\sigma$

 (Q^2, x, t, ϕ)

Structure functions _Q²=1.7499GeV² 0 300 0.25 1.25 1.5 1.75 t, GeV

 $\cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)}$

GM Laget Regge model

 $\gamma^* p \rightarrow p \pi^0$

JML Regge predictions

-t, GeV²

Comparison with J.M. Laget Regge model

Extracted reduced cross sections were compared with predictions of J.M. Laget Regge Model

 $\gamma^* p \rightarrow p \pi^0$

Q2-dependence

 $\gamma^* p \rightarrow p \pi^0$

X_B dependence

 $\gamma^* p \rightarrow p \pi^0$

W-dependence

t - distribution

 $\gamma^* p \rightarrow p \pi^0$

 $\frac{d\sigma}{dt} \propto e^{B(x_B,Q^2)t}$

t-Slope Parameter as Function of x_{\rm B} and Q^2

η/π^0 Ratio

Preliminary data on the ratio η/π^0 as a function of x_B for different bins in t.

The dependence on the x_B and Q^2 is very week.

Probably we have small positive slope. The ratio in the photoproduction is near 0.2-0.3 (very close to what we have at our smallest Q²).

$$\frac{\sigma(ep \to ep \eta)}{\sigma(ep \to ep \pi^0)}$$

Vector Mesons Quark and Gluon GPDs

Vector mesons b-slope parameter

$\sigma_{\rm L} \sigma_{\rm T} \text{ separation } \gamma_L p \rightarrow p\rho$ SCHC S-channel helicity conservation

*

Red lines (Regge model) :Laget, Phys. Rev. D 65, 074022 (2002)

* $n\rho^+$ $\gamma_L p$ \rightarrow **CLAS data**

GPD fails to describe data by more than order of magnitude

•This does not mean that we can't access GPD in vector meson electroproduction

•For example, adding the so called generalized D-term(M.Guidal) together with standard VGG model successfully describes data

GPD approach describes well data for W>5 GeV

Large angle (high -t), relatively small Q^2

(Analog to WACS where handbag works very well)

$$\frac{d\sigma_L^M}{dt} \propto \int_0^1 d\tau \phi(\tau) R(t,\tau) \qquad R(t) \to R_V^M R_V^{Mg} R_A^M R_V^M$$
$$R_V^M(t) = \int_{-1}^1 \sum_q \frac{dx}{x} H^q(x,t) \qquad R_T^M(t) = \int_{-1}^1 \sum_q \frac{dx}{x} E^q(x,t) \qquad R_A^M(t) = \int_{-1}^1 \sum_q \frac{dx}{x} \widetilde{H}^q(x,t)$$

CLAS data: Kubarovsky GPD model: Huang and Kroll

High-t, Large Q² From GPDs to TDAs

 GPDs are not the adequate tool for describing backward hard electroproduction

Basic difference forward vs backward is the exchange of qq vs qqq

TDAs: Transition distribution amplitudes

Lansberg, Pire, Szymanowski

- In backward meson electroproduction there is factorization of a non-perturbative part describing a baryon to meson transition and perturbative part γ*qqq→qqq transition
- TDAs provide information on Fock state of the proton with small b_T for quark triplet or how to find a meson in a proton.
 - As for GPDs, the t dependence of TDAs maps the transverse position b_T of quarks

t - distribution

 $ep \rightarrow ep\pi^0$

GeV²

JLab 12 GeV Upgrade

CLAS12 •High luminosity •Large acceptance •Wide kinematic coverage •High precision

Kinematics coverage for deeply exclusive experiments

Projected measured cross sections.

 $ep \rightarrow ep\pi^0$

New PAC38 Proposal (2011) Deep Virtual Exclusive Vector Meson Electroproduction

$$ep \to en\phi, \quad \phi \to K^{+}K^{-} \qquad ep \to ep\rho^{0}, \quad \rho^{0} \to \pi^{+}\pi^{-}$$
$$ep \to ep\omega, \quad \omega \to \pi^{+}\pi^{-}\pi^{0} \qquad ep \to en\rho^{+}, \quad \rho^{+} \to \pi^{+}\pi^{0}$$

• Kinematics:

Q² from 3 – 10 GeV² -*t* from .5 to 10 Gev² W from 2-4 GeV²

- Run simultaneously with DVCS
- Simulations for $\phi,\,\rho^{_0}\,,\,\rho^{_+}\,,\omega\,$ are beginning.
- Isolating K's over entire kinematic range.

Summary

2015

- Deeply Virtual Meson Production has the potential to probe the nucleon structure at the parton level, as described by Generalized Parton distributions (GPDs).
- The most extensive set of π^0 , η , ρ^+ , ρ^0 , ω , and f electroproduction to date has been obtained with the CLAS spectrometer.
- The approach to the hard regime can be studied experimentally using model-independent tests which probe qualitative features like t-slope as function of Q² and x_B
- CLAS12 program of pseudoscalar and vector electroproduction will provide unique information about the: -transition between soft long-range phenomena and hard short range. -quark momentum and spin distributions of the nucleons.
 - -gluon and quark GPDs