## Photoproduction of $J/\psi$ on Nuclei

E.Chudakov<sup>1</sup>

<sup>1</sup>JLab

#### SRC Workshop, Jlab 2007

E.Chudakov SRC Workshop, Jlab 2007 Photoproduction of J/ $\psi$  on Nuclei



## JLab at 12 GeV

- At 11 GeV  $\gamma p \rightarrow \eta_c(1S), J/\psi(1S), \overline{D}^0 \Lambda_c^+, \chi_{c1}(1P)...$
- Cross sections are low:
  < 10 nb for *D* and < 1 nb for charmonia</li>
- The only detectable particle seems  $J/\psi(1S)$  decays to lepton pairs

#### Physics

- Photoproduction of  $J/\psi(1S)$  close to threshold
- Interaction of  $J/\psi(1S)$  a long living particle with matter

Can we use  $J/\psi(1S)$  as a probe for the nucleon/nucleus?



## $J/\psi$ photoproduction at 10 GeV: Scales



- No coherent production on heavy nucleus:  $\ell_{coh} \ll R_A$
- No shadowing effects:  $\ell_{coh}, \ell_F < R_A$
- VMD not applicable:  $\ell_{coh} < 1 \text{ fm}$





Partonic soft mechanism Frankfurt..2002..

- Well tested at high energies
- 10 GeV: gluons  $x_1 \neq x_2 \sim 1$  $|t_{min}| > 0.4$  GeV/c
- **2-gluon formfactor:**  $\frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto (1 t/1.0 \text{GeV}^2)^{-4}$



- Hard scattering mechanism Brodsky.., 2001
  - 10 GeV: Quark counting rules
  - 2-gluon exchange  $\propto (1 x)^2$
  - 3-gluon exchange  $\propto (1-x)^0$

#### Unique probe of small-size gluon configurations in proton





Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

 Brodsky 2001: 3-gluon exchange alone does not fit the data





Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

#### Subthreshold experiment E-03-008

No J/ $\psi$  observed Spectral functions  $\otimes \sigma$  not large



Photoproduction on nucleons

• Measure  $\frac{d\sigma}{dt}(E)$  for  $\gamma + p \rightarrow J/\psi + p$ close to threshold, at  $E_{\gamma} \sim 8.5 - 11$  GeV Low energy  $\Rightarrow$  sensitive to high-*x* gluons in the nucleon



## $\psi$ N Interaction: Physics

- Small size color dipole r<sub>⊥</sub> ~ 1/(α<sub>s</sub>·m<sub>c</sub>) = 0.3 fm interaction ∝ color dipole moment ∝ r<sub>cc̄</sub> (small)
   ⇔ color transparency, σ<sup>ψN</sup><sub>tot</sub> ≪σ<sup>πN</sup><sub>tot</sub> ≈30 mb
- Low energy: attractive potential (Luke,Manohar,Savage,1992) similar to Van der Waals, *E<sub>binding</sub>* ~ 8 *MeV*

#### • Absorption: breakup to $\overline{DD}$ , $\psi + N \rightarrow \Lambda_c^+ \overline{D}$



## $\psi$ N Interaction: Signature for QGP



• JLab experiment - measure  $\sigma_{\rm abs}^{\psi N}$  at lower energy  $\sqrt{s} \sim$  5 GeV, in different conditions



# $\psi$ N Interaction: $\sigma^{\psi N}$ Theoretical Calculations

| Various models:     | VMD, exchange meson currents, etc. |                  |                        |  |  |  |  |
|---------------------|------------------------------------|------------------|------------------------|--|--|--|--|
| authors             | model                              | $\sqrt{s}$ , GeV | $\sigma^{\psi N}$ , mb |  |  |  |  |
| Brodsky,Miller,1997 | Van-der-Waals potential            | small            | 7                      |  |  |  |  |
| Kopeliovich,1994    | GVMD, wave functions               | 10–400           | 3–10                   |  |  |  |  |
| Gerland, 1998       | VMD, data for VM                   | >7               | 3.6                    |  |  |  |  |
| Sibirtsev, 2001     | boson exchange                     | >4               | 2.2                    |  |  |  |  |
|                     | Lattice                            |                  |                        |  |  |  |  |





