Correlations in asymmetric nuclear matter

Arnau Rios Huguet

National Superconducting Cyclotron Laboratory

Collaborators:

Artur Polls & Àngels Ramos (Barcelona) Herbert Müther (Tübingen)

T. Frick *et al.* Phys. Rev. C 71, 014313 (2005). A. Rios *et al.* Phys. Rev. C 73, 024305 (2006).

Arnau Rios Huguet (NSCL)

2 Self-Consistent Green's Functions at Finite Temperature

- 3 SCGF results for asymmetric nuclear matter
- Connection to experimental results

Motivation: nuclear matter

Nuclear Matter

- Infinite system of nucleons
- High densities $\rho \sim 10^{14} \text{ g cm}^{-3} \Rightarrow$ strong interaction
- Model heavy nuclei cores and neutron stars
- Short range effects close to finite nuclei

Asymmetric Nuclear Matter

- Symmetric (Z = N) vs. asymmetric ($Z \neq N$)
- Measured by $x_p = \alpha = \frac{Z}{N+Z}$ or $\beta = \frac{N-Z}{N+Z}$
- Isospin asymmetric systems in nature:
 - (Heavy) Nuclei: ²⁰⁸Pb, $\alpha = 0.39, \beta = 0.2$
 - Neutron Stars: $\alpha \sim 0.05, \beta \sim 0.9$
- How to extrapolate safely? RIB's, drip line physics...

Motivation: nuclear matter

Nuclear Matter

- Infinite system of nucleons
- High densities $ho \sim 10^{14} {\rm ~g~cm^{-3}} \Rightarrow {\rm strong}$ interaction
- Model heavy nuclei cores and neutron stars
- Short range effects close to finite nuclei

Asymmetric Nuclear Matter

- Symmetric (Z = N) vs. asymmetric ($Z \neq N$)
- Measured by $x_p = \alpha = \frac{Z}{N+Z}$ or $\beta = \frac{N-Z}{N+Z}$
- Isospin asymmetric systems in nature:
 - (Heavy) Nuclei: 208 Pb, $\alpha = 0.39, \beta = 0.2$
 - Neutron Stars: $\alpha \sim 0.05, \ \beta \sim 0.9$
- How to extrapolate safely? RIB's, drip line physics...

E SQA

Motivation: "hot" nuclear systems

$$E \sim 1 \text{ MeV} \Rightarrow T \sim 10^{10} \text{ K}$$

Proto-neutron stars AA collisions 12 Au+197Au 600-1000 AMeV Chandra X-Ray Observatory 12C, 180 + net Ag, 197 Au, 30-84 AMeV 3C58 10-22Ne+181Ta, 8 AMeV Ca+"Sc, 40 AMeV Nb+⁹²Nb, 15 AMeV (r+*2Nb. 50 AMeV 8 T_{HeLI} (MeV) 6 2 CLOSE-UP OF TORUS n 5 10 15 CXC $\langle E_0 \rangle / \langle A_0 \rangle$ (MeV) SN 1181 remnant (SNR3C58) and Nuclear caloric curve Pulsar PSRJ0205+6449

SRC Workshop 2007

• Based on many-body Green's functions formalism at $T \neq 0$

- Main approximation: ladder decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0 \dots$
- Finite temperature actually solves theoretical problems!

- Based on many-body Green's functions formalism at $T \neq 0$
- Main approximation: ladder decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0 \dots$
- Finite temperature actually solves theoretical problems!

- Based on many-body Green's functions formalism at $T \neq 0$
- Main approximation: ladder decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0 \dots$
- Finite temperature actually solves theoretical problems!

- Based on many-body Green's functions formalism at $T \neq 0$
- Main approximation: ladder decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0 \dots$
- Finite temperature actually solves theoretical problems!

- Based on many-body Green's functions formalism at $T \neq 0$
- Main approximation: ladder decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0 \dots$
- Finite temperature actually solves theoretical problems!

- Based on many-body Green's functions formalism at $T \neq 0$
- Main approximation: ladder decoupling at the level of \mathcal{G}_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0 \dots$
- Finite temperature actually solves theoretical problems!

• Valid for strong interactions and low densities

- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- Ladder self-energy
- In-medium interaction accounts for "Pauli" effects
- Off-shell behavior, beyond quasi-particle approximation

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- Ladder self-energy
- In-medium interaction accounts for "Pauli" effects
- Off-shell behavior, beyond quasi-particle approximation

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- Ladder self-energy
- In-medium interaction accounts for "Pauli" effects
- Off-shell behavior, beyond quasi-particle approximation

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- Ladder self-energy
- In-medium interaction accounts for "Pauli" effects
- Off-shell behavior, beyond quasi-particle approximation

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- Ladder self-energy
- In-medium interaction accounts for "Pauli" effects

