In the shell model, nucleons move independently in well-defined quantum "orbits" in the nuclear mean-field. The mean field is dominated by the long-range attractive part of the N-N interaction. Due to the N-N interaction at short distances, a significant fraction (~20%) of nucleons form pairs instead of moving independently. The dominant repulsive part of the interaction at these distances, causes high relative momentum between the nucleons in the pair.

In Hall-A experiment E01-015, high-energy electrons knocked out high-momentum protons from ^{12}C. We measured how many times the struck proton was accompanied by a coincident recoil neutron or proton.

Results

- Almost all nucleons with momentum above the Fermi momentum in ^{12}C are paired.
- n-p pairs are nearly 20 times more prevalent than p-p pairs.

The dominance of n-p over p-p SRC pairs is a clear fingerprint of the short-range N-N tensor force. This has far-reaching implications for modeling and understanding cold dense nuclear matter such as neutron stars.