TJNAF, December 14, 2006

Theoretical and experimental challenges of SIDIS

Piet Mulders

vrije Universiteit amsterdam

mulders@few.vu.nl

DIS

- Hard scattering processes to access partons (quarks and gluons): high energy end of duality regime
- □ Measure longitudinal (lightcone) momentum fraction x of struck quark and quark densities f₁^{H→q}(x)
- Proton and neutron (possibly nuclei) for (limited) flavor sensitivity (q = u, d)
- \Box Polarization to access longitudinal polarization $g_1^{q}(x) = \Delta q(x)$
- □ In principle unlimited access to higher twist contributions

SIDIS

Hard scattering processes to access partons (quarks and gluons): high energy end of duality regime

- □ Measure longitudinal (lightcone) momentum fraction x of struck quark and quark densities $f_1^{H \rightarrow q}(x)$ multiplied with decay densities $D_1^{q \rightarrow h}(z)$
- Proton and neutron (possibly nuclei) for (limited) flavor sensitivity and selection of specific hadrons (π, K, ...) for further flavor selectivity.
- \square Polarization to access longitudinal and transverse polarization, polarimetry for ρ or Λ -production
- \Box Acces to transverse momenta of partons: $p = xP + p_T$
- Limited access to higher twist contributions!

Kinematical flexibility

Kinematical flexibility

Kinematical flexibility

(calculation of) cross section in DIS

OPTICAL THEOREM FOR DIS

Full calculation

Soft part in (SI)DIS

- In limit of large Q² the result of 'handbag diagram' survives
- … + contributions from A⁺ gluons ensuring color gauge invariance

- M/P⁺ parts appear as M/Q terms in cross section
- T-reversal applies to $\Phi(x) \rightarrow no$ T-odd functions

Jaffe & JiNP B 375 (1992) 527Jaffe & JiPRL 71 (1993) 2547

Basis of partons

TWO 'SPIN' STATES FOR (GOOD) QUARK FIELDS

chiral eigenstates:

$$\psi_{R/L}\equiv rac{1}{2}(1\pm\gamma_5)\psi:$$
 (R) and (L)

or

transverse spin eigenstates:

Note: $[\mathcal{P}_{R/L}, \mathcal{P}_+] = [\mathcal{P}_{\uparrow/\downarrow}, \mathcal{P}_+] = 0$

 Good part of Dirac space is 2-dimensional

Interpretation of DF's

Matrix representation for $M = [\Phi(x)\gamma^+]^T$ Bacchetta, Boglione, Henneman & Mulders, PRL 85 (2000) 712

Quark production matrix, directly related to the helicity formalism

Anselmino et al.

MATRIX REPRESENTATION FOR SPIN 1/2

 p_{T} -integrated distribution functions: For a spin 1/2 hadron (e.g. nucleon) the quark production matrix in quark \otimes nucleon spin space is given by

- Off-diagonal elements (RL or LR) are chiral-odd functions
- Chiral-odd soft parts must appear with partner in e.g. SIDIS, DY

Measuring transverse structure

- In a hard process one probes partons (quarks and gluons)
- Momenta fixed by kinematics (external momenta)

DIS
$$x = x_B = Q^2/2P.q$$

SIDIS
$$z = z_h = P.K_h/P.q$$

Also possible for transverse momenta

SIDIS
$$q_T = k_T - p_T$$

$$= q + x_B P - K_h/z_h \approx -K_{h\perp}/z_h$$

2-particle inclusive hadron-hadron scattering

$$q_{T} = p_{1T} + p_{2T} - k_{1T} - k_{2T}$$

= $K_{1}/z_{1} + K_{2}/z_{2} - x_{1}P_{1} - x_{2}P_{2} \approx K_{11}/z_{1} + K_{21}/z_{2}$

• Sensitivity for transverse momenta requires
$$\geq 3$$
 momenta
SIDIS: $\gamma^* + H \rightarrow h + X$
DY: $H_1 + H_2 \rightarrow \gamma^* + X$
 $e^+e^-: \gamma^* \rightarrow h_1 + h_2 + X$
hadronproduction: $H_1 + H_2 \rightarrow h + X$
 $\rightarrow h_1 + h_2 + X$

pp-scattering

 $p \approx x P + p_T$

 $\mathbf{k} \approx \mathbf{Z}^{-1} \mathbf{K} + \mathbf{k}_{\mathrm{T}}$

Parametrization of $\Phi(x,p_T)$

- Additional TMD distribution functions, terms ~ p_T
- Link dependence allows also T-odd distribution functions since T U[0,∞] T[†] = U[0,-∞]
- Functions h₁[⊥] and f_{1T}[⊥] (Sivers) nonzero! They come from gauge link (i.e. involve gluon fields)
- Similar functions (of course) exist as fragmentation functions (no T-constraints) H₁[⊥] (Collins) and D_{1T}[⊥]
- For spin 0 and spin ½ T-odd effects require p_T

DISTRIBUTION FUNCTIONS

Parameterization of p_{T} -dependent soft part at leading order and including T-odd parts for polarized hadrons:

$$\begin{split} \Phi_{0}(x,p_{T}) &= \\ & \left\{ f_{1}(x,p_{T}^{2}) + i h_{1}^{\perp}(x,p_{T}^{2}) \frac{\not p_{T}}{M} \right\} \not p_{+} \\ \Phi_{L}(x,p_{T}) &= \\ & \left\{ S_{L} g_{1L}(x,p_{T}^{2}) \gamma_{5} + S_{L} h_{1L}^{\perp}(x,p_{T}^{2}) \gamma_{5} \frac{\not p_{T}}{M} \right\} \not p_{+} \\ \Phi_{T}(x,p_{T}) &= \\ & \left\{ g_{1T}(x,p_{T}^{2}) \frac{p_{T} \cdot S_{T}}{M} \gamma_{5} + f_{1T}^{\perp}(x,p_{T}^{2}) \frac{\epsilon_{T} \rho_{\sigma} p_{T}^{\rho} S_{T}^{\sigma}}{M} \\ & + h_{1T}(x,p_{T}^{2}) \gamma_{5} \, \not s_{T} + h_{1T}^{\perp}(x,p_{T}^{2}) \frac{p_{T} \cdot S_{T}}{M} \frac{\gamma_{5} \not p_{T}}{M} \right\} \not p_{+} \\ \Phi_{LL}(x,p_{T}) &= \dots \end{split}$$

T-odd: $g_{1T} \rightarrow g_{1T} - i f_{1T^{\perp}}$ and $h_{1L^{\perp}} \rightarrow h_{1L^{\perp}} + i h_{1^{\perp}}$ (imaginary parts)

Bacchetta, Boglione, Henneman & Mulders PRL 85 (2000) 712

Possibilities in leptoproduction of pions

MATRIX REPRESENTATION FOR SPIN 0

 p_T -dependent quark fragmentation functions:

$$egin{aligned} &\left\langle rac{Q_T}{M_h} \sin(\phi_h^\ell + \phi_S^\ell)
ight
angle_{OTO} \ &= rac{2\pilpha^2 s}{Q^4} \left| oldsymbol{S_T}
ight| 2(1-y) \sum_{a,ar{a}} e_a^2 \, x_B^2 \, h_1^a(x_B^2) H_1^{\perp(1)a}(z_h) \end{aligned}$$

Asymmetries are

Factorization studies in SIDIS

- Measurements of TMD distribution (and fragmentation functions)
- Investigate the p_T -dependence
- Important as experimental input on factorization behavior
- Normal situation

$$\Phi_2(x, p_T) \to \frac{\alpha(p_T^2)}{p_T^2} K \otimes \Phi_2(x)$$

• TMD functions

$$\Phi_3(x, p_T) \to \frac{\alpha(p_T^2)}{|p_T|} K \otimes \Phi_2(x)$$

After integration: subleading in 1/Q \rightarrow NLO (in α_s)

• Where: look for $\langle \cos \phi_h \rangle$, $\langle \sin \phi_h \rangle$ azimuthal asymmetries.

Transverse momenta and higher twist

- Link between weighted TMD functions (transverse moments) and higher twist functions (QCD eom)
- $g_{1T}^{(1)}(x,p_T^2)$ from SIDIS < $q_T \cos(\phi_s - \phi_h)$ >
- g₂ from DIS at 1/Q
 <cos(φ_s)>
- Role of gauge link needs to be (further) investigated.

ESTIMATE OF g_{1T}

- datapoints: SLAC g_2 -data: $g_{1T}^{(1)}(x) = -\int_x^1 dy \, g_2(y)$ (including E155, preliminary)
- ullet line: above relation with $g_2(x)=g_2^{WW}(x)$

Single spin asymmetries Color gauge invariance

- Nonlocal combinations of colored fields must be joined by a gauge link: $\overline{\psi}(0)\psi(\xi) \rightarrow \overline{\psi}(0)U(0,\xi)\psi(\xi)$ $\longrightarrow U(0,\xi) = \mathscr{P}\exp\left(-ig\int_{0}^{\xi} ds^{\mu}A_{\mu}\right)$
- Gauge link structure is calculated from collinear A.n gluons exchanged between soft and hard part

- Access to the (transverse) partonic structure of hadrons is still in a very preliminary stage (azimuthal asymmetries by themselves or combined with single or double spin asymmetries)
- Theoretical interesting parts are contained in α_{s} , p_T and 1/Q structure of cross section putting demands on experimental detection capabilities
- Like the spin puzzle, interplay of theory and experiment is essential