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k > 250 MeV/c
15% of nucleons
60% of KE

k < 250 MeV/c
85% of nucleons
40% of KE

Mean field contributions: k < kF

Short Range Correlations (SRCs)

Well understood

High momentum tails: k > kF Calculable for few-body nuclei, nuclear matter.

Dominated by two-nucleon short range correlations.

Isolate short range interaction (and

SRCs) by probing at high Pm (x>1)

Poorly understood part of nuclear structure

Significant fraction of nucleons have k > kF

Uncertainty in short-range interaction leads to
  uncertainty at large momenta (>400-600 MeV/c),
  even for the Deuteron

60% of the K.E.

15% of nucleons

k > 250 MeV/c

40% of the K.E.

85% of nucleons

k < 250 MeV/c
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V(r)

~1 fm

0

N-N potential

Calculation of
proton momentum
distribution in 4He

Wiringa, PRC 43

1585 (1991)

High momentum tails: k > kF 
Calculable for few-body nuclei, 
nuclear matter. 
Dominated by two-nucleon 
short range correlations

Short Range Correlations (SRCs)

Isolate short range interactions (and 
SRC’s) by probing at high pm: (e,e’p) 
and (e,e’)

Poorly understood part of 
nuclear structure

Sign. fraction have k > kF

Uncertainty in SR interaction leads to 
uncertainty at k>>, even for simplest 
systems

Deuteron

Carbon

NM

Mean field contributions: k < kF

Well understood, Spectroscopic Factors ≈ 0.65 Similar shapes for k > kf



SRC provide unique information on Medium Modifications generated 
by high density configurations

> 5 times nuclear 
matter densities 

0.6 fm separation 

1.7 fm separation 

Nucleon separation is limited 
by the short range 
repulsive core 

High Density Configurations

nucleon charge radius ~ 0.86 fm

Ave. separation ~1.7 fm in heavy nuclei

Nucleons are already closely packed in nuclei

Nucleon separation is limited by

the short range repulsive core

Average
nuclear
density

1.7 fm separation

Potential between

two nucleons

r [fm]

V(r)

~1 fm

0

1.2 fm separation

3x nuclear
matter

0.6 fm separation

>5 times
nuclear matter
densities

Even for a 1 fm separation, the
central density is ~4x nuclear matter.

Comparable to neutron star densities!

High enough to modify nucleon structure?

Comparable to neutron star densities! 

High enough to modify nucleon structure?

Gold nucleus

R = 1.2A1/3

Volume =
4

3
πR

3
! 1400fm

3

A single nucleon, r = 1 fm, has a volume of 4.2 
fm3:==>197 times 4.2 fm3 ≈ 830 fm3

Even for a 1 fm separation, 
the central density is about 
4x nuclear matter

60% of the volume is occupied - very closely packed!



Low energy loss side of qe peak

Shaded domain where scattering is restricted solely 
to correlations. Czyz and Gottfried (1963)

Correlations and Inclusive Electron Scattering

ωc =
(k + q)2

2m
+

q2

2m
ω′

c =
q2

2m
−

qkf
2m

Czyz and Gottfried proposed to replace the Fermi n(k) 
with that of an actual nucleus. (a) hard core gas; (b) 
finite system of noninteracting fermions; (c) actual large 
nucleus. 
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k < kF: single-particle contribution dominates
k ≈ kF: SRC already dominates for E > 50 MeV
k > kF: single-particle negligible

IPSM

≈ kF

CBF

Search for SRC at high k and E in (e,e’p) and (e,e’) experiments
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Inclusive Electron Scattering from Nuclei

Two distinct processes Quasielastic from the nucleons in the nucleus

Inelastic and DIS from the quark 
constituents of the nucleon.