## $\psi$ N Interaction: Experimental Access

 Calculated from photoproduction on nucleons using VMD/GVMD

 $\gamma N$  >20 GeV  $\sigma_{tot}^{\psi N}$ ~ 2.8 - 4.1 mb model dependent

2 Nuclear absorption: from A-dependence, Glauber model

 $\gamma \textit{\textbf{A}} \qquad 20 \; \text{GeV} \quad \sigma_{\rm abs}^{\psi\textit{N}} {=} 3.5 \pm 0.9 \; \text{mb} \quad \begin{array}{c} \text{clean interpretation} \\ \text{poor accuracy} \end{array}$ 

$$pA > 100 \text{ GeV}$$
  $\sigma_{abs}^{\psi N} = 4.2 \pm 0.4 \text{ mb}$  not  $\psi N$ :  
 $\ell_{coh}, \ell_F \gg R_A$   
contamination  $\chi_c, \psi N$ 

We use arguments from Farrar et al., 1990, Kharzeev et al, 2007

E.Chudakov

SRC Workshop, Jlab 2007

Photoproduction of  $J/\psi$  on Nuclei



# $\psi$ N Interaction: Experiment at SLAC 1977

- The cleanest method used so far:  $\ell_{coh}, \ell_F < R_A$
- Large experimental uncertainties



- 20 GeV  $e^-$  on Be and Ta targets
- Detecting only  $\mu^-$ , through iron
- The background was calculated (decays, Bethe-Heitler)
- Nuclear coherence not measured

 $\sigma(Be)/\sigma(Ta) = 1.21 \pm 0.7$  $\Rightarrow \sigma_{\psi N} = 3.5 \pm 0.8 \pm 0.6 \text{ mb}$ 

Authors: syst. errors might be larger

• JLab: we can do a much more accurate experiment!

E.Chudakov

SRC Workshop, Jlab 2007

Photoproduction of  $J/\psi$  on Nuclei



#### Photoproduction on Nuclei

Measure the A-dependence of σ(γ + A → J/ψ + X), extract σ<sup>ψN</sup><sub>abs</sub> at √s ~ 5 GeV Much improved accuracy and a cleaner interpretation.



## Program at JLab

PR12-07-106 for Hall C: conditionally approved. Objectives:

- Accurate measurement of J/ $\psi$ -nucleon cross-section at  $\sqrt{s} = 5 \text{ GeV}$ 
  - Test theoretical ideas (color dipole model, Van-der-Waals force)
  - Benchmark for future calculations
  - Interest for heavy ion physics.
- 2 Measurement of  $J/\psi$  photoproduction cross section  $\frac{d\sigma}{dt}(E_{\gamma})$  at  $E_{\gamma} \sim 8.8 11$  GeV
  - Input for (1).
  - Probes large-x gluon GPD / small-size gluon configurations in proton.



# $\psi$ N Interaction: Proposed Experiment

- Measure the A-dependence of  $\gamma A \rightarrow J/\psi X$ , extract  $\sigma_{abs}^{\psi N}$  compared with SLAC 1977:
  - low background for  $J/\psi$
  - no coherent production
  - smaller effects from ℓ<sub>coh</sub>,ℓ<sub>F</sub>
  - several targets used
  - reconstructed kinematics of  $J/\psi$
  - steeper σ(E<sub>γ</sub>) dependence ⇒ stronger effect from Fermi motion (need σ(E<sub>γ</sub>) to make correction)
- 2 Measure  $\frac{d\sigma}{dt}(E)$  for  $\gamma \mathbf{p} \rightarrow \mathbf{J}/\psi \mathbf{p}$ 
  - Provide Fermi-motion correction for the A-dependence
  - Measurement in a new energy range



#### **Experiment: Setup**

• Use decays to  $e^+e^-(6\%), \mu^+\mu^-(6\%)$  to identify J/ $\psi$  mass

Standard Hall C equipment

- High rate at various targets
- Low background: < 2%, scaled from Cornell, SLAC
- Reconstruction of  $E_{\gamma}$ , identification of  $\gamma + p \rightarrow J/\psi + p$

#### Hall C Spectrometers

- HMS:  $e^-$ ,  $\mu^-$  at  $\theta > 20^\circ$
- SHMS: *e*<sup>+</sup>, μ<sup>+</sup> at θ < 20°</li>
- e<sup>+</sup>, e- Gas Cher., Shower
- $\mu^+, \mu^-$  Gas Cher.

