Toward 0.5\% Electron Beam Polarimetry

Kent Paschke University of Virginia

Needs for 0.5\%

The proposed PV-DIS experiments may be systematics limited, with fractional errors approaching 0.5\%. No <1\% polarimetry for an experiment has been demonstrated at JLab.
5 polarimeters which can be compared:
Stat error only

- Continuous monitoring during production (protects against drifts or systematic current-dependence to polarization)
- Statistical power to facilitate cross-normalization (systematics limited on order of 1 hour)

Moller Polarimetry

$\overrightarrow{\boldsymbol{e}}^{-}+\overrightarrow{\boldsymbol{e}}^{-} \rightarrow \overrightarrow{\boldsymbol{e}}^{-}+\overrightarrow{\boldsymbol{e}}^{-}$

- Analyzing power ~7/9 at
$\theta_{\text {CM }}=90^{\circ}$
- High cross-section
- Ferromagnetic target

$$
P_{T} \sim 8 \%
$$

- Invasive
- Levchuck Effect

Hall C Moller Polarimeter

- Iron foil in 4T field (saturated, low uncertainty in e- polarization)
- Large acceptance controls Levchuk effect

Hall C Moller Polarimeter

Approaches $\delta \mathrm{P}_{\mathrm{B}} \sim 0.5 \%$

Samples (<2hr / measurement) can control drifts of polarization
${ }^{1} \mathrm{H}$ target would remove dominant systematics

Some accounted errors? (no showstoppers)

+ dead-time?
+ radiative corrections?
? Fe polarization could be measured via Kerr effect (not done)

LOW CURRENT ONLY

"Pulsed" Moller might sample from high current beam, but
- larger systematics
- not full current
- less time-efficient and not continuous

Hall A Compton Polarimeter

Fabry-Perot Cavity photon detector Electron detector

Power=1500 Watts
Polar. = 99.5\%
Crossing angle $=23 \mathrm{mrad}$

Hall A Compton Polarimetry Analysis
 $$
A_{\text {exp }}=\frac{n^{+}-n^{-}}{n^{+}+n^{-}}=P_{\gamma} \times P_{e} \times<A_{t h}>
$$

Photon Detector Analysis

Energy resolution prevents self-calibration:
Electron Detector Analysis

Rate
Two Points of well-defined
energy:
Zero crossing
Compton edge

Integrate between two known energy points, only sensitive to $\mathrm{E}_{\text {beam }}$

- Use electron detector to calibrate absolute energy.
- Skip energy calibration with integration technique

Systematic Error Goals

Electron Method:

- $\delta\left(\mathrm{A}_{\text {exp }}\right)$
dead time $\wedge 0.1 \%$
- $\delta\left(<\mathrm{A}_{\mathrm{th}}>\right)$

Calibration
(Strip Efficiency /
Resolution /
Spot Size) A 0.25\%

Photon Analysis Method:

- $\delta\left(\mathrm{A}_{\text {exp }}\right)$
dead time A 0.1\%
- $\delta\left(<\mathrm{A}_{\mathrm{th}}>\right)$

Calibration A 0.25\%
Response Function A 0.40\%
Pile up A 0.20\%

Common-Mode errors

- $P_{\text {Laser }}$ A 0.30\%

Acheivable: <0.5\% polarimetry from electron detection, $<0.7 \%$ cross-check from photon detection

Photon Target

Do we know the polarization in the cavity by monitoring the transmitted light?

Another option: single shot laser. Lower power, but could be pulsed to reduce backgrounds.

