N	
Men	
WACS theory	
QCD&Hadrons	
	Wide-angle Compton s
PDFs	nartonic struc
NPDs	(theory overview and
WACS	
GPDs	
DDs	A.V. Radyushl
WACS & DDs	
	ODU & JLab

scattering and cture prospects)

kin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hadrons in Terms of Quarks and Gluons

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDFs

DIS

NPDs WACS

GPDs

DDs

WACS & DDs

How to relate hadronic states $|p,s\rangle$

to quark and gluon fields $q(z_1)$, $q(z_2)$, ... ?

Standard way: use matrix elements

 $\langle \, 0 \, | \, \bar{q}_{\alpha}(z_1) \, q_{\beta}(z_2) \, | \, M(p), s \, \rangle \ , \ \langle \, 0 \, | \, q_{\alpha}(z_1) \, q_{\beta}(z_2) \, q_{\gamma}(z_3) | \, B(p), s \, \rangle$

Meson-quark matrix element

Baryon-quark matrix element

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Can be interpreted as hadronic wave functions

Light-cone formalism

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDF

DIS

NPD

WACS

GPDs

WACS & DD

• Describe hadron by Fock components in infinite-momentum frame

For nucleon

$$|P\rangle = |q(x_1P, k_{1\perp}) q(x_2P, k_{2\perp}) q(x_3P, k_{3\perp})\rangle + |qqqG\rangle + |qqq\bar{q}q\rangle + |qqqGG\rangle + \dots$$

• x_i : momentum fractions

$$\sum_{i} x_i = 1$$

• $k_{i\perp}$: transverse momenta

$$\sum_{i} k_{i\perp} = 0$$

(ロ) (同) (三) (三) (三) (○) (○)

Problems of LC Formalism

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDF

DIS

NPDs

WACS

DDe

WACS & DDs

• In principle: Solving bound-state equation

 $H|P\rangle = E|P\rangle$

one gets $|P\rangle$ which gives complete information about hadron structure

- In practice: Equation (involving infinite number of Fock components) has not been solved and is unlikely to be solved in near future
- Experimentally: LC wave functions are not directly accessible
- Way out: Description of hadron structure in terms of phenomenological functions

Phenomenological Functions

WACS theory

Radyushkin

QCD&Hadrons

- FFs
- PDFs
- DIS
- NPDs
- WACS
- CPDo
- ---
- 000
- WACS & DDs

"Old" functions:

- Form Factors
- Usual Parton Densities
- Distribution Amplitudes

"New" functions:

Generalized Parton Distributions (GPDs)

GPDs = Hybrids of

Form Factors, Parton Densities and Distribution Amplitudes

"Old" functions

are limiting cases of "new" functions

Form Factors

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDFs

DIS

NPDs

.....

WACS & DDs

Form factors are defined through matrix elements

of electromagnetic and weak currents between hadronic states

Nucleon EM form factors:

$$\langle p', s' | J^{\mu}(0) | p, s \rangle = \bar{u}(p', s') \left[\gamma^{\mu} F_1(t) + \frac{\Delta^{\nu} \sigma^{\mu\nu}}{2m_N} F_2(t) \right] u(p, s)$$

$$\Delta = p - p', t = \Delta^2)$$

- Electromagnetic current $J^{\mu}(z) = \sum_{f} e_{f} \bar{\psi}_{f}(z) \gamma^{\mu} \psi_{f}(z)$
- Helicity non-flip form factor $F_1(t) = \sum_f e_f F_{1f}(t)$
- Helicity flip form factor $F_2(t) = \sum_f e_f F_{2f}(t)$

Form Factors are

measurable

through elastic eN scattering

Usual Parton Densities

WACS theory Radyushkin QCD&Hadrons FFs PDFs DIS

NPDs

WACS

GPDs

DDs

WACS & DDs

Parton Densities are defined through forward matrix elements

of quark/gluon fields separated by lightlike distances

Unpolarized quarks case:

$$\langle p \, | \, \bar{\psi}_a(-z/2) \gamma^\mu \psi_a(z/2) \, | \, p \, \rangle \big|_{z^2 = 0}$$

