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Hadrons in Terms of Quarks and Gluons

How to relate hadronic states |p, s〉
to quark and gluon fields q(z1) , q(z2) , . . . ?

Standard way: use matrix elements

〈 0 | q̄α(z1) qβ(z2) |M(p), s 〉 , 〈 0 | qα(z1) qβ(z2) qγ(z3)|B(p), s 〉

Can be interpreted as hadronic wave functions
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Light-cone formalism

Describe hadron by Fock components in
infinite-momentum frame

For nucleon

|P 〉 = |q(x1P, k1⊥) q(x2P, k2⊥) q(x3P, k3⊥)〉
+ |qqqG〉+ |qqqq̄q〉+ |qqqGG〉+ . . .

xi : momentum fractions∑
i

xi = 1

ki⊥: transverse momenta∑
i

ki⊥ = 0
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Problems of LC Formalism

In principle: Solving bound-state equation

H|P 〉 = E|P 〉

one gets |P 〉 which gives complete information about
hadron structure
In practice: Equation (involving infinite number of Fock
components) has not been solved and is unlikely to be
solved in near future
Experimentally: LC wave functions are not directly
accessible
Way out: Description of hadron structure in terms of
phenomenological functions
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Phenomenological Functions

“Old” functions:
Form Factors
Usual Parton Densities
Distribution Amplitudes

“New” functions:
Generalized
Parton Distributions
(GPDs)

GPDs = Hybrids of
Form Factors, Parton Densities and
Distribution Amplitudes

“Old” functions
are limiting cases of “new” functions



WACS theory

Radyushkin

QCD&Hadrons

FFs

PDFs

DIS

NPDs

WACS

GPDs

DDs

WACS & DDs

Form Factors

Form factors are defined through matrix elements

of electromagnetic and weak currents between hadronic states

Nucleon EM form factors:

〈 p′, s′ | Jµ(0) | p, s 〉 = ū(p′, s′)
[
γµF1(t) + ∆νσµν

2mN
F2(t)

]
u(p, s)

(∆ = p− p′, t = ∆2)

Electromagnetic current Jµ(z) =
∑

f ef ψ̄f (z)γµψf (z)

Helicity non-flip form factor F1(t) =
∑

f efF1f (t)

Helicity flip form factor F2(t) =
∑

f efF2f (t)

Form Factors are
measurable
through elastic eN scattering
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Usual Parton Densities

Parton Densities are defined through
forward matrix elements
of quark/gluon fields separated by
lightlike distances

Unpolarized quarks case:

〈 p | ψ̄a(−z/2)γµψa(z/2) | p 〉
∣∣
z2=0

= 2pµ
∫ 1

0

[
e−ix(pz)fa(x)− eix(pz)fā(x)

]
dx

Momentum space
interpretation

xpxp

pp

fa(ā)(x) is
probability

to find a (ā) quark
with momentum xp

Local limit z = 0

⇒ sum rule∫ 1

0
[fa(x)− fā(x)] dx = Na

for valence quark
numbers
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Deep Inelastic Scattering

Classic process to access usual parton densities:
deep inelastic scattering γ∗N → X

Spacelike momentum
transfer q2 ≡ −Q2 Im

1

(q + xp)2
≈ π

2(pq)
δ(x− xBj)

Bjorken variable: xBj = Q2

2(pq)

DIS measures f(xBj)
Comparing to form factors:
point vertex instead of quark
propagator and p 6= p′
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Small-size Configurations:
Perturbative QCD for Pion EM Form Factor

First application of pQCD to exclusive processes

Hard gluon exchange diagram

F as
π (Q2) =

8πf2
παs(Q

2)

Q2

Hard scenario:
small-size configurations dominate large-Q2 behavior
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Pion Form Factor Data and pQCD

With ϕasπ (α), hard pQCD contribution to Fπ(Q2) is
(2αs/π)(0.67 GeV2)/Q2: less than 1/3 of experimental value
Competing nonperturbative soft mechanism
dominates for available Q2

Experimental Data on Pion Form Factor
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Nonforward Parton Densities
(aka GPDs at zero skewness)

Combine form factors with
parton densities

F1(t) =
∑
a

F1a(t)

F1a(t) =

∫ 1

0
F1a(x, t) dx

Flavor components of form factors

F1a(x, t) ≡ ea[Fa(x, t)−Fā(x, t)]

Forward limit t = 0

Fa(ā)(x, t = 0) = fa(ā)(x)
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Interplay between x and t dependencies

Simplest factorized ansatz

Fa(x, t) = fa(x)F1(t)
satisfies both forward and
local constraints

Forward constraint
Fa(x, t = 0) = fa(x)

Local constraint∫ 1
0 [Fa(x, t)−Fā(x, t)]dx = F1a(t)

