Small–size configurations: Origin and probes

C. Weiss (JLab), Mini–Workshop “Small–size configurations”, JLab, 25–Mar–11

- Elastic form factors: pion, nucleon
 Partonic representation
 Effective sizes
 Small–size vs. $x \rightarrow 1$ configurations

- Origin of small–size configurations
 Perturbative interactions
 QCD vacuum structure

- Probing small–size configurations with JLab 12 GeV
 Wide–angle Compton scattering
 Meson production at high Q^2, t
 Nuclear transparency
 J/ψ production near threshold

High–t photo/electroproduction
- Elastic FF, Compton
- Meson production, J/ψ
- Nuclear transparency
- Deuteron breakup

Conceptual framework
- Sizes ↔ dynamics
- More general than pQCD!
- Analogy with SRC in nuclei
Form factor: Parton picture

- Parton picture $P \to \infty$, Δ transverse

 Current cannot produce pairs

 Wave function overlap representation
 $F(t) = \sum_n \int dx \, d^2 k_T \, \psi_n^*(x, k_{T1}, \ldots) \psi_n(x, k_{T2}, \ldots)$

 Configurations with different particle number and transverse size

 Expect that large t “select” small sizes
 How to quantify it?

- Transverse density

 $F(t) = \int d^2 b \, e^{i\Delta b} \rho(b)$

 Cumulative charge/current of constituents at transverse position b

 Reduction of GPD $\rho(b) = \int dx f_{q-q}(x, b)$

- Empirical charge density in pion

 Dispersion integral over timelike FF e^+e^- data

 High density at $b \to 0$: Small–size configurations?
Form factor: Small–size configurations

- Two sources of small–b density
 \[x \sim \frac{1}{2} \quad \text{size} \ll R \quad \text{small–size} \]
 \[x \to 1 \quad \text{size} \sim R \quad \text{end–point} \]

 Dynamical question!

- Density in center of pion mostly from small–size configurations

 End–point contribution constrained by quark density in pion at $x \to 1$
 Miller, Strikman, CW 10. πA Drell–Yan data

- Alt. picture: Breit frame

 Photon reverses quark with $x \to 1$
 Feynman mechanism

Model–independent statement on small–size configurations!
Small–size configurations: Dynamical origin

- Perturbative interactions

 High–momentum component of wave function $k_T \sim R^{-1}$ wave function as source, $\int d^2 k_T$

 Responsible for leading $|t| \to \infty$ asymptotics of pion FF Efremov, Radyushkin 77+; Brodsky Lepage 80

- QCD vacuum structure

 Strong non–perturbative gluon fields of size $\rho \sim 0.2–0.3$ fm

 Objective measure: Average quark virtuality $\langle \bar{\psi} \nabla^2 \psi \rangle / \langle \bar{\psi} \psi \rangle > (0.7 \text{ GeV})^2$

 Lattice: Teper 87, Doi 02, Chiu 03

 Non–perturbative semi–hard component of WF

 Cf. short–range correlations in nuclei

 Chiral anomaly? $\gamma^* \gamma \to \pi^0$ puzzle

Evidence for non-perturbative small–size configurations!
Small–size configurations: Nucleon

- Nucleon more complex, more possibilities

 Uniform squeezing or diquark–like configurations?

 End-point configurations $x \to 1$?
 Related to large–x parton densities \(JLab 12 \text{ GeV} \)

 Mean–field picture generally successful:
 Quark model, chiral soliton $N_c \to \infty$
 Nature of dynamical correlations?

- Correlated $q\bar{q}$ pairs

 Size $\rho \ll R$, induced by QCD vacuum structure

 Cf. Short–range correlations in nuclei

 Important in meson production processes!

 Strikman, CW, in progress
Small–size configurations: Other processes

- Get more information: x–dependence, quantum numbers, . . .

- Test universality!

- Details depend on channel

 Meson production: $\phi \leftrightarrow \rho^0$, ρ^+, $K^* \leftrightarrow \pi, K$, $\pi^+ \leftrightarrow \pi^0$, etc.

- Space–time picture needs to be developed

 Transverse frame \leftrightarrow Center–of–mass frame

This presentation: Comments, suggestions, no definitive answers!
Processes: Wide–angle Compton scattering

- Compton process at $s, |t|, |u| \gg R^{-2}$

 Scattering from single quark: “Handbag” diagram

 Closely related to elastic FF at high $|t|$

 \[
 R(t) \sim \int \frac{dx}{x} \text{GPD}(x_1 = x_2 = x, t)
 \]

 \rightarrow Talk Radyushkin

 Constituent quark model: Wave functions, quark helicity flip \rightarrow Talk Miller

- Test reaction mechanism

 Polarization observables A_{LL}, K_{LL}

 \rightarrow Talk Wojtsekhowski

 Finite virtuality $Q^2 \neq 0$ \rightarrow Talk Hyde

x–distribution of small–size configs, nucleon helicity structure
Processes: Exclusive meson production

- $Q^2 \gg R^{-2}$: Meson produced in small-size configuration
 - Exp. test: t-slope becomes independent of Q^2
 - Seen in HERA VM data; some signs at CLAS 6 GeV
 - $Q^2 \rightarrow \infty$: QCD factorization theorem with pQCD interaction and GPDs
 - Collins, Frankfurt, Strikman 96
 - Small-size regime \neq pQCD dominance

- Quantitative description based on non-perturbative interactions?
 - Knockout of small-size $q\bar{q}$ pair, may explain CLAS ρ^0, ρ^+ data
 - Cf. ERBL region of GPD
 - Also scattering from uncorrelated quarks
 - Cf. DGLAP region of GPD. Related by crossing, dispersion relations

- What about high-t photoproduction?
 - Talks Ilieva, Strikman, discussion

Timelike Compton: Talk Stepanyan
Processes: Small–size configurations with 12 GeV

- **Nuclear transparency** \(\rightarrow \) Talks Cosyn, Horn, Gao, Gilman

 Small–size configurations experience reduced interaction with nuclear medium: Color transparency

 \(\phi, \rho \) photoproduction on nuclei

- **\(J/\psi \) photo/electroproduction** \(\rightarrow \) Talks Strikman, Fuchey, Chudakov

 “Naturally” small size even in photoproduction

 Clean probe of gluon field even at JLab energies

 Near–threshold \(|t_{\text{min}}| \sim 1 \text{ GeV} \leftrightarrow \) high–\(t \) form factors

 Reaction mechanism poorly understood near threshold: GPD for large longitudinal momentum transfer \(x_1 \neq x_2 \)? Re/Im ratio?

- **High-energy deuteron breakup** \(\rightarrow \) Talk Sargsian

 Small–size configurations in \(NN \) system

- **Hadronic 2 \(\rightarrow \) 2 processes at high \(t \)** \(\rightarrow \) Talk Strikman
Summary

- Small-size configurations key concept of hadron structure
 - More primary than specific interaction models
 - Contains, but is not limited to, pQCD interactions
 - Small-size configurations from non-perturbative interactions:
 Chiral symmetry-breaking forces in QCD vacuum

- Learn to discuss/describe high-momentum-transfer processes in terms of small-size configurations
 - Detailed modeling required: Space-time picture, effective interactions
 - Experiments should answer quantitative questions:
 Effective size distribution, shrinkage, . . .

- Many interesting options to probe small-size configurations with 12 GeV
 - Collider energies: Small-size configurations in photon’s $q\bar{q}$ wave function,
 diffractive scattering, nuclear shadowing EIC