= $2p^\mu \int_0^1 \left[e^{-ix(pz)} f_a(x) - e^{ix(pz)} f_{\bar{a}}(x) \right] dx$

Deep Inelastic Scattering

Spacelike momentum transfer $q^2 \equiv -Q^2$ Im хp f(x)

DIS

Im
$$\frac{1}{(q+xp)^2} \approx \frac{\pi}{2(pq)} \delta(x-x_{Bj})$$

Bjorken variable: $x_{Bj} = \frac{Q^2}{2(na)}$ **DIS measures** $f(x_{Bi})$ Comparing to form factors: point vertex instead of quark propagator and $p \neq p' \rightarrow a \Rightarrow a$

Small-size Configurations: Perturbative QCD for Pion EM Form Factor

WACS theory

DIS

First application of pQCD to exclusive processes

Hard scenario:

small-size configurations dominate large- Q^2 behavior

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Pion Form Factor Data and pQCD

WACS theory

- Radyushkin
- QCD&Hadrons
- FFs
- PDFs
- DIS
- NPDs
- WACS
- GPDs

- With $\varphi_{\pi}^{as}(\alpha)$, hard pQCD contribution to $F_{\pi}(Q^2)$ is $(2\alpha_s/\pi)(0.67 \text{ GeV}^2)/Q^2$: less than 1/3 of experimental value
- Competing nonperturbative soft mechanism dominates for available Q^2

Nonforward Parton Densities (aka GPDs at zero skewness)

WACS theory Radyushkin QCD&Hadrons FFs PDFs DIS NPDS WACS GPDs DS

 $F_1(t) = \sum_a F_{1a}(t)$ $F_{1a}(t) = \int_0^1 \mathcal{F}_{1a}(x, t) \, dx$

Flavor components of form factors $\mathcal{F}_{1a}(x,t) \equiv e_a[\mathcal{F}_a(x,t) - \mathcal{F}_{\bar{a}}(x,t)]$

Forward limit t = 0 $\mathcal{F}_{a(\bar{a})}(x, t = 0) = f_{a(\bar{a})}(x)$

∃ 990

Interplay between x and t dependencies

WACS theory

Radyushkin

QCD&Hadron

FFs

PDFs

DIS

NPDs

WACS

GPDs

DDs

WACS & DDs

Simplest factorized ansatz

 $\mathcal{F}_a(x,t) = f_a(x)F_1(t)$ satisfies both forward and local constraints

Forward constraint

$$\mathcal{F}_a(x,t=0) = f_a(x)$$

Local constraint

$$\int_0^1 [\mathcal{F}_a(x,t) - \mathcal{F}_{\bar{a}}(x,t)] dx = F_{1a}(t)$$

Reality is more complicated:

LC wave function with Gaussian k_{\perp} dependence $\Psi(x_i, k_{i\perp}) \sim \exp\left[-\frac{1}{\lambda^2} \sum_i \frac{k_{i\perp}^2}{x_i}\right]$ suggests $\mathcal{F}_a(x, t) = f_a(x) e^{\bar{x}t/2x\lambda^2}$ $f_a(x)$ =experimental densities

Adjusting λ^2 to provide $\langle k_{\perp}^2 \rangle \approx (300 \text{MeV})^2$ $\begin{pmatrix} z_5 \\ z_6 \\ z_7 \\ 1.75 \\ 1.25 \\ 0.5 \\ 0.25 \\$

Feynman mechanism

Drell-Yan formula

WACS theory

NPDs

$$\begin{aligned} F(\Delta^2) &= \int_0^1 dx \int \Psi^*(x, k_\perp + (1-x)\Delta_\perp) \Psi(x, k_\perp) d^2 k_\perp \\ &\equiv \int_0^1 \mathcal{F}_a(x, t = -\Delta_\perp^2) dx \end{aligned}$$