!e
!e′

MA M∗
A−1, −!k

!k
!k + !q, W2 = M2

Inclusive final state means no 
separation of two dominant processes

x > 1 x < 1

x  = Q2/(2mυ)

υ,ω=energy loss



The two processes share the same initial state
d2σ
dΩdν

∝
∫
d#k

∫
dEσei Si(k, E)︸#︸

Spectral function

δ()QES in IA

d2σ
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Spectral function

DIS

However they have very different Q2 dependencies
σei ∝ elastic (form factor)2 W1,2 scale with ln Q2 dependence

n(k) =
∫
dE S(k, E)

There is a rich, if complicated, blend of 
nuclear and fundamental QCD 
interactions available for study from 
these types of experiments.

pX

k1
k2

q

PA
PA - 1

p

Exploit this dissimilar Q2 dependence

The limits on the integrals 
are determined by the 
kinematics. Specific (x, Q2) 
select specific pieces of 
the spectral function. 

dσ2

dΩe′dEe′
=

α2

Q4

E′e
Ee

LµνW
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• The shape of the low ν cross section is determined by the momentum 
distribution of the nucleons.
• As Q2 >> inelastic scattering from the nucleons begins to dominate
• We can use x and Q2 as knobs to dial the relative contribution of QES 
and DIS.

The quasielastic peak 
(QE) is broadened by 
the Fermi-motion of the 
struck nucleon.

The quasielastic 
contribution dominates 
the cross section at low 
energy loss (ν) even at 
moderate to high Q2.

3He SLAC (1979)



A dependence: higher internal momenta 
broadens the peak



Figure 11: FC
2 (x) at Q2 = 5GeV 2. Free nucleon response folded with n(k). HF

(dot-dashed line) enhanced by correlations (solid line). L.Conci and M. Traini,

UTF 261/92.

XEMPT Meeting Donal Day

CdA, Day, Liuti, PRC 46 (1045) 1992

L. Conci and M. Traini, UTF 261/92. 

Correlations are accessible in QES 
and DIS at large x (small energy 
loss)

Rozynek & Birse, PRC, 38  (2201) 1988

Q2 = 50

ω (GeV)

Q2 = 2



Final State Interactions

658 H. Meyer-Hajduk et al. / Inclusive electron scairering 
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Fig. 11. Differential cross section of inclusive electron scattering from ‘He as function of the energy loss 

0 of the electron. Results of fig. 7 are repeated. Compared are theoretical predictions based on the two 

different models of sect. 3.2.1 and 3.2.2 for nucleonic structure functions in the region of pion production. 

The solid curve refers to the meson-theoretic model of sect. 3.2.2, the dashed curve to the phenomenologi- 

cal model of sect. 3.2.1. In contrast to the results of fig. 7 the nucleonic form factors are taken from ref. ‘“I. 
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D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. (18) and (19) describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of
hadrons other than protons and neutrons one has to re-
place wN

1 and wN
2 given by Eqs. (23) and (24) with the

inelastic nucleon structure functions extracted from the
analysis of electron-proton and electron-deuteron scat-
tering data (Bodek and Ritchie, 1981). The resulting IA
cross section can be written as in Eq. (6), the two nuclear
structure functions W1 and W2 being given by (Benhar
et al., 1997)

W1(|q|, ω) =
∫

d3k dE

{
ZSp(k, E)

(
m

Ek

)

×
[
wp

1(|q|, ω̃) +
1
2

wp
2(|q|, ω̃)

m2

|k × q|2

|q|2

]
+ . . .

}
(35)

and
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∫
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q2
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q2
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+
wp
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(
q4
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(
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Ekω̃ − k · q
q̃2

)2

− 1
2

q2

|q|2
|k × q|2
|q|2

)]
+ . . .

}
, (36)

where the dots denote the neutron contributions.
Eqs. (35) and (36) are obtained using the prescription
of Eq. (26) (de Forest, 1983) to preserve gauge invari-
ance. Note that the standard expression (Atwood and
West, 1973), widely used in studies of nuclear effects in
deep inelastic scattering, can be recovered from the above
equations replacing ω̃ → ω and Ek → MA − ER.

As an example, Fig. 5 shows the quasi-elastic (dashed
line) and total (solid line) inclusive cross sections of uni-
form nuclear matter, at beam energy Ee = 3.595 GeV
and scattering angle θ = 30◦, evaluated using a phe-
nomenological fit of the nucleon structure functions wN

1
and wN

2 (Bodek and Ritchie, 1981) and the above men-
tioned spectral function (Benhar et al., 1989).

The data show that the transition from the quasi elas-
tic to the inelastic regime, including resonant and nonres-
onant pion production as well as deep inelastic processes,
is a smooth one, thus suggesting the possibility of a uni-
fied representation.

The approach based on NMBT and the IA yields a
good description of the measured cross section at energy
loss ω >∼ 1 GeV, corresponding to x <∼ 1.3 (note that in
the kinematics of Fig. 5 the top od the quasi free bump
corresponds to ω = ωQE ∼ 1.4 GeV). On the other hand,
the data at lower energy loss are largely underestimated.

FIG. 5 Inclusive electron scattering cross section at Ee =
3.595GeV and θ = 30◦. The data points represent the extrap-
olated nuclear matter cross section (Day et al., 1989) while
the solid and dashed lines show the results of IA calculations
carried out with and without inclusion of the inelastic contri-
butions, respectively (Benhar et al., 1991).

The failure of IA calculations to explain the measured
cross sections at ω % ωQE has long been recognized, and
confirmed by a number of theoretical studies, carried out
using highly realistic spectral functions (Benhar et al.,
1989; Ciofi degli Atti et al., 1992; Meier-Hajduk et al.,
1983), see e.g. fig.6. It has to be ascribed to FSI between
the struck nucleon and the spectator particles, that move
strength from the region of the quasi free bump to the
low ω tail. This mechanism will be analyzed in the next
Section.

FIG. 6 Inclusive electron scattering cross section at Ee =
7.26GeV and θ = 8◦ for 3He. The data points are from (Day
et al., 1979), the solid line shows the IA calculation based on
the 3He spectral function (Meier-Hajduk et al., 1983). Ap-
proximate values for the scaling variable x are indicated on
top.

In conclusion, NMBT and the IA provide a consistent
and computationally viable approach, yielding a quanti-
tative description of the data in both the quasi elastic
and inelastic regime, with the only exception of the re-
gion of very low energy loss. Theoretical studies in which

In (e,e’) the failure of IA calculations to explain dσ at small energy loss

Meier-Hadjuk NPA 395, 332 1983

In (e,e’p) flux of outgoing protons strongly suppressed: 20-40% in C, 50-70% in Au

FSI has two effects: energy  shift and a redistribution of strength from 
QEP to the tails, just where correlation effects contribute.
Benhar et al uses approach based on NMBT and Correlated Glauber Approximation

Ciofi degli Atti and Simula use GRS 1/q expansion and model spectral function
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distribution function g(ri, rj) results in a strong quench-
ing of the tails and an enhancement of the peak of Fq,
leading to a significant suppression of FSI effects.

The effect of FSI is illustrated in Fig. 12, showing
the inclusive cross section of uniform nuclear matter
at a beam energy Ee = 3.595 GeV and a scattering
angle θ = 30◦, corresponding to momentum transfer
|q| ∼ 2 GeV/c. Comparison between theory and the

FIG. 12 Inclusive electron scattering cross section at Ee =
3.595 GeV and θ = 30◦. The data points represent the ex-
trapolated nuclear matter cross section (Day et al., 1989),
while the solid and dashed lines show the results obtained
including FSI effects, with and without taking into account
correlation effects. For comparison, the IA cross section is
also shown by the dot-dash line (Benhar et al., 1991).

data in Fig. 12 clearly show that at ω < 1.1 GeV, where
quasielastic scattering dominates6 and which correspond
to x > 1, x = Q2/2mω being the Bjorken scaling vari-
able, FSI effects are large and must be taken into account.
The results obtained within the CGA are in good agree-
ment with the data in the region ω > 800 MeV, i.e. for
x <

∼ 1.8, while at higher x the experimental cross sec-
tion is largely overestimated. The dashed line has been
obtained neglecting the effect of dynamical correlations
on the distribution function g(ri, rj). Comparison be-
tween the solid and dashed lines provides a measure of
the quenching of FSI due to NN correlations.

The ability of the CGA to provide a quantitative un-
derstanding of FSI in the region x < 2 is further illus-
trated in Fig. 13, showing the cross section ratio

R =
dσ(e +56Fe → e′ + X)

dσ(e +2H → e′ + X)

2

56
, (51)

at Ee = 3.595 GeV and θ = 25◦. Note that R of Eq. (51)
is only defined up to y ∼–700 MeV/c, corresponding to

6 In the kinematics of Fig. 12, inelastic processes only contribute
∼ 5% of the inclusive cross section at ω = 1.1 GeV, and become
negligibly small at lower ω.

FIG. 13 Ratios of inclusive cross sections of iron and deu-
terium at Ee = 3.595 GeV and θ = 25◦. Solid line: full cal-
culation; dashed line: IA calculation, neglecting FSI in both
iron and deuteron; dot-dash line: calculation carried out using
the approximate spectral function of Eq. (37) (Benhar et al.,
1995b).

x = 2, the kinematical limit for inclusive scattering off
an A=2 target (for the definition of y see Sec. VI).

The solid line in Fig. 13 corresponds to the full CGA
calculation, providing a good description of the experi-
ments over the whole range of y, whereas the IA results,
represented by the dashed line, lie well below the data
at y < −200 MeV/c (x > 1.5). For comparison, Fig. 13
also shows the results obtained using the approximate
spectral function of Eq. (37), which turn out to largely
overestimate the data at negative y.

Notwithstanding its success in describing the existing
inclusive data at large negative y, the CGA appears to
consistently overestimate FSI effects at larger −y. As the
validity of the eikonal approximation is well established
in the kinematical region apposite to scattering of few
GeV electrons, possible corrections to the CGA scheme
are likely to be ascribable either to modifications of the
NN scattering amplitude or to the inadequacy of the ap-
proximations leading to the convolution expression for
the cross section.

It has been pointed out (Benhar et al., 1991) that the
use of the free-space amplitude to describe NN scattering
in the nuclear medium may be questionable. Pauli block-
ing and dispersive corrections are known to be important
at moderate energies (Pandharipande and Pieper, 1992).
However, their effects on the calculated inclusive cross
section have been found to be small in the kinematical
region corresponding to |q| >

∼ 2 GeV/c, and decrease as
|q| increases (Benhar et al., 1995a). Corrections to the
amplitude associated with its extrapolation to off-shell
energies are also expected to be small at |q| > 2 GeV/c
(Benhar and Liuti, 1996).

Modifications of the free-space NN cross section may
also originate from the internal structure of the nucleon.

FSI, correlation effects

FSI

IA

NM at 3.595, 30o

4He at 3.595, 30o

Final State 
Interactions in CGA

Benhar et al. PRC 44, 2328

Benhar, Pandharipande, PRC 47, 2218

Benhar et al. PLB 3443, 47

CGA over estimates the FSI

Modifications of the free 
space NN scattering 
amplitude in the medium?



σ(x, Q2) =
A∑

j=1

A
1
j
aj(A)σj(x, Q2)

=
A
2
a2(A)σ2(x, Q2) +

A
3
a3(A)σ3(x, Q2) +

...

In the region where correlations 
should dominate, large x,

aj(A) are proportional to finding a nucleon in a j-nucleon correlation. 
It should fall rapidly with j as nuclei are dilute.

⇒
2
A
σA(x, Q2)
σD(x, Q2)

= a2(A)

!"""#
1<x≤2

3
A

σA(x, Q2)
σA=3(x, Q2)

= a3(A)

!"""#
2<x≤3

In the ratios, off-shell effects and 
FSI largely cancel.

