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Asymmetric Nuclear Matter at Finite Temperature

Motivation: nuclear matter
Nuclear Matter

Infinite system of nucleons
High densities ρ ∼ 1014 g cm−3 ⇒ strong interaction
Model heavy nuclei cores and neutron stars
Short range effects close to finite nuclei

Asymmetric Nuclear Matter
Symmetric (Z = N) vs. asymmetric (Z 6= N)
Measured by xp = α = Z

N+Z or β = N−Z
N+Z

Isospin asymmetric systems in nature:
(Heavy) Nuclei: 208Pb, α = 0.39, β = 0.2
Neutron Stars: α ∼ 0.05, β ∼ 0.9

How to extrapolate safely? RIB’s, drip line physics...
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Asymmetric Nuclear Matter at Finite Temperature

Motivation: “hot” nuclear systems

E ∼ 1 MeV ⇒ T ∼ 1010 K

Proto-neutron stars
Chandra X-Ray Observatory

CXC

3C58

SN 1181 remnant (SNR3C58) and
Pulsar PSRJ0205+6449

AA collisions

Nuclear caloric curve
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Self-Consistent Green’s Functions at Finite Temperature

SCGF: Ingredients

Based on many-body Green’s functions formalism at T 6= 0

Main approximation: ladder decoupling at the level of GIII

Includes short-range and tensor correlations

Full off-shell energy dependence is considered

Thermodynamically consistent (conserving) theory

Ladder includes hole-hole propagation (beyond BHF),
which leads to a pairing instability for T = 0 ...

Finite temperature actually solves theoretical problems!
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Self-Consistent Green’s Functions at Finite Temperature

Ladder approximation

=GII +

...+ ++

+ +

+ +

Valid for strong interactions and low densities

Self-consistency is imposed at each step

Solved in terms of Dyson’s equation

Ladder self-energy

In-medium interaction accounts for “Pauli" effects

Off-shell behavior, beyond quasi-particle approximation
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Self-Consistent Green’s Functions at Finite Temperature

Ladder approximation

〈k1k2|T(Zν)|k3k4〉 = 〈k1k2|V|k3k4〉

+ V
∫

d3k5

(2π)3V
∫

d3k6

(2π)3 〈k1k2|V|k5k6〉 G0
II(Zν ; k5k6) 〈k5k6|T(Zν)|k3k4〉

Valid for strong interactions and low densities

Self-consistency is imposed at each step

Solved in terms of Dyson’s equation

Ladder self-energy

In-medium interaction accounts for “Pauli" effects
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Self-Consistent Green’s Functions at Finite Temperature

Lehmann’s representation T = 0
Spectral decomposition:

G(k, ω)=

∫ εF

−∞

dω

2π

Ah(k, ω′)

ω − ω′ − iη
+

∫ ∞

εF

dω

2π

Ap(k, ω′)

ω − ω′ + iη

Hole spectral function

Ah(k, ω)=2π
∑

n

∣∣∣〈ΨA−1
n

∣∣ak
∣∣ΨA

0

〉∣∣∣2
δ
(
w− (EA

0 − EA−1
n )

)
ω < µ

Particle spectral function

Ap(k, ω)=2π
∑

n

∣∣∣〈ΨA+1
n

∣∣a†k∣∣ΨA
0

〉∣∣∣2
δ
(
w− (EA+1

n − EA
0 )

)
ω > µ
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Self-Consistent Green’s Functions at Finite Temperature

Lehmann’s representation T 6= 0
Spectral decomposition:

G(k, ω)=

∫ ∞

−∞

dω

2π

A<(k, ω′)

ω − ω′ + iη
+

∫ ∞

−∞

dω

2π

A>(k, ω′)

ω − ω′ − iη

"Hole" spectral function

A<(k, ω)=2π
∑
m,n

e−β(En−µNn)

Z

∣∣∣〈Ψm

∣∣ak
∣∣Ψn

〉∣∣∣2
δ
(
w− (En − Em)

)
"Particle" spectral function

A>(k, ω)=2π
∑
m,n

e−β(En−µNn)

Z

∣∣∣〈Ψm

∣∣a†k∣∣Ψn
〉∣∣∣2

δ
(
w− (Em − En)

)
Defined for all ω!
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Self-Consistent Green’s Functions at Finite Temperature

Spectral functions
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Self-Consistent Green’s Functions at Finite Temperature

Spectral functions: NN potentials
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Effects on high energy tails for all k

CDBONN nonlocal and softer
tensor

Av18 local and more tensor

Tensor correlations ⇒ higher tails
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Self-Consistent Green’s Functions at Finite Temperature

Other nuclear matter results...
Momentum distributions
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SCGF results for asymmetric nuclear matter

Ladder approximation in asymmetric matter

np
n

V
p+=n

nn
n

V
n

Neutron to neutron contribution

Σn
n(k) =

∫
d3k′

(2π)3 〈nk, nk′|V|nk, nk′〉A nn(k′)

Proton to neutron contribution

Σp
n(k) =

∫
d3k′

(2π)3 〈nk, pk′|V|nk, p′k′〉A np(k′)