Form Factor in Gaussian k_{\perp} model

$$F_a(t) = \int_0^1 \mathcal{F}_a(x,t) \, dx = \int_0^1 f_a(x) \, e^{(1-x)t/2x\lambda^2} \, dx$$

Large-t behavior is dominated by $x \rightarrow 1$ region

$$F_a(t) \sim 1/t^{n_a+1}$$
 if $f_a(x) \sim (1-x)^{n_a}$

Regge-type models for NPDs

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDFs

DIS

NPDs

WAC

GPDs

DDe

WACS & DD

"Regge" improvement:

$$\begin{aligned} &f(x) \sim x^{-\alpha(0)} \\ &\Rightarrow \mathcal{F}(x,t) \sim x^{-\alpha(t)} \\ &\Rightarrow \mathcal{F}(x,t) = f(x) x^{-\alpha't} \end{aligned}$$

Accomodating "canonical" quark counting rules:

$$\mathcal{F}(x,t) = f(x)x^{-\alpha't(1-x)}|_{x \to 1}$$

$$\sim f(x)e^{\alpha'(1-x)^2t}$$

Does not change small-*x* behavior but provides

 $f(x)|_{x \to 1}$ vs. $F(t)|_{t \to \infty}$ interplay: $f(x) \sim (1-x)^n \Rightarrow F_1(t) \sim t^{-(n+1)/2}$ Note: no pQCD involved in these counting rules!

Extra 1/t for $F_2(t)$

can be produced by taking $\mathcal{E}_a(x,t) \sim (1-x)^2 \mathcal{F}_a(x,t)$ for "magnetic" NPDs

More general:

$$\begin{split} \mathcal{E}_a(x,t) &\sim (1-x)^{\eta_a} \, \mathcal{F}_a(x,t) \\ \mathsf{Fit}: \eta_u &= 1.6 \;, \; \eta_d = 1 \end{split}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

ъ

Fit to All Four Nucleon $G_{E,M}$ Form Factors

Fit to $F_{1,2}$ Proton Form Factors

WACS theory

- Radyushkin
- QCD&Hadro FFs PDFs DIS NPDs WACS GPDs DDs

Modified Regge parametrization describes JLab polarization transfer data on G_E^p/G_M^p and F_2^p/F_1^p

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Impact Parameter Distributions

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDF

DIS

NPDs

WACS GPDs

DDs

WACS & DDs

NPDs can be treated as Fourier transforms of impact parameter b_{\perp} distributions $f_a(x, b_{\perp})$

$$\mathcal{F}_a(x,t=-\Delta_{\perp}^2) = \int f_a(x,b_{\perp})e^{i(\Delta_{\perp}b_{\perp})}d^2b_{\perp}$$

 b_{\perp} = \perp distance to center of momentum

Structure of IPDs

Purely kinematical effect!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Impact Parameter and Hadron Size

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDFs

DIS

NPDs

WACS

GPDs

DDe

WACS & DDs

Compare impact parameter b_{\perp} representation

$$\mathcal{F}_a(x,t=-\Delta_{\perp}^2) = \int f_a(x,b_{\perp})e^{i(\Delta_{\perp}b_{\perp})}d^2b_{\perp}$$

with Drell-Yan formula in r_{\perp} representation

$$\mathcal{F}_a(x,t=-\Delta_{\perp}^2) = \int |\Psi_a(x,r_{\perp})|^2 e^{i(1-x)(\Delta_{\perp}r_{\perp})} d^2r_{\perp}$$

 r_\perp = \perp distance between active quark and center of momentum of spectators $b_\perp = (1-x)r_\perp$

Feynman mechanism:

Form factors at large t are dominated by $x \to 1,$ i.e. small b_\perp .

