The Polarized EMC effect

Ian Cloët (Argonne National Lab)

Collaborators Wolfgang Bentz (Tokai Uni.) and Tony Thomas (JLab)

October 27, 2007

Theme

Theme

- Hadronic Tensor
- Calculation
- Quark Dis.
- NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. 27 Al
- ♦ Quark Dis. ²⁷Al
- ✤ Polarized EMC
- Conclusions

- Are nucleon properties modified by the nuclear medium?
 - Of fundamental importance.
 - Remains an open question.
- Areas where medium modifications seem important:
 - Quenching of g_A in-medium
 - Nuclear magnetic moments
 - Nuclear Form Factors (e.g.⁴He)
- Most importantly nuclear structure functions, that is, the EMC and potentially the Polarized EMC effects
 - Spin observables lower components

Hadronic Tensor

Theme

Hadronic Tensor

- Calculation
- Quark Dis.
- NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. ²⁷Al
- ♦ Quark Dis. 27 Al
- ✤ Polarized EMC
- Conclusions

• Bjorken limit and Callen-Gross gives:

• For $J = \frac{1}{2}$ target

$$W_{\mu\nu} = \left(g_{\mu\nu}\frac{P \cdot q}{q^2} + \frac{p_{\mu}p_{\nu}}{\nu}\right)F_2(x_A, Q^2) + i\frac{\varepsilon_{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}}{\nu}g_1(x_A, Q^2)$$

• For arbitrary J = (2J + 1 structure functions)

$$W^{H}_{\mu\nu} = \left(g_{\mu\nu}\frac{P \cdot q}{q^2} + \frac{p_{\mu}p_{\nu}}{\nu}\right)F^{JH}_2(x_A, Q^2) + i\frac{\varepsilon_{\mu\nu\lambda\sigma}q^{\lambda}s^{\sigma}}{\nu}g^{JH}_1(x_A, Q^2)$$

$$F_2^{JH} = F_2^{J-H} \qquad g_1^{JH} = -g_1^{J-H}$$

Parton model expressions

$$g_{1A}^{JH}(x) = \frac{1}{2} \sum_{q} e_q^2 \left[\Delta q_A^{JH}(x) + \Delta \overline{q}_A^{JH}(x) \right]$$

Calculation

✤ Theme

Hadronic Tensor

Calculation

- ♦ Quark Dis.
- ♦ NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦Quark Dis. ²⁷Al
- ♦ Quark Dis. ²⁷Al
- Polarized EMCConclusions

• Finite Nuclei quark distributions

$$q_A^{JH}(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \\ \langle A, P, H | \overline{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P, H \rangle.$$

Using Modified Convolution formalism

$$q_A^{JH}(x_A) = \sum_{\kappa,m} \int dy_A \int dx \ \delta(x_A - y_A x) f_{\kappa,m}^{(JH)}(y_A) \ q_\kappa(x) \,.$$

• Diagrammatically

Shell Model

- ✤ Theme
- ♦ Hadronic Tensor

Calculation

- ♦ Quark Dis.
- ♦ NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. ²⁷Al
- ♦ Quark Dis. ²⁷Al
- ✤ Polarized EMC
- Conclusions

$$q_A^{JH}(x_A) = \sum_{\kappa,m} \int dy_A \int dx \ \delta(x_A - y_A x) f_{\kappa,m}^{(JH)}(y_A) \ q_\kappa(x) \,.$$

Quark Multipole Distributions

♦ Theme

- Hadronic Tensor
- Calculation

♦ Quark Dis.

- NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. ²⁷ AI
- ♦ Quark Dis. ²⁷Al
- Polarized EMC
- Conclusions

Multipole distributions

$$q^{(JK)}(x) \equiv \sum_{H} (-1)^{J-H} \sqrt{2K+1} \begin{pmatrix} J & J & K \\ H & -H & 0 \end{pmatrix} q^{JH}(x)$$

New Sum Rules

 $\int_{0}^{A} x^{n-1} q^{(JK)}(x) dx = 0, \qquad \int_{0}^{A} x^{n-1} \Delta q^{(JK)}(x) dx = 0$ K, n even, $2 \le n < K$ K, n odd, $1 \le n < K$

- Example: J = 3/2 $\int_0^A dx \, \Delta q^{\left(\frac{3}{2}3\right)}(x) = 0$
- Example: ⁷Li, ¹¹B, ...

$$u_A^{\frac{3}{2}\frac{3}{2}} \simeq u_A^{\frac{3}{2}\frac{1}{2}} \implies u_A^{\left(\frac{3}{2}0\right)} \simeq 2u_A^{\frac{3}{2}\frac{3}{2}}, \quad u_A^{\left(\frac{3}{2}2\right)} \simeq 0$$

Nambu–Jona-Lasinio Model

Covariant, satisfy sum rules and gives correct support.