Off-shell behavior, beyond quasi-particle approximation

$$\begin{aligned} \langle \mathbf{k}_1 \mathbf{k}_2 | T(Z_\nu) | \mathbf{k}_3 \mathbf{k}_4 \rangle &= \langle \mathbf{k}_1 \mathbf{k}_2 | V | \mathbf{k}_3 \mathbf{k}_4 \rangle \\ &+ \mathcal{V} \int \frac{\mathrm{d}^3 k_5}{(2\pi)^3} \mathcal{V} \int \frac{\mathrm{d}^3 k_6}{(2\pi)^3} \left\langle \mathbf{k}_1 \mathbf{k}_2 | V | \mathbf{k}_5 \mathbf{k}_6 \right\rangle \mathcal{G}_{II}^0(Z_\nu; k_5 k_6) \left\langle \mathbf{k}_5 \mathbf{k}_6 | T(Z_\nu) | \mathbf{k}_3 \mathbf{k}_4 \right\rangle \end{aligned}$$

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson's equation
- Ladder self-energy
- In-medium interaction accounts for "Pauli" effects
- Off-shell behavior, beyond quasi-particle approximation

SRC Workshop 2007

> = = ~ ~ ~

Lehmann's representation T = 0

Spectral decomposition:

$$\mathcal{G}(k,\omega) = \int_{-\infty}^{\epsilon_F} \frac{\mathrm{d}\omega}{2\pi} \frac{\mathcal{A}_h(k,\omega')}{\omega - \omega' - i\eta} + \int_{\epsilon_F}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{\mathcal{A}_p(k,\omega')}{\omega - \omega' + i\eta}$$

Hole spectral function

$$\mathcal{A}_{h}(k,\omega) = 2\pi \sum_{n} \left| \left\langle \Psi_{n}^{A-1} \middle| a_{k} \middle| \Psi_{0}^{A} \right\rangle \right|^{2} \delta \left(w - (E_{0}^{A} - E_{n}^{A-1}) \right)$$
$$\omega < \mu$$

Particle spectral function

$$\mathcal{A}_{p}(k,\omega) = 2\pi \sum_{n} \left| \left\langle \Psi_{n}^{A+1} \middle| a_{k}^{\dagger} \middle| \Psi_{0}^{A} \right\rangle \right|^{2} \delta \left(w - \left(E_{n}^{A+1} - E_{0}^{A} \right) \right)$$

 $\omega > \mu$

Arnau Rios Huguet (NSCL)

SRC Workshop 2007

26th October 2007 7

Lehmann's representation $T \neq 0$

Spectral decomposition:

$$\mathcal{G}(k,\omega) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{\mathcal{A}^{<}(k,\omega')}{\omega - \omega' + i\eta} + \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{\mathcal{A}^{>}(k,\omega')}{\omega - \omega' - i\eta}$$

"Hole" spectral function

$$\mathcal{A}^{<}(k,\omega) = 2\pi \sum_{m,n} \frac{e^{-\beta(E_n-\mu N_n)}}{Z} \Big| \langle \Psi_m \big| a_k \big| \Psi_n \rangle \Big|^2 \delta \big(w - (E_n - E_m) \big)$$

"Particle" spectral function

$$\mathcal{A}^{>}(k,\omega) = 2\pi \sum_{m,n} \frac{e^{-\beta(E_n-\mu N_n)}}{Z} \Big| \big\langle \Psi_m \big| a_k^{\dagger} \big| \Psi_n \big\rangle \Big|^2 \delta \big(w - (E_m - E_n) \big)$$

Defined for all ω !

SRC Workshop 2007

I= nan

Spectral functions

Arnau Rios Huguet (NSCL)

Spectral functions: NN potentials

- Effects on high energy tails for all k
- CDBONN nonlocal and softer tensor
- Av18 local and more tensor
- Tensor correlations ⇒ higher tails

Other nuclear matter results...

26th October 2007

Ladder approximation in asymmetric matter

Neutron to neutron contribution

$$\Sigma_n^n(k) = \int \frac{\mathrm{d}^3 \boldsymbol{k}'}{(2\pi)^3} \langle n\boldsymbol{k}, n\boldsymbol{k}' | V | n\boldsymbol{k}, n\boldsymbol{k}' \rangle_A n_n(k')$$

Proton to neutron contribution

$$\Sigma_n^p(k) = \int rac{\mathrm{d}^3 m{k}'}{(2\pi)^3} \langle nm{k}, pm{k}' | V | nm{k}, p'm{k}'
angle_A n_p(k')$$

 $\Sigma_n^{HF}(k) = \Sigma_n^n(k) + \Sigma_n^p(k)$

Ladder approximation in asymmetric matter

$$\sum_{p} = p - \underbrace{V_{pp}}_{p} + p - \underbrace{V_{np}}_{n}$$

Proton to proton contribution

$$\Sigma_p^p(k) = \int rac{\mathrm{d}^3 m{k}'}{(2\pi)^3} \langle pm{k}, pm{k}' | V | pm{k}, pm{k}'
angle_A n_p(k')$$