But this does not mean that small size configurations dominate at large t!

Logical conclusion:

 b_{\perp} is an artificial and confusing variable!

Size of configuration is determined by r_{\perp} !

Application to Wide-Angle Compton Scattering

Handbag model for Wide-Angle Compton Scattering

NB: $R_V^a(t)$ is obtained from the same NPD as for FF

P. Kroll et al. model for WACS

WACS theory

More detailed formula

$$\frac{d\sigma}{dt} = \frac{d\hat{\sigma}}{dt} \left\{ \frac{1}{2} \left[R_V^2(t) + \frac{-t}{4m_p^2} R_T^2(t) + R_A^2(t) \right] - \frac{us}{s^2 + u^2} \left[R_V^2(t) + \frac{-t}{4m_p^2} R_T^2(t) - R_A^2(t) \right] \right\}$$

$$R_V(t) \simeq \sum_{q=u,d} e_q^2 \int_0^1 \frac{dx}{x} H_v^q(x,t),$$

$$R_A(t) \simeq \sum_{q=u,d} e_q^2 \int_0^1 \frac{dx}{x} \widetilde{H}_v^q(x,t),$$

$$R_T(t) \simeq \sum_{q=u,d} e_q^2 \int_0^1 \frac{dx}{x} E_v^q(x,t)$$

Asymmetry test of WACS mechanism

WACS theory

Radyushkin

QCD&Hadrons

FFs

PDF

DIS

NPDs

WACS GPDs

DDs

WACS & DDs

Soft and hard mechanisms give drastically different predictions for polarization asymmetry

$$K_{LL} \approx A_{LL} = \frac{d\sigma(\uparrow, \lambda = 1)/dt - d\sigma(\uparrow, \lambda = -1)/dt}{d\sigma(\uparrow, \lambda = 1)/dt + d\sigma(\uparrow, \lambda = -1)/dt}$$

Lessons:

- Soft mechanism dominates
- Struck quark carries proton spin

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Scaling test of WACS mechanism

Absolute value of cross section

without exotic assumptions

GPDs & Deeply Virtual Compton Scattering

- Radyushkin
- QCD&Hadro FFs PDFs DIS
- NPDs
- WACS
- GPDs
- DDs

WACS & DDs

Kinematics

Total CM energy $s = (q + p)^2 = (q' + p')^2$ LARGE: Above resonance region Initial photon virtuality $Q^2 = -q^2$ LARGE (> 1 GeV²) Invariant momentum transfer $t = \Delta^2 = (p - p')^2$ SMALL (\ll 1GeV²)

• Picture in $\gamma^* N$ CM frame

- Virtual photon momentum q = q' x_{Bj}p has component -x_{Bj}p canceled by momentum transfer Δ
- \Rightarrow Momentum transfer Δ has longitudinal component

$$\Delta^+ = x_{Bj}p^+ \ , \ x_{Bj} = \frac{Q^2}{2(pq)}$$

• "Skewed" Kinematics: $\Delta^+ = \zeta p^+$, with $\zeta = x_{Bj}$ for DVCS

Parton Picture for DVCS

- Radyushkin
- QCD&Hadrons
- FFs
- PDFs
- DIS
- NPDs
- WACS
- GPDs
- DDs
- WACS & DDs

Nonforward parton distribution

- $\mathcal{F}_{\zeta}(X;t)$ depends on X : fraction of p^+
- ζ : skeweness
- t: momentum transfer
- In forward $\Delta = 0$ limit

$$\mathcal{F}^a_{\zeta=0}(X,t=0) = f_a(X)$$

- Note: $\mathcal{F}_{\zeta=0}^{a}(X, t=0)$ comes from Exclusive DVCS Amplitude, while $f_{a}(X)$ comes from Inclusive DIS Cross Section
- Zero skeweness $\zeta = 0$ limit for nonzero *t* corresponds to nonforward parton densities

