Possibilities for studying few nucleon correlations and Δ - isobars in processes with several final state baryons.

Short-Range Structure of Nuclei at $\mathbf{1 2} \mathbf{~ G e V}$
October 26-27, 2007
Jefferson Lab, Newport News, VA USA

Eli Piasetzky

Tel Aviv University, ISRAEL

SRC in nuclei

Roadmap

Identifying Future Experiments

Looking for SRC with more than 2 nucleons:

Identifying Future Experiments

Looking for SRC with more than 2 nucleons:

The problems:

- The cross sections are small.
- $1 \mathrm{~N} \gg 2 \mathrm{~N}-\mathrm{SRC} \gg 3 \mathrm{~N}-\mathrm{SRC}$.
star geometry :

Questions

What is the signature for 3 N correlation?

What is the difference from two 2 N correlations?

What is the expected isospin structure of the 3 N ?

Identifying Future Experiments

Looking for SRC with more than 2 nucleons:

The problems:

- The cross sections are small.
- $1 \mathrm{~N} \gg 2 \mathrm{~N}-\mathrm{SRC} \gg 3 \mathrm{~N}-\mathrm{SRC}$.

The cure for 1 N background is: large $p_{\text {miss }}$ and/or large X_{B}

The cure for $2 \mathrm{~N}-\mathrm{SRC}$:

$$
X_{B}>2 \text { or }
$$

suppression of the $2 \mathrm{~N}-\mathrm{SRC}$ at $\mathrm{p}_{\text {rel }}=300-600 \mathrm{MeV} / \mathrm{c}$ for nn or pp pairs.

Identifying Future Experiments

Looking for SRC with more than 2 nucleons:

Colinear geometry:

Initial configurations

$$
\underset{\sim}{\sim}
$$

A very strong isospin dependence is expected for the 2 N part. For the 3 N ?

The 2N-SRC interaction is suppressed, opening a window of opportunity to identify 3 N correlation.

The signal of today is tomorrow's background

Identifying Future Experiments

Looking for SRC with more than 2 nucleons:

Colinear geometry

Identifying Future Experiments

Looking for non-nucleonic degrees of freedom

$$
\begin{aligned}
& \psi_{S R C}=a \psi_{N N}+b \psi_{N \Delta}+c \psi_{\Delta \Delta}+\ldots \\
& a \rightarrow 0, \quad \mathrm{~b}, \mathrm{c}, \ldots \rightarrow 1 \\
& \text { Breaking the pair will yield more backward } \Delta, \pi, \mathrm{k}
\end{aligned}
$$

The signature of a non-nucleonic SRC intermediate state is a large branching ratio to a non nucleonic final state.

Looking for non-nucleonic degrees of freedom

In coincidence with (e, e'p), as a function of the missing momentum we want to detect;
$\mathrm{p}, \mathrm{n}, \pi-, \quad \pi+\mathrm{k}$ - triple coincidence

Identifying Future Experiments

Looking for non-nucleonic degrees of freedom

$$
\begin{aligned}
& \text { "np" } \rightarrow \text { pn } \\
& \rightarrow p \Delta^{0} \rightarrow p \quad \pi \cdot p \\
& \text { "pp" } \rightarrow \text { pp } \\
& \rightarrow \mathrm{p} \Delta^{+} \rightarrow \mathrm{p} \quad \mathrm{~m}^{+} \mathrm{n} \\
& \left.\begin{array}{l}
\Delta^{0} \rightarrow \pi^{-} p \\
\Delta^{+} \rightarrow \pi^{+} n
\end{array}\right\} \quad 4 \text { fold coincidence }
\end{aligned}
$$

Expected rates 5-10\% of recoil N

Kinematics

$e+d \rightarrow e^{\prime}+p+\Delta$
$\left(q+p_{d}-p_{f}\right)^{2}=m_{\Delta}{ }^{2}$

The selected kinematics for E01-015

Increasing, energy, $\omega, N \rightarrow \Delta$?

$\mathrm{X}=1.245$

The selected kinematics

Increasing, energy and $\omega, N \rightarrow \Delta$


```
Ee= 11.00000 Eout= 9.790000 theta_e = 8.800000
Q2= 2.535372 x= 1.116600
input angle of (qe) and (qp) planes 0.0000000E+00
theta of q: -48.49650
The format of the following output is: type of the particle, momentum, angle vs q, angle vs e, azimuthal angle in lab
\(\begin{array}{lllll}\text { knock-out nucleon } 1.328000 & 13.52419 & 34.97231 & 180.0000\end{array}\)
\begin{tabular}{lllll} 
missing & 0.7737520 & 156.3361 & 107.8397 & \(0.0000000 \mathrm{E}+00\)
\end{tabular}
\begin{tabular}{lllll} 
recoil & 0.7737520 & 23.66388 & 72.16035 & 180.0000
\end{tabular}
tet between recoil and scattred proton -37.18803
pmiss in the \(q\) direction 0.7086919
```


The selected kinematics for the measurement

$\mathrm{p}_{\Delta}=640 \mathrm{MeV} / \mathrm{c}$

ces

With SHMS(e) and HMS(p) accer通---and $\Gamma=110 \mathrm{MeV}$

 acceptance multi particle detector

The Large Acceptance $^{\text {MinusForward }}$ detector
 Multi particle detection

Particle ID
Large solid angle- 4π - non symmetric gape at the forward hemisphere

Large (full) luminosity

Can operate in coincidence with small solid angle high resolution spectrometer / spectrometers

The CLAS Detector as LAMF

For the new 12 GeV clas:
The current magnet, Drift chambers, and scintillator counters are not to be used.

Need new power supplies, and electronics

Require a careful, non trivial dismount of the current detector at Hall B and non trivial setup at hall c.

Title:
Search for cumulative Delta ${ }^{0}$ (1232) and
Delta ++ (1232) isobars in neutrino
interactions with neon nuclei
Authors: Ammosov, V. V.; Asratyan, A. É.; Burtovoǐ, V. S.; Gapienko, V. A.; Gapienko, G. S.; Gorichev, P. A.; Denisov, A. G.; Zaets, V. G.; Klyukhin, V. I.; Koreshev, V. I.; Kruchinin, S. P.; Kubantsev, M. A.; Makhlyueva, I. V.;
Pitukhin, P. V.; Sirotenko, V. I.; Slobodyuk, E. A.; Usubov, Z. U.; Fedotov, A. V.; Shevchenko, V. G.; Shekelyan, V. I.
Publicati Journal of Experimental and Theoretical Physics on: Letters, Vol. 40, p. 1041
Publicati 09/1984 on Date:

