Nucleon (and Δ) Momentum Distributions in Nuclei

Robert B. Wiringa (ANL) Rocco Schiavilla (JLab & ODU) Steven C. Pieper (ANL) Joe Carlson (LANL)

Argonne Laboratory Computing Resource Center National Energy Research Supercomputing Center

Physics Division

Work supported by U.S. Department of Energy, Office of Nuclear Physics

THEORETICAL FRAMEWORK

$$H = \sum_{i} K_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

Variational Monte Carlo: Minimize expectation value of H

$$E_T = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \ge E_0$$

$$|\Psi_T\rangle = [1 + \sum_{i < j < k} U_{ijk}] [\mathcal{S} \prod_{i < j} (1 + U_{ij})] \prod_{i < j} f_{ij} |\Phi(JM_J TM_T)\rangle$$

 U_{ij} and U_{ijk} are non-commuting 2- and 3-body correlations from v_{ij} and V_{ijk} f_{ij} are central correlations; Φ is antisymmetric $1\hbar\omega$ shell-model wave function Green's function Monte Carlo: Ψ_T propagated to imaginary time τ :

$$\Psi(\tau) = e^{-(H-E_0)\tau}\Psi_T \quad ; \quad \Psi_T = \Psi_0 + \sum \alpha_i \Psi_i$$
$$\Psi(\tau) = [\Psi_0 + \sum \alpha_i e^{-(E_i - E_0)\tau} \Psi_i] \quad ; \quad \Psi_0 = \lim_{\tau \to \infty} \Psi(\tau)$$

$$E(\tau) = \frac{\langle \Psi_T | H | \Psi(\tau) \rangle}{\langle \Psi_T | \Psi(\tau) \rangle} \ge E_0$$

MOMENTUM DISTRIBUTIONS

Probability of finding a nucleon in a nucleus with momentum k in a given spin-isospin state:

$$\rho_{\sigma\tau}(\mathbf{k}) = \int d\mathbf{r}_1' d\mathbf{r}_1 d\mathbf{r}_2 \cdots d\mathbf{r}_A \,\psi_A^{\dagger}(\mathbf{r}_1', \mathbf{r}_2, \dots, \mathbf{r}_A) \, e^{-i\mathbf{k}\cdot(\mathbf{r}_1 - \mathbf{r}_1')} \, P_{\sigma\tau} \,\psi_A(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_A)$$

with normalization

$$\int \frac{d\mathbf{k}}{(2\pi)^3} \,\rho_{\sigma\tau}(\mathbf{k}) = N_{\sigma\tau}$$

For two nucleons with relative momentum q and total momentum Q in pair state S, T:

$$\rho_{ST}(\mathbf{q},\mathbf{Q}) = \int d\mathbf{r}_1' d\mathbf{r}_2' d\mathbf{r}_1 d\mathbf{r}_2 \cdots d\mathbf{r}_A \,\psi_A^{\dagger}(\mathbf{r}_1',\mathbf{r}_2',\ldots,\mathbf{r}_A)$$

$$e^{-i\mathbf{q}\cdot(\mathbf{r}_{12}-\mathbf{r}'_{12})} e^{-i\mathbf{Q}\cdot(\mathbf{R}_{12}-\mathbf{R}'_{12})} P_{ST} \psi_A(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_A)$$

with normalization

$$\int \frac{d\mathbf{q}}{(2\pi)^3} \frac{d\mathbf{Q}}{(2\pi)^3} \,\rho_{ST}(\mathbf{q},\mathbf{Q}) = N_{ST}$$

Δ components

Argonne v_{28} potential (1984) and unpublished v_{28q} have explicit Δ degrees of freedom.

Elastic scattering data does not constrain the Δ content; deuteron $P_{\Delta} = 0.5\%$ or 0.25%.

CONCLUSIONS

We have the capability to calculate a variety of 1- and 2-nucleon momentum distributions in light $A \leq 10$ nuclei which we believe are fairly accurate.

We can make some crude predictions for Δ momentum distributions, but these are much more model-dependent.