High t form factors \& Compton Scattering quark based models

Gerald A. Miller
University of Washington

Basic Philosophy- model wave function I

- Given U compute form factors, densities, Compton scattering
- Make guess at how QCD works, improve guess, rule out simple scenarios
- Non-relativistic quark model
- 3 quarks
- 0 orbital angular momentum
- proton is round
-What can Compton scattering say?

Basic Philosophy- model wave function I

- Given U compute form factors,
densities, Compton scattering
- Make guess at how QCD works, improve guess, rule out simple scenarios
- Non-rolativistic quark modol
- 3 quarks
- 0 orbital angular momentum
- proton is round
-What can Compton scattering say?

Basic Philosophy- model wave function I

- Given U compute form factors,
densities, Compton scattering
- Make guess at how QCD works, improve guess, rule out simple scenarios
- Non-relativistic quarl modol
- 3 quárís
- 0 orbital angular momentum
- proton is round
-What can Compton scattering say?

Basic Philosophy- model wave function I

- Given U compute form factors,
densities, Compton scattering
- Make guess at how QCD works, improve guess, rule out simple scenarios
- Non-relativistic quark modol
- 3 quáarks
- O orbital angular momentum
- proton is round
-What can Compton scattering say?

Basic Philosophy- model wave function I

- Given U compute form factors,
densities, Compton scattering
- Make guess at how QCD works, improve guess, rule out simple scenarios
- Non-rolativistic quark modol
- 3 quáarks
- Oorbital angular momentum
- proton is round
-What can Compton scattering say?

Expectations- Pre Jlab

$\frac{G_{E}}{G_{M}}$ constant : non - relativistic quark model

Expectations- Pre Jlab

$\frac{G_{E}}{G_{M}}$ constant : non - relativistic quark model

Form Factor

Form Factor

$\frac{G_{E}}{G_{M}}$ constant : non - relativistic quark model
Relativistic model needed- light front coordinates

Understand phenomena-model

Model proton wave function:3 quarks
Lorentz and rotationally invariant
Light front variables
Dirac spinors-orbital angular momentum

M. R. Frank, , B.K. Jennings, , G.A. Miller,. Phys.Rev.C54:920-935,1996.

Theory 1995 Data 2000
Quark spin is 75 \%
of proton total angular momentum

Neutron- requires pion cloud

Gerald A. Miller, Phys.Rev.C66:032201,20025

Improved model-Cloet \& Miller '11 20

Model proton wave function: quarkdiquark

Lorentz and rotationally invariantdifferent forms!

Light front variables
Dirac spinors-orbital angular momentum

Cloet and Miller 2011

Quark spin is 35% of proton total angular momentum

Shapes of the proton- momentum space spin-dependent-densities

three vectors $\mathrm{n}, \mathrm{K}, \mathrm{S}$

Phys.Rev. C68 (2003) 022201

Shapes of the proton- momentum space spin-dependent-densities

three vectors $\mathrm{n}, \mathrm{K}, \mathrm{S}$

Phys.Rev. C68 (2003) 022201

MODEL, HOW TO MEASURE? How to compute fundamentally?

Measure $h_{1 T}^{\perp}: e+p(\uparrow) \rightarrow e^{\prime} \pi X$

3 vectors:
Spin direction, photon direction, hadron direction
TMD- is a momentum-space spin-dependent-density

Measure $h_{1 T}^{\perp}: e+p(\uparrow) \rightarrow e^{\prime} \pi X$

H. Avakian, et al. "Transverse Polarization Effects in Hard Scattering at CLAS12 Jef ferson Laboratory", LOI12-06-108, and H. Avakian private communication.
3 vectors:
Spin direction, photon direction, hadron direction
TMD- is a momentum-space spin-dependent-density

Generalized Coordinate Space Densities

$$
\begin{gathered}
\rho^{\Gamma}(\mathbf{b})=\sum_{q} e_{q} \int d x^{-} q_{+}\left(x^{-}, \mathbf{b}\right) \gamma^{+} \Gamma q_{+}\left(x^{-}, \mathbf{b}\right) \\
\Gamma=\frac{1}{2}\left(1+\mathbf{n} \cdot \gamma \gamma_{5}\right) \text { gives spin }- \text { dependent density }
\end{gathered}
$$

PHYSICAL REVIEW LETTERS

Transverse Spin Structure of the Nucleon from Lattice-QCD Simulations
M. Göckeler, ${ }^{1}$ Ph. Hägler, ${ }^{2, *}$ R. Horsley, ${ }^{3}$ Y. Nakamura, ${ }^{4}$ D. Pleiter, ${ }^{4}$ P.E. L. Rakow, ${ }^{5}$ A. Schäfer, ${ }^{1}$ G. Schierholz, ${ }^{6,4}$ H. Stüben, ${ }^{7}$ and J. M. Zanotti ${ }^{3}$

spin-dependent density -depends on direction of \mathbf{b} : proton is not round

Compton scattering

PHYSICAL REVIEW C 69, 052201(R) (2004)
Handling the handbag diagram in Compton scattering on the proton
Gerald A. Miller
Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
(Received 1 March 2004; published 25 May 2004)