$$\mathcal{F}^a_{\zeta=0}(X,t) = \mathcal{F}^a(X,t)$$

Local limit: relation to form factors

$$\int_0^1 \mathcal{F}_{\zeta}^a(X,t) \, dX/(1-\zeta/2) = F_1^a(t)$$

3

Off-forward Parton Distributions

WACS theory Radyushkin QCD&Hadrons FFs PDFs DIS NPDs WACS GPDs DDs

WACS & DDs

Momentum fractions taken wrt average momentum P = (p + p')/2

4 functions of x, ξ, t : $H, E, \widetilde{H}, \widetilde{E}$ wrt hadron/parton helicity flip +/+, -/+, +/-, -/-

• Skeweness
$$\xi \equiv \Delta^+/2P^+$$
 is $\xi = x_{Bj}/(2 - x_{Bj})$

3 regions:

 $\begin{array}{ll} \xi < x < 1 & \sim \mbox{ quark distribution} \\ -1 < x < -\xi & \sim \mbox{ antiquark distribution} \\ -\xi < x < \xi & \sim \mbox{ distribution amplitude for } N \rightarrow \bar{q}qN' \end{array}$

$$(x + \xi) P$$

$$(1 + \xi) P$$

$$(1 - \xi) P$$

$$(1 - \xi) P$$

Double Distributions

$$\int_{-1+|\beta|}^{1-|\beta|} f_a(\beta,\alpha;t) \, d\alpha = \mathcal{F}_a(\beta,t)$$

Getting GPDs from DDs

WACS theory

- Radyushkin
- QCD&Hadri FFs PDFs DIS NPDs WACS GPDs

DDs WACS

DDs live on rhombus $|\alpha| + |\beta| \le 1$

"Munich" symmetry:

$$f_a(\beta, \alpha; t) = f_a(\beta, -\alpha; t)$$

Converting DDs into GPDs

GPDs $H(x,\xi)$ are obtained from DDs $f(\beta,\alpha)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

by scanning DDs at ξ -dependent angles

⇒ DD-tomography

WACS in terms of DDs

- Radyushkin
- QCD&Hadro FFs
- PDF
- DIS
- NPDs
- MACS
- G. 20
- DDs
- WACS & DDs

- Active quarks carry the fractions of initial and final hadron momenta
- Requiring small spectator mass gives $x_1x_2|t| \lesssim M^2$
- Requiring further small virtualities for active quarks gives $x_1, x_2 \lesssim M^2/|t|$
- Dominant region: small x1, x2

Hard subprocess amplitude

$$T(s,t) = e^2 \int_0^1 \int_0^1 \frac{F(x_1, x_2; t) \theta(x_1 + x_2 \le 1) dx_1 dx_2}{(1 - x_1 - x_2)s - x_1 x_2 t}$$
$$\approx e^2 \int_0^1 \frac{\mathcal{F}(\beta; t)}{\beta s} d\beta$$
$$x_1 = (1 - \beta + \alpha)/2 \quad , \quad x_2 = (1 - \beta - \alpha)/2$$

DD formalism gives formulas of A.R. and Kroll et al. with new form factors

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions

WACS theory

- Radyushkin
- QCD&Hadrons
- FFs
- PDFs
- DIS
- NPDs
- WACS
- CPDo
- DDS
- WACS & DDs

- In nonrelativistic quantum mechanics, large- Q^2 asymptotics of form factors is determined by $r \sim 1/Q \rightarrow 0$ behavior of wave functions $\Psi(r)$
- In relativistic case, an extra possibility exists: Feynman mechanism, when $x \sim 1 M/Q \rightarrow 1$ region of $\Psi(x, k_{\perp})$ dominates, not requiring the system to be in small-size configuration
- Strong experimental evidence exists that, in QCD, form factors and WACS amplitude are dominated by Feynman/Drell-Yan mechanism
- For JLab: important to measure angular dependence of the WACS cross section