Reality is more complicated:
LC wave function with
Gaussian k⊥ dependence

Ψ(xi, ki⊥) ∼ exp
[
− 1
λ2

∑
i
k2
i⊥
xi

]
suggests

Fa(x, t) = fa(x)ex̄t/2xλ
2

fa(x)=experimental densities

Adjusting λ2 to provide

〈k2
⊥〉 ≈ (300MeV)2
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Feynman mechanism

Drell-Yan formula

F (∆2) =

∫ 1

0
dx

∫
Ψ∗(x, k⊥ + (1− x)∆⊥) Ψ(x, k⊥) d2k⊥

≡
∫ 1

0
Fa(x, t = −∆2

⊥) dx

Form Factor in Gaussian k⊥ model

Fa(t) =

∫ 1

0
Fa(x, t) dx =

∫ 1

0
fa(x) e(1−x)t/2xλ2

dx

Large-t behavior is dominated by x→ 1 region

Fa(t) ∼ 1/tna+1 if fa(x) ∼ (1− x)na
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Regge-type models for NPDs

“Regge” improvement:

f(x) ∼ x−α(0)

⇒ F(x, t) ∼ x−α(t)

⇒ F(x, t) = f(x)x−α
′t

Accomodating “canonical”
quark counting rules:

F(x, t) = f(x)x−α
′t(1−x)|x→1

∼ f(x)eα
′(1−x)2t

Does not change small-x behavior but provides

f(x)|x→1 vs. F (t)|t→∞ interplay:
f(x) ∼ (1− x)n ⇒ F1(t) ∼ t−(n+1)/2

Note: no pQCD involved in these counting rules!

Extra 1/t for F2(t)

can be produced by taking
Ea(x, t) ∼ (1− x)2Fa(x, t)

for “magnetic” NPDs

More general:

Ea(x, t) ∼ (1−x)ηa Fa(x, t)
Fit : ηu = 1.6 , ηd = 1
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Fit to All Four Nucleon GE,M Form Factors
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Fit to F1,2 Proton Form Factors

Modified Regge parametrization describes JLab polarization
transfer data on GpE/G

p
M and F p2 /F

p
1
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Impact Parameter Distributions

NPDs can be treated as Fourier transforms of
impact parameter b⊥ distributions fa(x, b⊥)

Fa(x, t = −∆2
⊥) =

∫
fa(x, b⊥)ei(∆⊥b⊥)d2b⊥

b⊥ = ⊥ distance to center of momentum

IPDs describe nucleon
structure in transverse plane

Distribution fpu(x, b⊥)
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Structure of IPDs

Distribution in r⊥ plane Distribution in z momentum Combined (x, r⊥) distribution

Defining “center” in ⊥ plane:

Geometric center: r⊥ =
∑
i ri⊥

Center of momentum: R⊥ =
∑
i xiri⊥

Impact parameter: b⊥ = ractive
⊥ −R⊥

Shape of (x, b⊥) distribution:

Shrinks when x→ 1: leading parton
determines center of momentum

Purely kinematical effect!
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Impact Parameter and Hadron Size

Compare impact parameter b⊥ representation

Fa(x, t = −∆2
⊥) =

∫
fa(x, b⊥)ei(∆⊥b⊥)d2b⊥

with Drell-Yan formula in r⊥ representation

Fa(x, t = −∆2
⊥) =

∫
|Ψa(x, r⊥)|2ei(1−x)(∆⊥r⊥)d2r⊥

r⊥ = ⊥ distance between active quark and center of momentum of spectators

b⊥ = (1− x)r⊥

Feynman mechanism:

Form factors at large t are dominated by x→ 1, i.e. small b⊥ .

But this does not mean that small size configurations dominate at large t!

Logical conclusion:

b⊥ is an artificial and confusing variable!

Size of configuration is determined by r⊥ !
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Application to Wide-Angle Compton Scattering

Perturbative QCD hard scattering mechanism

Small-size configurations

Handbag (soft) term

Feynman mechanism
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Handbag model for Wide-Angle
Compton Scattering

Handbag (soft) term

Approximately given by[∑
a e

2
aR

a
V (t)

]2 dσ
dt

∣∣
KN

New form factor

RaV (t) =

∫ 1

0

Fa(x, t)
x

dx

NB: RaV (t) is obtained from the
same NPD as for FF
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P. Kroll et al. model for WACS

More detailed formula

dσ

dt
=

dσ̂

dt

{
1

2

[
R2
V (t) +

−t
4m2

p

R2
T (t) +R2

A(t)

]

− us

s2 + u2

[
R2
V (t) +

−t
4m2

p

R2
T (t)−R2

A(t)

]}

RV (t) '
∑
q=u,d

e2
q

∫ 1

0

dx

x
Hq
v (x, t) ,

RA(t) '
∑
q=u,d

e2
q

∫ 1

0

dx

x
H̃q
v (x, t) ,

RT (t) '
∑
q=u,d

e2
q

∫ 1

0

dx

x
Eqv(x, t)



WACS theory

Radyushkin

QCD&Hadrons

FFs

PDFs

DIS

NPDs

WACS

GPDs

DDs

WACS & DDs

Asymmetry test of WACS mechanism

Soft and hard mechanisms give drastically different
predictions for polarization asymmetry