CS Ratios and SRC

σ2(x, Q2) = σeD(x, Q2) and σj(x, Q2) = 0 for x > j.

aj(A) is proportional
to probability of finding
a j-nucleon correlation



Ratios, SRC’s and Q2 scaling 
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FIG. 4: Cross section (A/3He) ratios at large x as measured in CLAS.

state interactions, due to the different mix of nn, np, and pp correlations in non-isoscalar nuclei.
However, there are calculations indicating that there are significant final state interactions that do
not vanish rapidly as Q2 increases, and which do not cancel in the target ratios [19] (i.e. do not come
from short range configurations that are identical in all nuclei). This calculation indicates that the
FSI (when including inelastic channels) has a very weak Q2 dependence and will persist, challenging
our interpretation of the impulse approximation analysis. In addition, it predicts that the FSI effects
will increase the x > 1.5 cross section in iron by approximately a factor of ten, and that even in the
ratio of iron to deuterium, there is a factor of five effect from these FSIs. An important portion of
the proposed measurement is the ability to test these precisions of FSIs by extracting absolute cross
sections for x > 1.5 on a variety of few-body (and heavy) nuclei over a range of Q2.

For the deuteron, which is dominated by the simple two-body breakup assumed in an impulse
approximation analysis, we can extract the nucleon momentum distribution from the inclusive data
without the complications caused by neglecting the separation energy of the full spectral function.
The momentum distribution for the deuteron as extracted from experiment E89-008 is shown in
Fig. 5 [3]. The normalization of the extracted momentum distribution is consistent with unity,
and the high momentum components are in good agreement with calculations based on modern
two-body nucleon–nucleon potentials. This sets limits on the impact of FSI, even in the region
dominated by short range correlations, indicating that the scattering is consistent with the impulse
approximation and that final state interactions much smaller than those observed in coincidence
A(e,e’p) measurements, or those predicted in some calculations. In the proposed measurements, we
will extract absolute cross sections for 2H, 3He, and 4He, not available for the CLAS results, which
will allow us to set limits on the size (and A dependence) of final state interactions.

The extension of these ratio measurements to higher Q2 will allow us to better test the x and Q2

aj(A) is proportional
to probability of finding
a j-nucleon correlation

CLAS data
Egiyan et al., PRL 96, 
082501, 2006

2
A
σA
σD

= a2(A); (1.4 < x < 2.0)

FSDS, Phys.Rev.C48:2451-2461,1993

α2N ≈20%
α3N ≈1%



http://faculty.virginia.edu/qes-archive/index.html

http://faculty.virginia.edu/qes-archive/index.html
http://faculty.virginia.edu/qes-archive/index.html


Deuteron

CLAS F2D

E02-019 not yet in archive

CLAS F2D not yet in archive



Iron (Cu) ‘EMC’ data

Carbon4He

E03-103



3He

3H
Tritium n/p = 2

Helium-3 n/p = 0.5



Calcium 40 n/p = 1

Calcium 48 n/p = 1.4



Uranium n/p = 1.6

Lead n/p = 1.54



F(y) =
σexp

(Zσ̃p + Nσ̃n)
· K

Preliminary Results (E02-019) - Deuteron

νWA
2 versus x
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νWA
2 = ν ·

σexp

σM

[
1 + 2 tan2(θ/2) ·

(
1 + ν2/Q2

1 + R

)]−1

ξ =
2x

1 +
√
1 + 4M2x2/Q2

→ x



F(y) =
σexp

(Zσ̃p + Nσ̃n)
· K

νWA
2 versus x

Preliminary Results (E02-019) - 3He
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Preliminary Results (E02-019) - 12C

F(y) =
σexp

(Zσ̃p + Nσ̃n)
· K

νWA
2 versus x

νWA
2 versus ξ

2.5 
3.3 
4.1
5.2
6.4
7.4



Deuteron F(y) 
and 
calculations 
based on NN 
potentials 

Assumption:  scattering takes place from a quasi-free 
proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to 
the momentum transfer:  y ≈ -q/2 + mν/q

F(y) =
σexp

(Zσp + Nσn)
· K

n(k) = −
1

2πy
dF(y)
dy

SRC region, nucleons with k ≈ 500 MeV/c

Pr
eli

mi
na

ry

 S(k,E=2.2MeV) = n(k)



Carbon 5.766, 32 degrees, Q2 = 5.2 (GeV/c)2

O.Benhar, NMBT and CGA for FSI

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1.8  2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6  3.8

d
!