Poincaré invariance, gauge invariance, conservation of parity, and time reversal invariance are respected in an impulse approximation evaluation of the handbag diagram. Proton wave functions, previously constrained by comparison with measured form factors, that incorporate the influence of quark transverse and orbital angular momentum (and the corresponding violation of proton helicity conservation) are used. Computed cross sections are found to be in reasonably good agreement with early measurements. The helicity correlation between the incident photon and outgoing proton, $K_{L L}$, is both large and positive at back angles. For photon laboratory energies of $\leqslant 6 \mathrm{GeV}$, we find that $K_{L L} \neq A_{L L}$, and $D_{L L} \neq 1$.

Wave function supplies amplitudes for on-mass shell quarks, CC respected

Technical aspects

- Transverse momentum of quarks included
- Photon momenta are transverse, no boosts
- No energy transfer
$\mathcal{M}_{s^{\prime}, S}\left(\boldsymbol{\epsilon}^{\prime}, \boldsymbol{\epsilon}\right)=\rho \otimes \mathcal{O}$
$\rho_{S^{\prime}, s^{\prime} ;, S, s}\left(\eta, K_{\perp}^{\prime}, K_{\perp}\right)=\int d \xi d^{2} k_{\perp} \Psi_{S^{\prime}, s^{\prime}}^{\dagger}\left(\xi, k_{\perp}, \eta, K_{\perp}^{\prime}\right) \Psi_{S, s}\left(\xi, k_{\perp}, \eta, K_{\perp}\right)$

$$
K_{\perp}^{\prime}=k_{\perp}+(1-\eta)\left(q_{\perp}^{\prime}-q_{\perp}\right)_{11}
$$

Technical II

- $S^{\prime}, S, \varepsilon, \varepsilon^{\prime}, 16$ amplitudes
- 6 independent, challenge to calc'n
- transform to helicity basis,
- λ nucleon helicity, μ photon helicity

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{1}{64 \pi\left(s-m^{2}\right)^{2}} \Sigma_{\mu, \mu^{\prime}, \lambda, \lambda^{\prime}}\left|\Phi_{\mu^{\prime}, \lambda^{\prime}, \mu \lambda}\right|^{2} . \\
& A_{L L} \frac{d \sigma}{d t}=\frac{1}{2}\left[\frac{d \sigma(\mu=+, \lambda=+)}{d t}-\frac{d \sigma(\mu=+, \lambda=-)}{d t}\right] . \\
& K_{L L} \frac{d \sigma}{d t}=\frac{d \sigma\left(\mu=+, \lambda^{\prime}=+\right)}{d t}-\frac{d \sigma\left(\mu=+, \lambda^{\prime}=-\right)}{d t},
\end{aligned}
$$

$D_{L L} \frac{d \sigma}{d t}=\frac{d \sigma\left(\mu=+, \mu^{\prime}=+\right)}{d t}-\frac{d \sigma\left(\mu=+, \mu^{\prime}=-\right)}{d t{ }_{14}}$

Let us summarize. Poincaré invariance, gauge invariance, conservation of parity, and time reversal invariance are respected in our impulse approximation evaluation of the handbag diagrams. Proton wave functions, previously constrained by comparison with measured form factors, that incorporate the influence of quark orbital angular momentum (and the corresponding violation of proton helicity conservation) are used. Computed cross sections are in reasonably good agreement with early measurements. The value of $K_{L L}$ is large and positive for scattering at large angles. In contrast with earlier work, we find that $K_{L L} \neq A_{L L}$, and $D_{L L} \neq 1$ at large scattering angles.

Summary

- Form factors, GPDs, TMDs, understood from unified light-front formulation, GPD-coordinate space density,TMD momentum space density
- Potential of Compton scattering unrealized-more data needed
- Proton is not round- lattice QCD spin-dependentdensity is not zero
- Experiment can whether or not proton is round by measuring $h_{1 T}^{\perp}$

Summary

- Form factors, GPDs, TMDs, understood from unified light-front formulation, GPD-coordinate space density,TMD momentum space density
- Potential of Compton scattering unrealized-more data needed
- Proton is not round- lattice QCD spin-dependentdensity is not zero
- Experiment can whether or not proton is round by measuring $h_{1 T}^{\perp}$

The Proton

Spares follow

Summary of SDD

- SDD are closely related to TMD's - If $h_{1 T}$? is not 0 , proton is not round. Experiment can show proton ain't round.

