Higher-Twist Effects in Single-Spin Asymmetries of DIS

Andrei Afanasev

Hampton University

Talk Presented at Workshop Inclusive and Semi-Inclusive Spin Physics with High Luminosity and Large Acceptance at 11 GeV

December 14, 2006

Plan of Talk

- . Higher-twist Single-Spin Asymmetries in SIDIS
 - . Example of A_{LU} , etc.
 - . Issues and outlook
- . SSA from two-photon exchange in inclusive DIS
 - . Role of transversity
 - . Interplay of non-partonic and partonic mechanisms for two-photon exchange; Cancellation of divergences

AA&Carlson on Beam SSA (A_{LU}) hep-ph/0308163

- . Assume BHS mechanism for generating single-spin asymmetries, viz.
 - . Gluon exchange takes place in the final state, generating both phase differences and transverse-momentum dependence
 - . Asymmetry is due to interference between (a) and absorptive part of (b)
 - . No assumptions are required on the details of nucleon spin structure

•Concluded: this mechanism is not ~e(x)*Collins fragmentation •Followed by Yuan (+ h_1^{perp}), Gamberg et al., Metz-Schlegel, Bachetta-Mulders-Pijlman (+ g^{perp})->jet case

Details of calculation

- . NLO contribution is small, neglect terms O(NLO²)
- The asymmetry is proportional to the imaginary part of LTinterference
- . The calculation is free of infrared and ultraviolet divergence
- Contributions from soft gluons cancel at the observable asymmetry level
- . Assume for this calculation that α_s is frozen (=0.3)
- Assume k_T is small

Electromagnetic gauge invariance

• To ensure (electromagnetic) gauge invariance, the virtual photon couples to all charged particles

(Metz, Schlegel, Eur.Phys.J.A22:489-494, 2004: couple to quark and diquark)

A_{LU} results

. Electric charges: e_1 (quark), e_2 (di-quark); note the log(Q²) dependence

$$\begin{split} A_{LU}^{\sin\phi} &= \frac{4\alpha_s}{3} \sqrt{\varepsilon(1-\varepsilon)} \frac{\tilde{m}^2 + \Delta_{\perp}^2}{(m+Mx)^2 + \Delta_{\perp}^2} \frac{\Delta_{\perp}}{Q} \\ &\times \left(\frac{1}{\Delta_{\perp}^2} (M^2 x^2 - m^2 + \frac{2e_1 - xe_2}{2e_1(1-x)} \tilde{m}^2) \ln \frac{\tilde{m}^2 + \Delta_{\perp}^2}{\tilde{m}^2} + \frac{2e_1 + e_2}{2e_1} \frac{x}{1-x} \ln \frac{Q^2(1-x)}{(\tilde{m}^2 + \Delta_{\perp}^2)x} - \frac{e_1 + e_2}{e_1} \frac{x}{1-x} \right), \\ \tilde{m}^2 &= x(1-x)(-M^2 + \frac{m^2}{x} + \frac{m_s^2}{1-x}) \end{split}$$

New feature of the calculation: jet flavor dependence
Lack of suppression at higher x
Gauge-invariant model in better agreement with experiment

Extracting g^{perp}

. Equate the model calculation for A_{LU} with a corresponding expression in terms of parton distributions:

$$A_{LU}^{\sin\phi} = \sqrt{\varepsilon(1-\varepsilon)} \frac{\Delta_{\perp}}{Q} \frac{xg^{\perp}(x,\Delta_{\perp})}{f_1(x,\Delta_{\perp})}$$

•Obtain the expression for g^{perp}

$$g^{\perp}(x,\Delta_{\perp}) = \frac{g^2}{16\pi^2} \frac{4\alpha_s}{3} \frac{(1-x)^2}{\tilde{m}^2 + \Delta_{\perp}^2} \times \left(\frac{1}{\Delta_{\perp}^2} (M^2 x^2 - m^2 + \frac{2e_1 - xe_2}{2e_1(1-x)} \tilde{m}^2) \ln \frac{\tilde{m}^2 + \Delta_{\perp}^2}{\tilde{m}^2} + \frac{2e_1 + e_2}{2e_1} \frac{x}{1-x} \ln \frac{Q^2(1-x)}{(\tilde{m}^2 + \Delta_{\perp}^2)x} - \frac{e_1 + e_2}{e_1} \frac{x}{1-x}\right),$$

$$\tilde{m}^2 = x(1-x)(-M^2 + \frac{m^2}{x} + \frac{m_s^2}{1-x})$$

Result for g^{perp}

- •Additional scaling violation $\sim \ln(Q^2)$ for the twist-3 observable
- Need proof of factorization for twist-3 case

Summary on beam SSA in SIDIS

- Beam SSA is suppressed by an extra power of 1/Q compared to target SSA, since it is due to LT (photon) interference
- Predictions for beam SSA do not depend on the assumptions of orbital angular momentum contribution to the nucleon light-cone wave function, while the remaining assumption (gluon exchange in the final state) is the same as in the target (Sivers) asymmetry calculations
- Result very sensitive to the method of restoring electromagnetic gauge invariance through adding *non-partonic* contributions
- . Both experimental and theoretical effort needed to study factorization for the higher-twist observables

Single-Spin Asymmetries in DIS from 2-photon exchange

AA, C.Weiss

Motivation

- . Motivated by experimental+theoretical two-photon exchange studies at JLab
- Implications for SIDIS: Measured SSA in (e,e'h) are of the order of a few per cent
 - . What if higher-order electromagnetic correction is a few per cent?
- . What the ... are we (or they) measuring?

Recent calculation of normal target asymmetry from two-photon exchange in a parton model obtained a divergent result, see
<u>A. Metz</u>, <u>M. Schlegel</u>, <u>K. Goeke</u> (<u>Ruhr U., Bochum</u>). Oct 2006. 8pp. Published in Phys.Lett.B643:319-324,2006. e-Print Archive: hep-ph/0610112

New results from AA, Weiss

- . Normal target asymmetry from two-photon exchange is evaluated in a model of a weakly-bound nucleon
 - . Asymmetry proportional to quark transversity and a mass scale of chiral symmetry breaking
 - . $A_n \sim 10^{-4}$
- . Asymmetry is free of infrared and collinear divergence
 - . Recent (divergent) result of Metz et al is due to (non)conservation of electromagnetic current in their model

Calculations

- . Weakly-bound nucleon model assumes that the main effect of interactions is a dynamical quark mass, Mq;
- $An(xs,t)_{point}$: asymmetry for a pointlike e=1 spinor particle of mass M

Divergence cancellation

- Divergence: terms of the type $\ln(Q^2/\lambda^2)$, where λ is a cut-off parameter ('photon mass'); final results should be independent of λ
- . Two kinds of divergence appear in two-photon exchange calculation:
 - . Infra-red: exchanged photon momentum ->0. Such divergent terms result in a spin-independent common factor appearing in front of one-photon exchange amplitude; the factors cancel in the result for asymmetry
 - Hard collinear: intermediate photon is collinear to the parent electron, while carrying substantial energy: Divergence cancels at the amplitude level; electromagnetic current conservation for the Compton tensor is essential (see AA,Merenkov'04 proof for elastic ep-scattering)

Model example

- . Collinear divergence $\sim \ln(Q^2/\lambda^2)$ from diagram (a) precisely cancels the divergence of the diagram (b)
- . Lesson: To obtain sensible results for the single-spin asymmetry from two-photon exchange, need to work with models that exactly satisfy electromagnetic current conservation for the (inelastic) virtual Compton amplitude

Conclusions

- Electromagnetic current conservation is an requirement is important for higher-twist Single-spin asymmetry calculations
- Neglecting Electromagnetic current conservation results in (unphysical) divergence in spin asymmetries induced by two-photon exchange
- Single-spin asymmetries from two-photon exchange in DIS estimated in a model at 10⁻⁴ level

