Time-like Compton Scattering

S. Stepanyan (JLAB)

Workshop on probing small-size configurations in high-t photo/electroproduction

JLAB, March 25-26, 2011

- GPDs, DVCS, and nucleon structure
- Extraction of GPDs from Experimental Data
- TCS phenomenology and observables
- Quasi-real Photoproduction of lepton pairs in CLAS
- Perspectives for CLAS12

Summary

GPDs and Nucleon Structure

Elastic Form Factors –

characterize charge and magnetization distrubutions in the impact parameter space

DIS Parton Distribution Functions - discovery of the quark and gluon substructure of the nucleon, with quarks carrying ½ of the nucleon's momentum and ~25% of its spin

Generalised Parton

х

Distributions – 3-D imaging of the nucleon, the correlation of quark/antiquark transverse spatial and longitudinal momentum distributions, and on the quark angular momentum distribution

Determination of GPDs

Four chiral-even GPDs:

 $H^q; E^q; \widetilde{H}^q; \widetilde{E}^q$

Boundary conditions

• GPDs \rightarrow PDFs (in the limite t \rightarrow 0) $H^{q}(x,0,0) = q(x), -\overline{q}(-x)$ $\widetilde{H}^{q}(x,0,0) = \Delta q(x), \Delta \overline{q}(-x)$

• GPDs \rightarrow FFs (first moments of GPDs) $\int_{-1}^{+1} dx H^q(x,\xi,t) = F_1^q(t) \int_{-1}^{+1} dx \widetilde{H}^q(x,\xi,t) = g_A^q(t)$ $\int_{-1}^{+1} dx E^q(x,\xi,t) = F_2^q(t) \int_{-1}^{+1} dx \widetilde{E}^q(x,\xi,t) = h_A^q(t)$

Accessing GPDs experimentally (DVCS)

Revealing GPDs

The extraction of GPDs from experimental data will require:

 extensive experimental program [with polarized beam/targets] (CLAS12)

and

the phenomenological parameterization of GPDs

Commonly used parameterization uses factorized ansatz for the t-dependence: e.g. the Regge parameterization $\sim x^{-\alpha' t}$

Parameterization of GPDs

DD-distributions
$$H^{q}(x,\xi) = H^{q}_{DD}(x,\xi) + \theta(\xi - |x|) \frac{1}{N_{f}} D(\frac{x}{\xi})$$

D-term – to satisfy polynomiality of Mellin moments of GPD

Real part of the Compton amplitude is very sensitive to the D-term

S. Stepanyan Workshop on probing small-size configurations in high-t photo/electroproduction, JLAB, March 25-26, 2011

7

8

Extracting the GPDs

Global fit to the DVCS data, using models of GPDs - M. Guidal, Eur.Phys.J. **A37**, p319 (2008)

8 independent quantities to be fit -Im(\mathbf{H}); Im($\mathbf{\mathcal{E}}$); Im($\mathbf{\widetilde{H}}$), Im($\mathbf{\widetilde{E}}$) Re(\mathbf{H}); Re($\mathbf{\mathcal{E}}$); Re($\mathbf{\widetilde{H}}$), Re($\mathbf{\widetilde{E}}$)

Using 9 independent observables - $\sigma; \Delta \sigma_{z0}; \Delta \sigma_{0x}; \Delta \sigma_{0y}; \Delta \sigma_{0z};$ $\Delta \sigma_{zx}; \Delta \sigma_{zy}; \Delta \sigma_{zz}; \Delta \sigma_{c};$ Assumption - $\operatorname{Im}(\widetilde{\mathcal{E}}) = 0$

S. Stepanyan Workshop on probing small-size configurations in high-t photo/electroproduction, JLAB, March 25-26, 2011

Conclusions from the fits

 In general, with enough observables fit was able to constrain seven GPDs

There might be possibilities to reduce the number of independent parameters – dispersion relations or model motivated ansatzes

- Imaginary part of CCFs \mathcal{H} and \mathcal{H} can be reliably extracted from σ , $\Delta \sigma_{z0}$ and $\Delta \sigma_{0z}$ – planned and ongoing experiments at JLAB
- Real parts of the GPDs can be reliably reconstructed
- from BCA measurements requires lepton beams of both charges and/or
 - in the combined analysis of several (at least 6) beam and/or target spin asymmetry measurements – will potentially have large systematic uncertainties and requires huge amount of data

Time-like Compton Scattering (TCS)

Information on the real (imaginary) part of the Compton amplitude can be obtained from photoproduction (circularly polarized) of lepton pairs

TCS is the inverse process to DVCS. Contributions of higher twists are different for DVCS and TCS processes and hence measuring both will help to obtain stronger constraints on GPDs

Lepton pair photo-production

□ BH always dominates in the cross section

lepton pair is produced in C-odd state by TCS and in a C-even state by BH, azimuthal angular dependence will project out the interference – analogous to BCA in DVCS