#### Beam and target

- Bremsstrahlung by 50  $\mu$ A beam
- 6 targets *A* = 9 197, 10% r.l. thick
- Each target: 3 plates  $\sim 5 \text{ cm}$  apart
- 20 cm LH<sub>2</sub> with a 7% radiator
- 20 cm LD<sub>2</sub> with a 7% radiator



# Experiment: $\gamma A$ – kinematics optimization

- $\frac{d\sigma}{dt} = C(E_{\gamma}) \cdot e^{b \cdot t}$ , 2–gluon exchange, fit to data
- t-slope b varied in 1.1-3.0 (GeV/c)<sup>-2</sup> range
- Decay distribution  $(1 + \cos^2 \theta_{CM})$
- Fermi motion spectral functions for C, Fe and Au used
- Beam energy 11 GeV

| Acceptance optimized for $\gamma A$ |     |            |      |          |          |  |  |  |  |
|-------------------------------------|-----|------------|------|----------|----------|--|--|--|--|
| [                                   | set | ŀ          | HMS  | S        | HMS      |  |  |  |  |
|                                     |     | θ P, GeV/c |      | $\theta$ | P, GeV/c |  |  |  |  |
|                                     | 1   | 21.0°      | 4.20 | 15.0°    | 5.80     |  |  |  |  |



## Experiment: Rates on Nuclear Targets

- Acceptance  $\epsilon \approx 0.03\%$
- Internal Bremsstrahlung 1.6%
- No nuclear absorption is assumed for the moment

|                | <sup>1</sup> H | <sup>2</sup> H | Be   | С    | Al   | Cu   | Ag   | Au   |
|----------------|----------------|----------------|------|------|------|------|------|------|
| A              | 1              | 2              | 9    | 12   | 27   | 63.5 | 108  | 197  |
| Z              | 1              | 1              | 4    | 6    | 13   | 29   | 47   | 79   |
| $T/T_{RL}$     | 0.022          | 0.027          | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
| $J/\psi$ per h | 170            | 340            | 560  | 370  | 208  | 112  | 78   | 55   |
| Time*, h       | 24             | 12             | 7    | 11   | 19   | 36   | 51   | 72   |

\* - in order to detect 4000 events per target

#### 200 hours on nuclear targets



# Experiment: Counting rates, Backgrounds

Rates

- Single arm: < 250 kHz
- Coincidence  $\Delta t \sim 100$  ns:  $\sim 200$  Hz



Resolutions

- Mass 7.4 MeV/c<sup>2</sup>
  For γ+p→J/ψ+p:
- Photon energy 0.2%
- t:  $\sigma_t \sim 0.015 \; (\text{GeV/c})^{-2}$

Backgrounds

- Accidentals < 0.2 per hour
- Physics: Bethe-Heitler dominated
  - Calculated
  - Scaled using Cornell, SLAC < 2%</li>

Photoproduction of  $J/\psi$  on Nuclei



#### Fermi motion Correction and Hydrogen Measurements

Fermi motion  $\otimes \sigma_{\gamma N \to \psi X}(E_{\gamma})$ :  $Au/C \approx 1.10$  sensitive to  $\sigma(E_{\gamma})$ Need to measure  $\sigma(E_{\gamma})$ 

#### Plan for $\sigma_{\gamma p \rightarrow \psi p}(E_{\gamma})$ measurement

3 endpoints at 8.8, 10.2, 11.0 GeV "Elastic"  $\gamma p \rightarrow \psi p$  dominates Use reconstructed photon energy  $\mathcal{E}_{\gamma}$   $\mathcal{E}_{\gamma} > E_{e^-} - 0.3$  GeV: pure "elastic" Constraints from SLAC  $E_{\gamma} > 15$  GeV Simulation shows:  $\delta(Au/C) < 0.01$ 





