Toward 0.5% Electron Beam Polarimetry

Needs for 0.5%

The proposed PV-DIS experiments may be systematics limited, with fractional errors approaching 0.5%. No <1% polarimetry for an experiment has been *demonstrated* at JLab.

5 polarimeters which can be compared:

Stat error only

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

• Continuous monitoring during production (protects against drifts or systematic current-dependence to polarization)

 Statistical power to facilitate cross-normalization (systematics limited on order of 1 hour)

Moller Polarimetry

$$\vec{e}^- + \vec{e}^- \rightarrow \vec{e}^- + \vec{e}^-$$

- Analyzing power ~7/9 at $\theta_{CM} = 90^{\circ}$
- High cross-section
- Ferromagnetic target $P_T \sim 8\%$
- Invasive
- Levchuck Effect

Hall C Moller Polarimeter

- Iron foil in 4T field (saturated, low uncertainty in e⁻ polarization)
- Large acceptance controls Levchuk effect

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

December 13, 2006

Hall C Moller Polarimeter

Approaches $\delta P_{B} \sim 0.5\%$

Samples (<2hr / measurement) can control drifts of polarization

Some accounted errors? (no showstoppers) + dead-time? + radiative corrections? ? Fe polarization could be measured via Kerr effect (not done)

LOW CURRENT ONLY

"Pulsed" Moller might sample from high current beam, but

- larger systematics
- not full current
- less time-efficient and not continuous

Kent Paschke, University of Viriginia

¹**H** target would remove dominant systematics

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Ingo Sick,

JLab Workshop on Precision Electron Beam Polarimetry

Jefferson Lab, June 9-10, 2003

December 13, 2006

Hall A Compton Polarimeter

December 13, 2006

December 13, 2006

Systematic Error Goals

Electron Method:

- δ(A_{exp}) dead time ▲ 0.1%
- δ(<A_{th}>) Calibration (Strip Efficiency / Resolution / Spot Size) ▲ 0.25%

Photon Analysis Method:

- δ(A_{exp}) dead time ▲ 0.1%
- δ(<A_{th}>) Calibration ▲ 0.25% Response Function ▲ 0.40% Pile up ▲ 0.20%

Common-Mode errors

• P_{laser} A 0.30%

Other uncertainties :

Backgrounds, Beam Asymmetries, Radiative corrections (<0.05% each)□

Acheivable: <0.5% polarimetry from electron detection, <0.7% cross-check from photon detection

December 13, 2006

Photon Target

Do we know the polarization in the *cavity* by monitoring the transmitted light?

Another option: single shot laser. Lower power, but could be pulsed to reduce backgrounds. Transfer function translates measured transmitted polarization to CIP

An alternate approach for Compton

"The scanning Compton polarimeter for the SLD experiment" (SLAC-PUB-7319)

- Pulsed mode laser
- Integrating electron and photon detectors, insenstive to low-energy junk
- Published results $\delta P_e \sim 0.5\%$ ($\delta P/P \sim 0.64\%$)
- More forgiving of beam profile, synchrotron radiation, backgrounds
- More difficult to understand, careful and regular study of response functions and Compton asymmetry are necessary

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Atomic Hydrogen For Moller Target

Moller polarimetry from polarized atomic hydrogen gas, stored in an unltra-cold magnetic trap

- 100% electron polarization
- tiny error on polarization
- thin target (sufficient rates but no dead time)
- Non-invasive
- high beam currents allowed
- no Levchuk effect

E. Chudakov and V. Luppov, IEEE Transactions on Nuclear Science, v 51, n 4, Aug. 2004, 1533-40

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

10 cm, ρ = 3x10¹⁵/cm³ in B = 7 T at T=300 mK

Brute force polarization $\frac{n_{+}}{n_{-}} = e^{-2\mu B/kT} \approx 10^{-14}$

December 13, 2006

Atomic Hydrogen Trap Operation

 $H + H \otimes H^2$ recombination

- suppressed for polarized gas
- surface must be coated (~50nm of superfluid ⁴He)
- H₂ freezes to walls
- Gas lifetime > 1 hour

Beam + RF ▲ 10⁻⁴/sec ionizations (~20%/sec in beam)

- lons purged by transverse electric field ~1 V/cm
- Cleaning (~20 μ s) + diffusion \wedge <10⁻⁵ contamination

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

$$v = \vec{E} \times \vec{B} / B^2$$

Polarimeter with Atomic Hydrogen

Replace existing Hall A Moller Target (keep spectrometer)

Expected depolarization \land <2e-4

Expected contamination (residual gas + He, H_2 , excited states, hyperfine states) $\land < 1\%$

Dominant systematic errors total <0.5%</th>Analyzing power▲ <0.2%</td>Background▲ <0.3%</td>He dilution▲ <0.1%</td>

Statistical error 1% in ~30 min (30 μ A)

December 13, 2006

Summary

Need major effort to establish unimpeachable credibility for 0.5% polarimetry ▲ two separate measurements, with separate techniques, which can be cross-checked.

Methods from 6 GeV CEBAF may be applicable at 12 GeV

- High-Field Moller (Question: beam current extrapolation)
- Counting Compton (Question: 12 GeV e⁻ beam characteristics)

New methods may provide ultimate results

- Integrating Compton Major challenge: fully test simulated response functions/analyzing power
- Atomic Hydrogen Moller

Least systematic uncertainty, but entirely novel application

HAPPEX-II Systematic Errors

Electron detector analysis

Hardware problem	Relative Error (%)	Diff_⁴He	0Xing_⁴He	Diff_LH ₂	0Xing_LH ₂
	Bdl, Y _{det} , D, … (±1.4%)	0.79	0.03	0.69	0.03
	E _{beam} (3 MeV)	0.10	0.10	0.10	0.10
	3	0.10	1.00?	0.10	1.50?
	A _{background}	0.04	0.04	0.02	0.02
	RadCorr	0.25	0.25	0.25	0.25
	P _{laser}	0.35	0.35	0.35	0.35
	Cuts, beam spot size	0.5	0.5	0.5	0.5
	TOTAL	1.04	1.20	0.93	1.64

Sub-leading, not pursued