KLL ≈ ALL =
dσ(↑, λ = 1)/dt− dσ(↑, λ = −1)/dt

dσ(↑, λ = 1)/dt+ dσ(↑, λ = −1)/dt

JLab result for KLL

Lessons:
Soft mechanism
dominates
Struck quark carries
proton spin
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Scaling test of WACS mechanism

pQCD prediction:

dσ

dt
=

1

s6
f(θCM )

Handbag prediction:

dσ

dt
=

1

sN(θCM )
f(θCM )

with N(θCM ) ≈ 8

JLab result for scaling test JLab result for effective
power N(θCM )
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Absolute value of cross section

Comparison with pQCD Comparison with soft models

CZ wave function KS wave function Soft models
describe
magnitude of
cross section
without exotic
assumptions
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GPDs & Deeply Virtual Compton Scattering

Kinematics
Total CM energy s = (q + p)2 = (q′ + p′)2

LARGE: Above resonance region
Initial photon virtuality Q2 = −q2

LARGE (> 1 GeV2)
Invariant momentum transfer t = ∆2 = (p− p′)2

SMALL (� 1GeV2)

Picture in γ∗N CM frame

Virtual photon momentum q = q′ − xBjp has
component −xBjp canceled by momentum transfer ∆

⇒ Momentum transfer ∆ has longitudinal component

∆+ = xBjp
+ , xBj = Q2

2(pq)

“Skewed” Kinematics: ∆+ = ζp+, with ζ = xBj for DVCS
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Parton Picture for DVCS

Nonforward parton distribution
Fζ(X; t) depends on
X : fraction of p+

ζ : skeweness
t : momentum transfer

In forward ∆ = 0 limit

Faζ=0(X, t = 0) = fa(X)

Note: Faζ=0(X, t = 0) comes from Exclusive DVCS Amplitude, while
fa(X) comes from Inclusive DIS Cross Section
Zero skeweness ζ = 0 limit for nonzero t corresponds to
nonforward parton densities

Faζ=0(X, t) = Fa(X, t)

Local limit: relation to form factors∫ 1

0

Faζ (X, t) dX/(1− ζ/2) = F a1 (t)
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Off-forward Parton Distributions

Momentum fractions taken wrt average momentum P = (p+ p′)/2

4 functions of x, ξ, t:

H,E, H̃, Ẽ
wrt hadron/parton helicity flip
+/+,−/+,+/−,−/−

Skeweness ξ ≡ ∆+/2P+ is ξ = xBj/(2− xBj)
3 regions:

ξ < x < 1 ∼ quark distribution
−1 < x < −ξ ∼ antiquark distribution
−ξ < x < ξ ∼ distribution amplitude for N → q̄qN ′
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Double Distributions

“Superposition” of P+ and r+ momentum fluxes

Connection with OFPDs

Basic relation
between fractions

x = β + ξα

Zero skewness limit ξ = 0 gives nonforward parton densities∫ 1−|β|

−1+|β|
fa(β, α; t) dα = Fa(β, t)
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Getting GPDs from DDs

DDs live on rhombus |α|+ |β| ≤ 1

“Munich” symmetry:

fa(β, α; t) = fa(β,−α; t)

Converting DDs into GPDs
GPDs H(x, ξ) are obtained
from DDs f(β, α)

by scanning DDs
at ξ-dependent angles
⇒ DD-tomography



WACS theory

Radyushkin

QCD&Hadrons

FFs

PDFs

DIS

NPDs

WACS

GPDs

DDs

WACS & DDs

WACS in terms of DDs

Wide-Angle Compton Scattering

Active quarks carry the fractions
of initial and final hadron momenta
Requiring small spectator mass gives x1x2|t| .M2

Requiring further small virtualities for active quarks
gives x1, x2 .M2/|t|
Dominant region: small x1, x2
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Hard subprocess amplitude

T (s, t) =e2

∫ 1

0

∫ 1

0

F (x1, x2; t) θ(x1 + x2 ≤ 1) dx1 dx2

(1− x1 − x2)s− x1x2t

≈ e2

∫ 1

0

F(β; t)

βs
dβ

x1 = (1− β + α)/2 , x2 = (1− β − α)/2

DD formalism gives formulas of A.R. and Kroll et al. with
new form factors
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Conclusions

In nonrelativistic quantum mechanics, large-Q2

asymptotics of form factors is determined by
r ∼ 1/Q→ 0 behavior of wave functions Ψ(r)

In relativistic case, an extra possibility exists: Feynman
mechanism, when x ∼ 1−M/Q→ 1 region of Ψ(x, k⊥)
dominates, not requiring the system to be in small-size
configuration
Strong experimental evidence exists that, in QCD, form
factors and WACS amplitude are dominated by
Feynman/Drell-Yan mechanism
For JLab: important to measure angular dependence of
the WACS cross section
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