C. CIOFI degli ATTI

NN CORRELATIONS :
 $\left(e, e^{\prime} p\right)$ EXPERIMENTS AND THEORETICAL SPECTRAL FUNCTIONS

The short range structure of nuclei at 12 GeV
JLAB WORKSHOP
October 25-26, 2007

New dedicated experiments:

- high Q^{2}
- back-to-back detected nucleons
- $E_{m} \simeq p_{m}^{2} / 2 m_{N}$

if FSI etc. could be disregarded:

in this case the central quantity is the spectral function

$$
\begin{gathered}
P(k, E)=P_{0}(k, E)+P_{1}(k, E) \\
P(k, E)=\sum_{f}\left|<\Psi_{A-1}^{f}\right| a_{k}\left|\Psi_{A}^{0}>\right|^{2} \delta\left(E-\left(E_{A-1}^{f}-E_{A}^{0}\right)\right) \\
P_{0}(k, E)=\sum_{f<F}\left|<\Psi_{A-1}^{f}\right| a_{k}\left|\Psi_{A}^{0}>\right|^{2} \delta\left(E-\left(E_{A-1}^{f}-E_{A}^{0}\right)\right) \\
P_{1}(k, E)=\sum_{f>F}\left|<\Psi_{A-1}^{f}\right| a_{k}\left|\Psi_{A}^{0}>\right|^{2} \delta\left(E-\left(E_{A-1}^{f}-E_{A}^{0}\right)\right) \\
P(k, E)=-\frac{1}{\pi} \operatorname{Im} \mathcal{G}(k, E)=\frac{1}{\pi} \frac{W(k, E)}{\left(-E-k^{2} / 2 m-V(k, E)\right)^{2}+W(k, E)^{2}} \\
\mathcal{G}(k, E)=\frac{1}{-E-k^{2} / 2 m-V(k, E)-\imath W(k, E)} \\
\mathrm{DO} \mathrm{WE} \mathrm{KNOW} \mathrm{IT?}
\end{gathered}
$$

Spectral Function of $A=3$ and $A=\infty$

Spectral Functions calculated from many-body theory exhibit a common feature:

$$
\text { at high } E(>40 \mathrm{MeV}) \text { and } k\left(>1.5-2.0 \mathrm{fm}^{-1}\right)
$$

$$
P(k, E) \text { has maxima at } E=\frac{(A-2) k^{2}}{2(A-1) m_{N}}
$$

explanation in terms of a simple and physically sound model: two-nucleon correlations (Frankfurt \& Strikman 1988)

Two Nucleon Correlation Model

Excitation energy of (A-1)

$$
E_{A-1}^{*}+\frac{k^{2}}{2 M_{A-1}}=\frac{k^{2}}{2 m_{N}} \Rightarrow E_{A-1}^{*}=\frac{k^{2}}{2 m_{N}}-\frac{k^{2}}{2 M_{A-1}} \approx \frac{A-2}{A-1} \frac{k^{2}}{2 m_{N}}
$$

$$
P\left(\mathbf{k}, E_{A-1}^{*}\right)=n(\mathbf{k}) \delta\left(E_{A-1}^{*}-\frac{A-2}{A-1} \frac{k^{2}}{2 m_{N}}\right)
$$

Improved Two Nucleon Correlation Model

C. Ciofi, S. Simula, L.L. Frankfurt and M.I. Strikman, Phys. Rev. C44, R1(1991)
C. Ciofi and S. Simula, Phys.Rev C53, 1689(1996)

$$
\begin{aligned}
& P\left(\mathbf{k}, E_{A-1}^{*}\right)=\int d \mathbf{k}_{C M} n_{r e l}\left(\left.\mathbf{k}_{1}-\frac{\mathbf{k}_{C M}}{2} \right\rvert\,\right) n_{C M}\left(\left|\mathbf{k}_{C M}\right|\right) \times \\
& \times \delta\left(E_{A-1}^{*}-\frac{A-2}{2 m_{N}(A-1)}\left[\mathbf{k}_{1}-\frac{A-1}{A-2} \mathbf{k}_{C M}\right]^{2}\right)
\end{aligned}
$$