# Experiment: Expected Results on $\sigma^{\psi N}$

#### Total error per target $\sim 3\%$

- beam flux  $\sim 1\%$
- target thickness < 1.5%</li>
- Fermi correction < 1.%</li>

- statistics  $\sim 1.5\%$
- acceptance: nearly cancels
- other  $\sim 0.5\%$

Glauber model used to extract  $\sigma^{\psi N}$ Expected transparencies  $T_N(A) = \sigma_A / A \sigma_N$ 

|   | $\sigma^{\psi N}$ |       | $\delta(\sigma^{\psi N})$ |       |       |       |       |      |
|---|-------------------|-------|---------------------------|-------|-------|-------|-------|------|
|   | mb                | 9     | 12                        | 27    | 63    | 108   | 197   | mb   |
|   | 1.0               | 0.982 | 0.980                     | 0.974 | 0.963 | 0.952 | 0.931 | 0.29 |
| T | 3.5               | 0.938 | 0.931                     | 0.908 | 0.870 | 0.833 | 0.760 | 0.25 |
|   | 7.0               | 0.876 | 0.863                     | 0.816 | 0.740 | 0.665 | 0.519 | 0.18 |

# $\sigma^{\psi N}$ ≈ (3.5) ± 0.12 ± 0.20 mb at $\sqrt{s}$ ~ 5 GeV SLAC: 0.80 ± 0.60



### **Experiment: Photoproduction**

#### Main measurements on hydrogen

- 3 endpoints: 8.8,10.2 and 11.0 GeV expected accuracy  $\sigma_{\psi} \sim$  3% for 10.2 and 11 GeV
- Additional measurements at 11 GeV
  - Increase the range of t to measure  $\frac{d\sigma}{dt}$
  - Increase the range of  $\theta_{decay}$  to measure the absolute cross section
  - LD<sub>2</sub> for isoscalarity correction

#### In total 290 hours are requested



#### Request

- Standard Hall C spectrometers
- New nuclear targets
- Radiators for cryo targets

| beam     |              |         |
|----------|--------------|---------|
| 11.0 GeV | standard     | 16 days |
| 10.8 GeV | non-standard | 2 days  |
| 8.8 GeV  | standard     | 3 days  |
|          |              | 21 days |



#### Spectrometers

| spectr. | P range | $\Delta P/P$ | $\sigma P/P$ | $\theta^{in}$ range | $\Delta \theta^{in}$ | $\Delta \theta^{out}$ | ΔΩ  | $\sigma \theta^{in}$ | $\sigma \theta^{out}$ |
|---------|---------|--------------|--------------|---------------------|----------------------|-----------------------|-----|----------------------|-----------------------|
|         | GeV/c   |              |              |                     | mrad                 | mrad                  | msr | mrad                 | mrad                  |
| HMS     | 0.4–7.4 | -10 + 10%    | 0.1%         | 10.5°–90°           | ±24                  | ±70                   | 8   | 0.8                  | 1.0                   |
| SHMS    | 2.5–11. | -15 + 25%    | 0.1%         | 5.5°–25°            | $\pm 20$             | $\pm 50$              | 4   | 1.0                  | 1.0                   |