/d
"

/d
E

’ 
(n

b
/S

r/
M

eV
)

# (GeV)

data
1
2
3
4

qe
inelastic

folded (total+fsi)
total



 0

 2

 4

 6

 8

 10

 12

 0.8  1  1.2  1.4  1.6  1.8  2

(!
A
/A

)/
(!

D
/2

)

Xbj

2.5 
3.3 
4.1 
5.2 
6.4 
7.4 

12C/2H

 0

 2

 4

 6

 8

 10

 12

 0.8  1  1.2  1.4  1.6  1.8  2

(!
A
/A

)/
(!

D
/2

)

Xbj

2.5 
3.3 
4.1 
5.2 
6.4 
7.4 

 0

 2

 4

 6

 8

 10

 12

 0.8  1  1.2  1.4  1.6  1.8  2

(!
A
/A

)/
(!

D
/2

)

Xbj

2.5 
3.3 
4.1 
5.2 
6.4 
7.4 

Cu/2H

Au/2H

Preliminary Results (E02-019)



 0

 1

 2

 3

 4

 5

 6

 1  1.5  2  2.5  3

(!
A
/A

)/
(!

H
e

3
/3

)

Xbj

2.5 
3.3 
4.1 
5.2 
6.4 
7.4 

 0

 2

 4

 6

 8

 10

 12

 1  1.5  2  2.5  3

(!
A
/A

)/
(!

H
e

3
/3

)

Xbj

2.5 
3.3 
4.1 
5.2 
6.4 
7.4 

4He/3He 12C/3He

 0

 2

 4

 6

 8

 10

 12

 14

 1  1.5  2  2.5  3

(!
A
/A

)/
(!

H
e

3
/3

)

Xbj

2.5 
3.3 
4.1 
5.2 
6.4 
7.4 

Cu/3He

 0

 5

 10

 15

 20

 1  1.5  2  2.5  3

(!
A
/A

)/
(!

H
e

3
/3

)

Xbj

2.5 
3.3 
4.1 
5.2 
6.4 
7.4 

Au/3He

Preliminary Results (E02-019)



Inclusive DIS at x > 1 at 12 GeV

• New proposal approved at JLAB PAC30

• Target ratios (and absolute cross 
sections) in quasielastic regime: map out 
2N, 3N, 4N correlations

• Measure nuclear structure functions 
(parton distributions) up to x = 1.3 - 1.4

• Extremely sensitive to non-hadronic 
configurations

• Targets include several few-body nuclei 
allowing precise test of theory.

• Extend measurements to large enough 
Q2 to fully suppress the quasielastic 
contribution

• Extract structure functions at x > 1

• Q2 ≈ 20 at x=1, Q2 ≈ 12 at x = 1.5



 Kinematic range to be explored

Black - 6 GeV, red - CLAS, blue - 11 GeV

SRC, n(k), FSI, σ

super-fast quarks,
quark distribution functions

medium modifications

HM
S

︸"
︸

SHMS︸"︸

SHM
SHM
S

︸"
︸



Finish

•Inclusive (e,e’) at large Q2 scattering and x>1 holds great 
promise 

• Considerable body of data exists

• Provides access to SRC and high momentum components 
through y-scaling, ratios of heavy to light nuclei, allows 
systematic studies of FSI

• Testing ground for EMC models of medium modification 

• DIS is does not dominate over QES at 6 GeV but should be 
at 11 GeV and at Q2 > 10 - 15  (GeV/c)2.  

• Opportunities at 6 GeV still exist