Spectral Function (TNC Model)

$$
\begin{gathered}
P\left(\mathbf{k}, E_{m}\right)=\sum_{f}\left|T_{f_{i}}\right|^{2} \delta\left(E_{m}-E_{t h}-\frac{A-2}{2 m(A-1)}\left(\mathbf{k}+\frac{A-1}{A-2} \mathbf{k}_{A-2}\right)^{2}\right) \\
T_{f_{i}}=\frac{1}{(2 \pi)^{3 / 2}} \int d \mathbf{r}_{1} \exp \left(i \mathbf{p}_{m} \cdot \mathbf{r}_{1}\right) I_{f i}\left(\mathbf{r}_{1}\right), \\
I_{f i}\left(\mathbf{r}_{1}\right)=\int d \tau_{A-1} \Psi_{A-1}^{f *}\left(\mathbf{r}_{2}, \cdots, \mathbf{r}_{A}\right) \Psi_{A}^{i}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{A}\right) \\
\Psi_{A}^{i}=\sum_{k, l} \phi_{k}(12) \Psi_{l}(3, \cdots A) \approx \sum_{k} \phi_{k}(12) \Psi_{A-2}^{(0)}(3, \cdots A) \\
\approx \sum_{m, n} \chi_{m}(\mathbf{R}) \varphi_{n}(\mathbf{r}) \Psi_{A-2}^{(0)}(3, \cdots A), \square @ \mathbb{Q}\left(\frac{\mathbf{r}_{1}+\mathbf{r}_{2}}{2}, \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}\right. \\
\approx \chi_{0 S}(\mathbf{R}) \sum_{n} \varphi_{n}(\mathbf{r}) \Psi_{A-2}^{(0)}(3, \cdots A)=\chi_{0,}(\mathbf{R}) \Phi(\mathbf{r}) \Psi_{A-2}^{(0)}(3, \cdots A) \\
\Psi_{A-1}^{f}(2, \cdots, A)=\frac{1}{(2 \pi)^{3 / 2}} \exp \left(i \mathbf{k}_{2} \cdot \mathbf{r}_{2}\right) \Psi_{A-2}^{(f)}(3, \cdots A)
\end{gathered}
$$

MANY BODY vs CONVOLUTION MODEL

$$
\begin{aligned}
& W(k, E)=\frac{1}{2} \sum_{h h^{\prime} p} \operatorname{Im} \frac{|<k p| G\left(e(h)+e\left(h^{\prime}\right)\right)\left|h h^{\prime}>_{a}\right|^{2}}{E-e(p)+e(h)+e\left(h^{\prime}\right)-\imath \eta} \\
&=\frac{\pi}{2} \sum_{h h^{\prime} p}|<k p| G\left(e(h)+e\left(h^{\prime}\right)\right)\left|h h^{\prime}>_{a}\right|^{2} \delta\left(-E+e(p)-e(h)-e\left(h^{\prime}\right)\right) \\
& \begin{aligned}
P(k, E) & =\frac{1}{2} \sum_{\mathbf{q}, \mathbf{P}}\left|\xi\left(\mathbf{k}-\frac{1}{2} \mathbf{P}, \mathbf{q}\right)\right|^{2} \theta\left(k_{F}-\left|\mathbf{q}+\frac{1}{2} \mathbf{P}\right|\right) \theta\left(k_{F}-\left|\mathbf{q}-\frac{1}{2} \mathbf{P}\right|\right) \\
& \times \theta\left(|\mathbf{P}-\mathbf{k}|-k_{F}\right) \delta\left(E-e(p)+e(h)+e\left(h^{\prime}\right)\right) \\
P(k, E) & =\frac{m \rho^{2}}{32 k} \int_{\left|k-k_{0}\right|}^{k+k_{0}} d P P r_{c m}^{F G}(P) n_{r e l}\left(\sqrt{\frac{1}{2} k^{2}-\frac{1}{4} P^{2}+\frac{1}{2} k_{0}^{2}}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Points are numerical calculation of the } \\
& \text { spectral functions of } 3 \text { He and nuclear } \\
& \text { matter - curves two nucleon } \\
& \text { approximation from CSFS 91 }
\end{aligned}
$$