Summary of SDD

- SDD are closely related to TMD's
- If $h_{1 T}$? is not 0 , proton is not round. Experiment can show proton ain't round.

The Proton

Ratio of Pauli to Dirac Form Factors 1995 theory, data 2000

How to study the proton?

How to study the proton?

EXPERIMENTS

How to study the proton?

- EXPERIMENTS
- Theory -numerical simulations lattice

How to study the proton?

- EXPERIMENTS
- Theory -numerical simulations lattice masses + ... low Q^{2}

How to study the proton?

- EXPERIMENTS
- Theory -numerical simulations lattice masses + ... low Q^{2}
eventually exact

How to study the proton?

- EXPERIMENTS
- Theory -numerical simulations lattice masses + ... low Q^{2} eventually exact
- Phenomenology- symmetries, dynamical guesses, high Q2

How to study the proton?

- EXPERIMENTS
- Theory -numerical simulations lattice masses + ... low Q^{2} eventually exact
- Phenomenology- symmetries, dynamical guesses, high Q2
- Model independent techniques

How to study the proton?

- EXPERIMENTS
- Theory -numerical simulations lattice masses + ... low Q^{2} eventually exact
- Phenomenology- symmetries, dynamical guesses, high Q2
- Model independent techniques

How to study the proton?

- EXPERIMENTS
- Theory -numerical simulations lattice masses + ... low Q^{2} eventually exact
- Phenomenology- symmetries, dynamical guesses, high Q2
- Model independent techniques
what the lattice will find

Spin density operator: $\delta\left(r-r_{p}\right) \sigma \cdot n($

Canted ferromagnetic structure of UNiGe high magnetic fields

PRB65, 144429

(a)

(b)

(c)
(b)

(a)

(c)

A New Parameterization of the Nucleon Elastic Form Factors

R. Bradorod, ${ }^{3}$ A. Bodedk, 3 , B. Budd, and J. Arington ${ }^{b}$
hep-ex/0602017

How proton holds together-high \mathbf{Q}^{2}

- pQCD

Non perturbative ∞ gluon exch

How proton holds together-high \mathbf{Q}^{2}

- pQCD

Non perturbative ∞ gluon exch

How proton holds together-high \mathbf{Q}^{2}

- pQCD

Feynman

Non perturbative ∞ gluon exch

Results

Results

Neutron Interpretation

Central quark density reduced by orbital ang. momentum oam?

Summary of density

- Model independent information on charge density
$p(b) \equiv \sum_{a} e_{q} \int d x q(x, b)=\int d^{2} q F_{1}\left(Q^{2}=q^{2}\right) e^{i q b}$.
- Central charge density of neutron is negative
- Pion cloud at large b

Field theoretic SDD

$\hat{\rho}_{\mathrm{REL}}(\mathbf{K}, \mathbf{n})=\left.\int \frac{d^{3} \xi}{(2 \pi)^{3}} e^{-i \mathbf{K} \cdot \boldsymbol{\xi}} \bar{\psi}(0) \gamma^{0}\left(1+\boldsymbol{\gamma} \cdot \mathbf{n} \gamma_{5}\right) \mathcal{L}(0, \xi ;$ path $) \psi(\boldsymbol{\xi})\right|_{t=\xi^{0}=0}$

- Probability to have momentum K, and spin direction n

Matrix elements depend on three vectors

n, K, S

Field theoretic SDD

$\hat{\rho}_{\mathrm{REL}}(\mathbf{K}, \mathbf{n})=\left.\int \frac{d^{3} \xi}{(2 \pi)^{3}} e^{-i \mathbf{K} \cdot \boldsymbol{\xi}} \bar{\psi}(0) \gamma^{0}\left(1+\boldsymbol{\gamma} \cdot \mathbf{n} \gamma_{5}\right) \mathcal{L}(0, \xi ;$ path $) \psi(\boldsymbol{\xi})\right|_{t=\xi^{0}=0}$

- Probability to have momentum K, and spin direction n

Matrix elements depend on three vectors

Equal time correlation function

n, K, S

Relate SDD to TMD

- SDD depend on K_{x}, K_{y}, K_{z} \& equal time correlation function
- TMD depend on $x, K_{x}, K_{y} \& \xi^{+=}=0=t+z$ correlation function
- Integrate SDD over $\mathrm{K}_{\mathrm{z}}-->\mathrm{t}=\mathbf{0 , z = 0}$
- Integrate TMD over \mathbf{x} ! $\xi^{\S}=0, t=0, z=0$

Result :non-spherical nature of proton related to $\mathrm{h}_{1 \mathrm{~T}}$?