#### Settings for hydrogen measurements

|                            | HI HI | MS    | SH    | IMS   |                            | selection               |                                    |                              |       |       |
|----------------------------|-------|-------|-------|-------|----------------------------|-------------------------|------------------------------------|------------------------------|-------|-------|
| set                        | θ     | Р     | θ     | Р     | $\langle P_{\psi} \rangle$ | $\langle P_t^2 \rangle$ | $\langle \cos \theta_{CM} \rangle$ | $\langle E_{\gamma} \rangle$ | per   | hour  |
|                            |       | GeV/c |       | GeV/c | GeV/c                      | (GeV/c) <sup>2</sup>    |                                    | GeV                          | total | elas. |
| $E_{e^-} = 11 \text{ GeV}$ |       |       |       |       |                            |                         |                                    |                              |       |       |
| 1                          | 21.0° | 4.20  | 15.0° | 5.80  | 9.7                        | 0.08                    | -0.15                              | 10.8                         | 170   | 66    |
| 2                          | 21.5° | 4.00  | 16.3° | 5.90  | 9.7                        | 0.12                    | -0.15                              | 10.8                         | 106   | 17    |
| 3                          | 28.0° | 2.95  | 10.7° | 7.50  | 9.7                        | 0.08                    | -0.45                              | 10.8                         | 136   | 65    |
| 4                          | 37.0° | 1.90  | 8.0°  | 8.50  | 9.7                        | 0.08                    | -0.65                              | 10.8                         | 72    | 40    |
| 5                          | 23.4° | 3.89  | 16.3° | 5.30  | 8.9                        | 0.08                    | -0.15                              | 9.8                          | 60    |       |
|                            |       |       |       | E     | e- = 10                    | .2 GeV                  |                                    |                              |       |       |
| 5                          | 23.4° | 3.89  | 16.3° | 5.30  | 8.9                        | 0.08                    | -0.15                              | 10.0                         | 60    | 30    |
|                            |       |       |       |       | $E_{e^{-}} = 8.8$          | 8 GeV                   |                                    |                              |       |       |
| 6                          | 28.1° | 3.24  | 19.1° | 4.50  | 7.3                        | 0.08                    | -0.15                              | 8.7                          | 0.70  | 0.70  |

#### Photoproduction measurements



E.Chudakov

SRC Workshop, Jlab 2007

Photoproduction of  $J/\psi$  on Nuclei



# $\sigma^{\psi N}$ Theoretical Calculations

Various models used  $\Rightarrow$  exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals):  $\sigma_{\rm tot}^{\psi N} \sim 7 \; {\rm mb}$  (Brodsky,Miller,1997), falling with energy
- Scaling from other VM:  $\sigma_{\rm abs}^{\psi N} \sim$  3.6 mb (Gerland et al,1998)
- GVMD, wave func,  $\sigma_{\rm tot}^{\psi N} \sim$  3 mb (Kopeliovich,Raufeisen,1994)

• Exclusive reactions



Various models used  $\Rightarrow$  exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals):  $\sigma_{\rm tot}^{\psi N} \sim 7~{\rm mb}$  (Brodsky,Miller,1997), falling with energy
- Scaling from other VM:  $\sigma_{\rm abs}^{\psi N} \sim$  3.6 mb (Gerland et al,1998)
- GVMD, wave func,  $\sigma_{\rm tot}^{\psi N} \sim$  3 mb (Kopeliovich,Raufeisen,1994)

Exclusive reactions



Various models used  $\Rightarrow$  exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals):  $\sigma_{\rm tot}^{\psi N} \sim 7~{\rm mb}$  (Brodsky,Miller,1997), falling with energy
- Scaling from other VM:  $\sigma_{\rm abs}^{\psi N} \sim$  3.6 mb (Gerland et al,1998)
- GVMD, wave func,  $\sigma_{\rm tot}^{\psi N} \sim$  3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions



Photoproduction of  $J/\psi$  on Nuclei

# $\sigma^{\psi N}$ Theoretical Calculations

Various models used  $\Rightarrow$  exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals):  $\sigma_{\rm tot}^{\psi N} \sim 7 \; {\rm mb}$  (Brodsky,Miller,1997), falling with energy
- Scaling from other VM:  $\sigma_{\rm abs}^{\psi N} \sim$  3.6 mb (Gerland et al,1998)
- GVMD, wave func,  $\sigma_{\rm tot}^{\psi N} \sim$  3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions



Various models used  $\Rightarrow$  exchange meson currents, color dipole interactions etc.

- Low energy (Van-der-Waals):  $\sigma_{\rm tot}^{\psi N} \sim 7 \; {\rm mb}$  (Brodsky,Miller,1997), falling with energy
- Scaling from other VM:  $\sigma_{\rm abs}^{\psi N} \sim$  3.6 mb (Gerland et al,1998)
- GVMD, wave func,  $\sigma_{\rm tot}^{\psi N} \sim$  3 mb (Kopeliovich,Raufeisen,1994)
- Exclusive reactions



Photoproduction of  $J/\psi$  on Nuclei





#### Spectra