Neutron to proton contribution

$$\Sigma_p^n(k) = \int \frac{\mathrm{d}^3 \boldsymbol{k}'}{(2\pi)^3} \langle p \boldsymbol{k}, n \boldsymbol{k}' | V | p \boldsymbol{k}, n \boldsymbol{k}' \rangle_A n_n(k')$$

$$\Sigma_p^{HF}(k) = \Sigma_p^p(k) + \Sigma_p^n(k)$$

Arnau Rios Huguet (NSCL)

Nuclear vs. neutron matter

- Different ρ , same k_F
- Neutron matter ⇒ lower tails
- $T = 1 \Rightarrow$ inactive ${}^{3}S_{1} {}^{3}D_{1}$ tensor
- Tensor correlations ⇒ higher tails

Arnau Rios Huguet (NSCL)

-

Arnau Rios Huguet (NSCL)

Momentum distribution: asymmetric matter

- Protons more depleted
- Important splitting already for finite nuclei!

Arnau Rios Huguet (NSCL)

Depletion and width at k = 0

Proton depletion also due to thermal effects

Competition between nn and np correlations

Arnau Rios Huguet (NSCL)

Sum rules and tensor correlations

Arnau Rios Huguet (NSCL)

SRC Workshop 2007

26th October 2007 18

Symmetry energy

$$e = \frac{\nu}{2} \sum_{\tau} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \left[\frac{k^2}{2m_{\tau}} + \omega \right] \mathcal{A}_{\tau}(k,\omega) f_{\tau}(\omega)$$
$$e(\rho,\beta) \sim e(\rho,\beta=0) + a_s(\rho)\beta^2$$

- Energy from GMK sum rule
- Low value due to lack of TBF
- Determines the pressure in NS
- Correlated with neutron skin thickness
- High energy components?

Arnau Rios Huguet (NSCL)

SRC Workshop 2007

26th October 2007 19

12 N A 12

Measures of SRC correlations

- Knock-out reactions and spectroscopic factors
- (e, e'p) experiments

D. Rohe *et al.* PRL 93, 182501 (2004). T. Frick *et al.* PRC 70, 024309 (2004).

Integrated strength

	κ
Experiment	0.61 ± 0.06
CBF theory	0.64
SCGF theory	0.61

۲	Effect of isospin?
	$\frac{\kappa(\alpha=0.4)}{\alpha} \sim 1.2$
	$\overline{\kappa(\alpha=0.5)}$, 1.2

• Effect of density? $\frac{\kappa(\rho_0)}{\kappa(\rho_0/2)} \sim 1.5$

D. Rohe *et al.*, Eur. Phys. Jour. A 17, 439 (2003).
 I. Sick, Prog. Part. Nucl. Phys 59, 447 (2004).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

א א פֿ א א פֿ א פֿן ≒ י⊘עמ 26th October 2007 22

 $ho = 0.16 \ {
m fm^{-3}}, \, T = 5 \ {
m MeV}, \, lpha = 0.3$

26th October 2007 23

-

 $ho=0.16~{
m fm^{-3}},\,T=5$ MeV, lpha=0.2

26th October 2007 24

-

 $ho=0.16~{
m fm^{-3}},\,T=5$ MeV, lpha=0.04

▲ ヨ ▶ ▲ ヨ ▶ ヨ = ∽ � ♡ ♥ ♡ 26th October 2007 26

Conclusion

- Isospin asymmetry affects substantially the microscopic properties of neutrons and protons in infinite matter
- Protons
 - Larger particle (lower hole) energy tails
 - Larger quasiparticle peaks and lower depletion
 - More "correlated" due to np tensor correlations
- Neutrons
 - Less affected by asymmetry
 - Neutron matter is less correlated than nuclear matter
 - Competition between np and nn correlations

SRC Workshop 2007

Outlook

- Dependence on the 2-body NN potential
- Inclusion of 3-body effects
- ρ , *T*, α dependences of microscopic properties
- α dependence of TD properties of the system
- Pairing phase transition beyond quasi-particle approach
- Extension to time-dependent systems (HIC)

Thank you!

Arnau Rios Huguet (NSCL)

SRC Workshop 2007

26th October 2007 29

For further reading I

🛸 T. Frick and H. Müther,

Self-consistent solution to the nuclear many-body problem at finite temperature, Physical Review C 68, 034310 (2003).

- T. Frick, H. Müther, A. Rios, A. Polls and A. Ramos, Correlations in hot asymmetric nuclear matter, Physical Review C 71, 014313 (2005).
- A. Rios, A. Polls and H. Müther, Sum rules of single-particle spectral functions in hot asymmetric nuclear matter, Physical Review C 73, 024305 (2006).