Higher-Twist Effects in Single-Spin Asymmetries of DIS

Andrei Afanasev
Hampton University
Talk Presented at Workshop Inclusive and Semi-Inclusive Spin Physics with High Luminosity and Large Acceptance at 11 GeV
December 14, 2006

Plan of Talk

- Higher-twist Single-Spin Asymmetries in SIDIS
- Example of A_{LU}, etc.
- Issues and outlook
. SSA from two-photon exchange in inclusive DIS
- Role of transversity
- Interplay of non-partonic and partonic mechanisms for two-photon exchange; Cancellation of divergences

AA\&Carlson on Beam SSA $\left(\mathrm{A}_{\mathrm{LU}}\right)$

 hep-ph/0308163- Assume BHS mechanism for generating single-spin asymmetries, viz.
- Gluon exchange takes place in the final state, generating both phase differences and transverse-momentum dependence
- Asymmetry is due to interference between (a) and absorptive part of (b)
- No assumptions are required on the details of nucleon spin structure

(a)

(b)
-Concluded: this mechanism is not $\sim e(x) *$ Collins fragmentation -Followed by Yuan ($+\mathrm{h}_{1}{ }^{\text {perp }}$), Gamberg et al., Metz-Schlegel, Bachetta-Mulders-Pijlman (+gperp)->jet case

Details of calculation

- NLO contribution is small, neglect terms $\mathrm{O}\left(\mathrm{NLO}^{2}\right)$
- The asymmetry is proportional to the imaginary part of LTinterference
- The calculation is free of infrared and ultraviolet divergence
- Contributions from soft gluons cancel at the observable asymmetry level
- Assume for this calculation that α_{s} is frozen (=0.3)
- Assume k_{T} is small

Electromagnetic gauge invariance

- To ensure (electromagnetic) gauge invariance, the virtual photon couples to all charged particles
(Metz, Schlegel, Eur.Phys.J.A22:489-494, 2004: couple to quark and diquark)

(c,0)

(a,1)

$(b, 1)$

A_{LU} results

- Electric charges: e_{1} (quark), e_{2} (di-quark); note the $\log \left(\mathrm{Q}^{2}\right)$ dependence

$$
\begin{aligned}
& A_{L U}^{\sin \phi}=\frac{4 \alpha_{s}}{3} \sqrt{\varepsilon(1-\varepsilon)} \frac{\tilde{m}^{2}+\Delta_{\perp}^{2}}{(m+M x)^{2}+\Delta_{\perp}^{2}} \frac{\Delta_{\perp}}{Q} \\
& \times\left(\frac{1}{\Delta_{\perp}^{2}}\left(M^{2} x^{2}-m^{2}+\frac{2 e_{1}-x e_{2}}{2 e_{1}(1-x)} \tilde{m}^{2}\right) \ln \frac{\tilde{m}^{2}+\Delta_{\perp}^{2}}{\tilde{m}^{2}}+\frac{2 e_{1}+e_{2}}{2 e_{1}} \frac{x}{1-x} \ln \frac{Q^{2}(1-x)}{\left(\tilde{m}^{2}+\Delta_{\perp}^{2}\right) x}-\frac{e_{1}+e_{2}}{e_{1}} \frac{x}{1-x}\right) \\
& \tilde{m}^{2}=x(1-x)\left(-M^{2}+\frac{m^{2}}{x}+\frac{m_{s}^{2}}{1-x}\right)
\end{aligned}
$$

-New feature of the calculation: jet flavor dependence
-Lack of suppression at higher x - Gauge-invariant model in better agreement with experiment

Extracting g ${ }^{\text {perp }}$

- Equate the model calculation for A_{LU} with a corresponding expression in terms of parton distributions:

$$
A_{L U}^{\sin \phi}=\sqrt{\varepsilon(1-\varepsilon)} \frac{\Delta_{\perp}}{Q} \frac{x g^{\perp}\left(x, \Delta_{\perp}\right)}{f_{1}\left(x, \Delta_{\perp}\right)}
$$

- Obtain the expression for gerp $^{\text {per }}$

$$
\begin{aligned}
& g^{\perp}\left(x, \Delta_{\perp}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{4 \alpha_{s}}{3} \frac{(1-x)^{2}}{\tilde{m}^{2}+\Delta_{\perp}^{2}} \\
& \times\left(\frac{1}{\Delta_{\perp}^{2}}\left(M^{2} x^{2}-m^{2}+\frac{2 e_{1}-x e_{2}}{2 e_{1}(1-x)} \tilde{m}^{2}\right) \ln \frac{\tilde{m}^{2}+\Delta_{\perp}^{2}}{\tilde{m}^{2}}+\frac{2 e_{1}+e_{2}}{2 e_{1}} \frac{x}{1-x} \ln \frac{Q^{2}(1-x)}{\left(\tilde{m}^{2}+\Delta_{\perp}^{2}\right) x}-\frac{e_{1}+e_{2}}{e_{1}} \frac{x}{1-x}\right) \\
& \tilde{m}^{2}=x(1-x)\left(-M^{2}+\frac{m^{2}}{x}+\frac{m_{s}^{2}}{1-x}\right)
\end{aligned}
$$