Transfer function translates measured transmitted polarization to CIP

An alternate approach for Compton

"The scanning Compton polarimeter for the SLD experiment" (SLAC-PUB-7319)

- Pulsed mode laser
- Integrating electron and photon detectors, insenstive to low-energy junk
- Published results $\delta \mathrm{P}_{\mathrm{e}} \sim 0.5 \%$ (δ P/P ~ 0.64\%)
- More forgiving of beam profile, synchrotron radiation, backgrounds
- More difficult to understand, careful and regular study of response functions and Compton asymmetry are necessary

Atomic Hydrogen For Moller Target

 Moller polarimetry from polarized atomic hydrogen gas, stored in an unltra-cold magnetic trap$10 \mathrm{~cm}, \rho=3 \times 10^{15} / \mathrm{cm}^{3}$ in $\mathrm{B}=7 \mathrm{~T}$ at $\mathrm{T}=300 \mathrm{mK}$

- 100\% electron polarization
- tiny error on polarization
- thin target (sufficient rates but no dead time)
- Non-invasive
- high beam currents allowed
- no Levchuk effect
E. Chudakov and V. Luppov, IEEE Transactions on Nuclear Science, v 51, n 4, Aug. 2004, 1533-40

Brute force polarization

$$
\frac{n_{+}}{n_{-}}=e^{-2 \mu B / k T} \approx 10^{-14}
$$

Atomic Hydrogen Trap Operation

$H+H$ ® H^{2} recombination

- suppressed for polarized gas
- surface must be coated ($\sim 50 \mathrm{~nm}$ of superfluid ${ }^{4} \mathrm{He}$)
- H_{2} freezes to walls

Gas lifetime > 1 hour
Beam + RF A $10^{-4} / \mathrm{sec}$ ionizations ($\sim 20 \% / \mathrm{sec}$ in beam)

- Ions purged by transverse electric field $\sim 1 \mathrm{~V} / \mathrm{cm}$
- Cleaning ($\sim 20 \mu \mathrm{~s}$) + diffusion $\wedge<10^{-5}$ contamination

$$
\boldsymbol{v}=\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}} / \boldsymbol{B}^{2}
$$

Polarimeter with Atomic Hydrogen

Replace existing Hall A Moller Target (keep spectrometer)

Expected depolarization \quad < $2 \mathrm{e}-4$
Expected contamination (residual gas $+\mathrm{He}, \mathrm{H}_{2}$, excited states, hyperfine states) $\quad A<1 \%$

Dominant systematic errors total <0.5\%
Analyzing power A <0.2\%
Background \quad \& $<0.3 \%$
He dilution $\quad A<0.1 \%$

Statistical error 1% in ~30 min $(30 \mu \mathrm{~A})$

Summary

Need major effort to establish unimpeachable credibility for 0.5\% polarimetry A two separate measurements, with separate techniques, which can be cross-checked.

Methods from 6 GeV CEBAF may be applicable at 12 GeV

- High-Field Moller (Question: beam current extrapolation)
- Counting Compton (Question: $12 \mathrm{GeV} \mathrm{e}^{-}$beam characteristics)

New methods may provide ultimate results

- Integrating Compton

Major challenge: fully test simulated response functions/analyzing power

- Atomic Hydrogen Moller

Least systematic uncertainty, but entirely novel application

HAPPEX-II Systematic Errors

Electron detector analysis

Hardware problem	Relative Error (\%)	Diff_4He	OXing_ ${ }^{4} \mathrm{He}$	Diff_LH 2	OXing_LH 2
	$\begin{gathered} \text { Bdl, } Y_{\text {det }}, \mathrm{D}, \ldots \\ (\pm 1.4 \%) \end{gathered}$	0.79	0.03	0.69	0.03
	$\mathrm{E}_{\text {beam }}(3 \mathrm{MeV})$	0.10	0.10	0.10	0.10
	ε	0.10	1.00?	0.10	1.50?
	$\mathrm{A}_{\text {background }}$	0.04	0.04	0.02	0.02
	RadCorr	0.25	0.25	0.25	0.25
	$\mathrm{P}_{\text {laser }}$	0.35	0.35	0.35	0.35
	Cuts, beam spot size	0.5	0.5	0.5	0.5
	TOTAL	1.04	1.20	0.93	1.64

Sub-leading, not pursued