Interference term and angular harmonics

E. Berger et al., hep-ph/0110062

S. Stepanyan Workshop on probing small-size configurations in high-t photo/electroproduction, JLAB, March 25-26, 2011

Angular dependence

E. Berger et al., hep-ph/0110062

$$\frac{dS}{dQ'^2 dt d\varphi} = \int \frac{L(\theta,\varphi)}{L_0(\theta)} \frac{d\sigma}{dQ'^2 dt d\varphi d\theta} d\theta$$

Lepton propagators:

$$L_{0} = \frac{Q'^{4} \sin^{2} \theta}{4};$$

$$L = \frac{(Q'^{4} - t)^{2} - 4[(k - k')(p - p')]^{2}}{4}$$

Observable:

First TCS analysis from CLAS data

Analysis of electroproduction data to select events in the quasi-real photoproduction region, when incoming electron scatters at ~0 degrees

In the production of e⁺e⁻ pair, there are two electrons in final state

Final state to analyze $ep \rightarrow e^+e^-pX$

Scattered electron kinematics is deduced from missing momentum analysis

Quasi-real photoproduction of e⁺e⁻

Missing momentum analysis for final state -

 $ep \rightarrow e^+ e^- pX$

Selection of events for TCS

Photoproduction of lepton pairs

Analysis of CLAS e1-6 and e1f data are underway, R. Paremuzyan

Angular moment from CLAS-6 data

LO calculations (Vadim Guzay per Berger et al.)

TCS with CLAS12

The most suitable region of masses for TCS studies at high energies

 $\sqrt{s} > 4 GeV$

 $2 \text{ GeV} < M_{ee} < 3 \text{ GeV}$

Use electroproduction data to extract exclusive photoproduction reactions e.g. $ep \rightarrow e^+e^-p(e^-)$, (e^-) scattered electron at ~0°

Simulations of the reaction ep→BH, and ρ , ω , ϕ and J/ Ψ with $\sigma \sim 1/Q^4$ and $\sigma \sim e^{-3t}$

TCS with CLAS12

Simulations include V-mesons decay BR to e⁺e⁻ and photoproduction cross sections Fiducial acceptance, and momentum and angular smearing of CLAS12 are used

S. Stepanyan Workshop on probing small-size configurations in high-t photo/electroproduction, JLAB, March 25-26, 2011

TCS with CLAS12

- No real photon beams will be available with $E_{\gamma} > \sim 6.6 \text{ GeV}$
- The same technique can be used electroproduction of lepton pairs in the quasi-real photoproduction region
- Significant amount of beam time for electroproduction at 11 GeV with CLAS12 is already approved

Proposal	Contact Person	Physics	Energy (GeV)	PAC days	Parallel Running	Target
PR-09-103	Gothe, Mokeev	N* at high Q ²	11	60	119 20 20	LH2 TCS & J/Ψ
E12-06-119a	Sabatie	DVCS pol. beam	11	80		
PR-11-005	Battaglieri	Meson Spectroscopy	11	119		
E12-06-112	Avakian	ер→еπ+/-/0 Х	11	60		
E12-06-108	Stoler	DVMP in π ⁰ ,η prod L/T separation	11	80		
			8.8 6.6	20 20		
E12-06-117 E12-06-106	Brooks Hafidi	Quark Hadronization Color transparency	11 11	60 60	60?	NUCLEAR J/Ψ

Summary

- Huge amount of data with polarized beam and targets will be obtained on DVCS with CLAS12 at beam energies up to 11 GeV
- Nevertheless, DVCS data alone will not be sufficient to fully constrain the GPDs
- Extraction of GPDs from these measurements will require combined analysis, using models of GPDs
- In particular, extraction of the real part of the Compton amplitude will suffer in accuracy if only electroproduction data are used
- The real part of the amplitude can be accessed directly in Beam Charge Asymmetry in DVCS – requires lepton beams of both polarities
- The same information can be obtained from azimuthal asymmetries in Time-like Compton Scattering
- In addition, with enough statistics, TCS will give complementary information on the imaginary part of the Compton amplitude – advantage, e.g., different contributions for higher twist effects

Summary (cont.)

 Preliminary analysis of CLAS 6 GeV electroproduction data showed feasibility of measuring the TCS in electroproduction experiments

Theoretical support will be greatly appreciated! Thanks for Vadim

- With CLAS12, data will be available for TCS studies "almost for free" from already approved electroproduction experiments at 11 GeV
- Full proposal for TCS (general γA→e+e⁻, including J/Ψ) with CLAS12 is in works, may (will) be submitted to PAC 38

TCS can be also an important reaction to be considered for studying GPDs (gluonic) on EIC, experimentally will be simpler than DVCS

Vá

Backups

Beam charge asymmetry

A. Airapetian et al., HERMES coll., Phys. Rev. D 75, 011103(R) (2007)

BCA requires lepton beams of both charges, not available in any of existing facilities