Result for g ${ }^{\text {perp }}$

-Additional scaling violation $\sim \ln \left(\mathrm{Q}^{2}\right)$ for the twist-3 observable

- Need proof of factorization for twist-3 case

Summary on beam SSA in SIDIS

- Beam SSA is suppressed by an extra power of $1 / \mathrm{Q}$ compared to target SSA, since it is due to LT (photon) interference
- Predictions for beam SSA do not depend on the assumptions of orbital angular momentum contribution to the nucleon light-cone wave function, while the remaining assumption (gluon exchange in the final state) is the same as in the target (Sivers) asymmetry calculations
- Result very sensitive to the method of restoring electromagnetic gauge invariance through adding non-partonic contributions
- Both experimental and theoretical effort needed to study factorization for the higher-twist observables

Single-Spin Asymmetries in DIS from 2-photon exchange

AA, C.Weiss

Motivation

- Motivated by experimental+theoretical two-photon exchange studies at JLab
- Implications for SIDIS: Measured SSA in (e,e'h) are of the order of a few per cent
. What if higher-order electromagnetic correction is a few per cent?
. What the ... are we (or they) measuring?

Recent calculation of normal target asymmetry from two-photon exchange in a parton model obtained a divergent result, see
A. Metz, M. Schlegel, K. Goeke (Ruhr U., Bochum) . Oct 2006. 8pp. Published in Phys.Lett.B643:319-324,2006. e-Print Archive: hep-ph/0610112

New results from AA, Weiss

. Normal target asymmetry from two-photon exchange is evaluated in a model of a weakly-bound nucleon

- Asymmetry proportional to quark transversity and a mass scale of chiral symmetry breaking
- $\mathrm{A}_{\mathrm{n}} \sim 10^{-4}$
- Asymmetry is free of infrared and collinear divergence
. Recent (divergent) result of Metz et al is due to (non)conservation of electromagnetic current in their model

Calculations

- Weakly-bound nucleon model assumes that the main effect of interactions is a dynamical quark mass, Mq;
- $\operatorname{An}(\mathrm{xs}, \mathrm{t})_{\text {point }}:$ asymmetry for a pointlike $\mathrm{e}=1$ spinor particle of mass M

$$
A_{n}(s, t, x)_{\text {comp }}=\frac{M_{q}}{M} \frac{\sum_{q} e_{q}^{3} h_{q}(x)}{e_{q}^{2} f_{q}(x)} A_{n}(x s, t)_{p o i n t}
$$

Important observable:
Asymmetry changes from 10^{-2} to 10^{-4} in transition from elastic to deep-inelastic region
(see X.Jiang et al proposal to PAC31)

Divergence cancellation

- Divergence: terms of the type $\ln \left(\mathrm{Q}^{2} / \lambda^{2}\right)$, where λ is a cut-off parameter ('photon mass'); final results should be independent of λ
- Two kinds of divergence appear in two-photon exchange calculation:
- Infra-red: exchanged photon momentum $->0$. Such divergent terms result in a spin-independent common factor appearing in front of one-photon exchange amplitude; the factors cancel in the result for asymmetry
- Hard collinear: intermediate photon is collinear to the parent electron, while carrying substantial energy: Divergence cancels at the amplitude level; electromagnetic current conservation for the Compton tensor is essential (see AA,Merenkov'04 proof for elastic ep-scattering)

Model example

(a)

(b)

(c)

- Collinear divergence $\sim \ln \left(\mathrm{Q}^{2} / \lambda^{2}\right)$ from diagram (a) precisely cancels the divergence of the diagram (b)
. Lesson: To obtain sensible results for the single-spin asymmetry from two-photon exchange, need to work with models that exactly satisfy electromagnetic current conservation for the (inelastic) virtual Compton amplitude

Conclusions

- Electromagnetic current conservation is an requirement is important for higher-twist Single-spin asymmetry calculations
- Neglecting Electromagnetic current conservation results in (unphysical) divergence in spin asymmetries induced by two-photon exchange
- Single-spin asymmetries from two-photon exchange in DIS estimated in a model at 10^{-4} level