CdA, Simula , 1996

BBG Theory leads explicitly to the convolution formula Baldo,Borromeo,CdA 1996

Fig. 4. Cumpurison bctwcen the SF obbained foom the convolution model (dashed lincs) and the one obtained from BBG theory (diamonds) for different values of the nuclon momention k.

Factorization of $n_{N N}\left(\boldsymbol{k}_{r e l}, \boldsymbol{K}_{C M}\right)$

Many Body:
Alvioli, CdA, Morita
arXiv:0709. 3989
$n_{N N}\left(\boldsymbol{k}_{r e l}, \boldsymbol{K}_{C M}\right)$
CS: Ciofi, Simula
PRC53, (1996)
$C_{A} n_{2}{ }_{H}\left(k_{r e l}\right) n_{C S}\left(K_{C M}\right)$

- $n_{N N}\left(\boldsymbol{k}_{r e l}, \boldsymbol{K}_{C M}\right)$ factorization in the Two-Nucleon correlation model Spectral Function implies that $n_{N N}\left(k_{r e l}, K_{C M}, \theta\right) \propto$ $n_{N N}\left(k_{r e l}, K_{C M}^{\prime}, \theta\right)$

- high $k_{\text {rel }}$ and low $K_{C M}$ factorization validated by many-body calculations

Check of the "Factorization" 1

Jlab, October07

Check of the "Factorization" 2

$y \rightarrow$ small $:$ Wave function is not factorized!

Momentum distributions and occupation numbers: Many Body vs 2NC
$\rho_{O}\left(r, r^{\prime}\right)$

$$
\Delta \rho^{H}\left(r, r^{\prime}\right)
$$

$$
\Delta \rho^{S}\left(r, r^{\prime}\right)
$$

Δn^{S} reduces the SM occupation; Δn^{H} mostly generates correlations (populates states above the Fermi sea)
M. Alvioli, CdA, H. Morita , to appear

$$
n_{O}(\boldsymbol{k})=n_{S M}(\boldsymbol{k})+\Delta n_{S}(\boldsymbol{k})+C_{A} n_{S M}^{H}(\boldsymbol{k})
$$

$$
n_{1}(\boldsymbol{k})=\Delta n_{H}(\boldsymbol{k})-C_{A} n_{S M}^{H}(\boldsymbol{k})
$$

$$
S_{O}=\int d \boldsymbol{k} n_{O}(\boldsymbol{k})
$$

A	S_{o}	S_{1}
3	0.65	0.35
16	0.8	0.2

$$
S_{1}=\int d \boldsymbol{k} n_{1}(\boldsymbol{k})
$$

no "external" quantities in the convolution model

Spectral Function of ${ }^{12} \mathrm{C}$

C. Ciofi degli Atti

Jlab, October07

${ }^{12} \mathrm{C}$ Spectral function at JLab Kinematics(E01-E015)

How much is the effect of the FSI on the continuum part?

Tentative Summary

- the (parameter free) convolution model is physically sound and theoretically validated by many body calculations. Any many-body approach to the spectral function should lead for $E \simeq k^{2} / 2 m_{N}$ to a convolution integral;
- representing an effective three body problem, the model can be readily extended to accommodate missing effects: relativistic effects (LC variables), three-nucleon correlations, FSI effects, isospin dependence. Work is in progress;
- isospin dependence is governed by the isospin dependence of $n_{\text {rel }}$ which has been recently calculated (Schiavilla et al, Perugia (Alvioli's talk));
- a careful comparison with other models of SF for finite nuclei (e.g. LDA) is order; at $E \simeq k^{2} / 2 m_{N}$ all of them should predict the convolution model.