ΣHF
n (k) = Σn

n(k) + Σp
n(k)
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SCGF results for asymmetric nuclear matter

Ladder approximation in asymmetric matter

npV
+=

V
p p p p n

pp

Proton to proton contribution

Σp
p(k) =

∫
d3k′

(2π)3 〈pk, pk′|V|pk, pk′〉A np(k′)

Neutron to proton contribution

Σn
p(k) =

∫
d3k′

(2π)3 〈pk, nk′|V|pk, nk′〉A nn(k′)

ΣHF
p (k) = Σp

p(k) + Σn
p(k)
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SCGF results for asymmetric nuclear matter

Nuclear vs. neutron matter
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SCGF results for asymmetric nuclear matter

Spectral functions: asymmetric matter
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SCGF results for asymmetric nuclear matter

Momentum distribution: asymmetric matter
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Important splitting already for finite nuclei!
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SCGF results for asymmetric nuclear matter

Depletion and width at k = 0
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SCGF results for asymmetric nuclear matter

Sum rules and tensor correlations

m1 =
∫ ∞

−∞

dω

2π
ωA(k, ω) =

k2

2m
+ Σ∞(k)

εqp(k) =
k2

2m
+ Re Σ[k, ω = εqp(k)]
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SCGF results for asymmetric nuclear matter

Symmetry energy

e =
ν

2

∑
τ

∫
d3k

(2π)3

∫ ∞

−∞

dω

2π

[
k2

2mτ
+ ω

]
Aτ (k, ω)fτ (ω)

e(ρ, β) ∼ e(ρ, β = 0) + as(ρ)β2
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Low value due to lack of TBF

Determines the pressure in NS

Correlated with neutron skin
thickness

High energy components?
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Connection to experimental results

Measures of SRC correlations

Knock-out reactions and spectroscopic factors
(e, e′p) experiments

0 50 100 150 200
E [MeV]

10
-13

10
-12

10
-11

10
-10

10
-9

A
12

C
(k

,-
E

) 
[M

eV
-4

]

250
330
410
490
570
650

50 100 150 200 250
E [MeV]

10
-12

10
-11

A
12

C
(k

,-
E

) 
[M

eV
-4

]

Rohe (Exp.)
Benhar et. al.
SCGF

k [MeV/c]:

k = 410 MeV/c

D. Rohe et al. PRL 93, 182501 (2004).
T. Frick et al. PRC 70, 024309 (2004).
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Connection to experimental results

Integrated strength
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∆-resonance!

κ

Experiment 0.61± 0.06
CBF theory 0.64
SCGF theory 0.61

Effect of isospin?
κ(α=0.4)
κ(α=0.5) ∼ 1.2

Effect of density?
κ(ρ0)

κ(ρ0/2) ∼ 1.5

D. Rohe et al., Eur. Phys. Jour. A 17, 439 (2003).
I. Sick, Prog. Part. Nucl. Phys 59, 447 (2004).
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Connection to experimental results

Spectral functions: asymmetric matter

ρ = 0.16 fm−3, T = 5 MeV, α = 0.4
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Connection to experimental results

Spectral functions: asymmetric matter

ρ = 0.16 fm−3, T = 5 MeV, α = 0.3
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Connection to experimental results

Spectral functions: asymmetric matter

ρ = 0.16 fm−3, T = 5 MeV, α = 0.2
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Connection to experimental results

Spectral functions: asymmetric matter

ρ = 0.16 fm−3, T = 5 MeV, α = 0.1
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Connection to experimental results

Spectral functions: asymmetric matter

ρ = 0.16 fm−3, T = 5 MeV, α = 0.04
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Connection to experimental results

Conclusion

Isospin asymmetry affects substantially the microscopic
properties of neutrons and protons in infinite matter

Protons
1 Larger particle (lower hole) energy tails

2 Larger quasiparticle peaks and lower depletion

3 More “correlated" due to np tensor correlations

Neutrons
1 Less affected by asymmetry

2 Neutron matter is less correlated than nuclear matter

3 Competition between np and nn correlations
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Connection to experimental results

Outlook

Dependence on the 2-body NN potential

Inclusion of 3-body effects

ρ, T, α dependences of microscopic properties

α dependence of TD properties of the system

Pairing phase transition beyond quasi-particle approach

Extension to time-dependent systems (HIC)

Arnau Rios Huguet (NSCL) SRC Workshop 2007 26th October 2007 28



Connection to experimental results

Thank you!
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Appendix

For further reading I

T. Frick and H. Müther,
Self-consistent solution to the nuclear many-body problem at
finite temperature,
Physical Review C 68, 034310 (2003).

T. Frick, H. Müther, A. Rios, A. Polls and A. Ramos,
Correlations in hot asymmetric nuclear matter,
Physical Review C 71, 014313 (2005).

A. Rios, A. Polls and H. Müther,
Sum rules of single-particle spectral functions in hot
asymmetric nuclear matter,
Physical Review C 73, 024305 (2006).
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