$u_v(x)$ and $d_v(x)$ distributions

NJL Model at Finite Density

- ✤ Theme
- Hadronic Tensor
- Calculation
- Quark Dis.
- NJL model

Finite Density

- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. ²⁷Al
- ♦ Quark Dis. 27 Al
- ✤ Polarized EMC
- Conclusions

• Re-calculate diagrams $\mathcal{L} = \overline{\psi} \left(i \not \partial - M^* - \not V \right) \psi + \mathcal{L'}_I$

Equivalent to:

- Scalar field: via effective masses
- Fermi motion: via convolution
- Vector field: via scale transformation
- Vector field, Finite Nuclei:

$$q_{A,\kappa}(x_A) = \frac{\overline{M}_N}{\hat{M}_N} q_{A0,\kappa} \left(\frac{\overline{M}_{N\kappa}}{\hat{M}_{N\kappa}} x_A - \frac{V_{\kappa}}{\hat{M}_{N\kappa}} \right)$$
$$\hat{M}_{N\kappa} = \overline{M}_N - 3V_{\kappa}, \qquad \overline{M}_N = M_A/A$$

Nucleon distribution functions

- ✤ Theme
- Hadronic Tensor
- Calculation
- Quark Dis.
- ♦ NJL model
- Finite Density

♦ Nucleon Dis.

- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. 27 Al
- ♦ Quark Dis. 27 Al
- ✤ Polarized EMC
- Conclusions

Definition

$$f_{\kappa m}(y_A) = \frac{\sqrt{2}\,\overline{M}_N}{A} \int \frac{d^3 p}{(2\pi)^3} \\ \delta\left(p^3 + \varepsilon_\kappa - \overline{M}_N \, y_A\right) \overline{\Psi}_{\kappa m}(\vec{p}) \, \gamma^+ \, \Psi_{\kappa m}(\vec{p}) \,,$$

Central Potential Dirac eigenfunctions

$$\Psi_{\kappa m}(\vec{p}) = (-i)^{\ell} \begin{bmatrix} F_{\kappa}(p) \,\Omega_{\kappa m}(\theta,\phi) \\ -G_{\kappa}(p) \,\Omega_{-\kappa m}(\theta,\phi) \end{bmatrix}$$

Dirac Equation

$$\left[-i\,\vec{\alpha}\cdot\vec{\nabla}+\beta\left[M(r)-V_s(r)\right]+V_v(r)\right]\psi_\kappa(r)=\varepsilon_\kappa\,\psi_\kappa(r)$$

Nucleon distributions: ¹¹**B**

Quark distributions in ²⁷**Al**

Multipole distributions in ²⁷**Al**

- Hadronic Tensor
- Calculation
- Quark Dis.
- ♦ NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. ²⁷Al
- ♦ Quark Dis. ²⁷Al
- Polarized EMC
- Conclusions

Definition: Polarized EMC effect

- ♦ Theme
- Hadronic Tensor
- Calculation
- Quark Dis.
- ♦ NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. ²⁷ Al
- ♦ Quark Dis. ²⁷Al
- Polarized EMCConclusions

• EMC ratio

$$R = \frac{F_{2A}}{F_{2A}^{\text{naive}}} = \frac{F_{2A}}{Z F_{2p} + (A - Z) F_{2n}}$$

Polarized EMC ratio

$$R_{s}^{JH} = \frac{g_{1A}^{JH}}{g_{1A,\text{naive}}^{JH}} = \frac{g_{1A}^{JH}}{P_{p}^{JH} g_{1p} + P_{n}^{JH} g_{1n}}$$
$$R_{s}^{(J1)} = \frac{g_{1A}^{(J1)}}{P_{p}^{(J1)} g_{1p} + P_{n}^{(J1)} g_{1n}}$$

- 1/A effect, i.e. $A \leq 27$, "proton states", $\implies {}^{7}Li$, ${}^{11}B$, ...
- Ratios equal 1 in non-relativistic and no-medium modification limit.

Polarized EMC ratio ⁷Li

Polarized EMC ratio ⁷Li

Theme
Hadronic Tensor
Calculation
Quark Dis.
NJL model
Finite Density
Nucleon Dis. ¹¹B
Quark Dis. ²⁷Al
Quark Dis. ²⁷Al
Polarized EMC
Conclusions

Is there medium modification

Conclusions

- ✤ Theme
- Hadronic Tensor
- Calculation
- Quark Dis.
- NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. 27 Al
- ♦ Quark Dis. 27 Al
- ✤ Polarized EMC
- Conclusions

- Effective chiral quark theories can be used to incorporate quarks into many-body physics.
- Higher multipoles are very small for $A \gtrsim 7$.
 - ◆ Large F^{JK} , $K \ge 2$, would indicate break down of convolution formalism.
- Binding of quarks to mean scalar and vector fields can largely explain the EMC effect.
- Calculated the Polarized EMC effect in nuclei.
 - pEMC effect about twice EMC effect
 - Experimental conformation would yield important insights on quark dynamics in nuclear medium.

Nuclear Spin Sum

- Theme
- Hadronic Tensor
- Calculation
- Quark Dis.
- ♦ NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. 27 AI
- ♦ Quark Dis. ²⁷Al
- ✤ Polarized EMC
- Conclusions

Definitions (H = J): $\Sigma^{(A)} = \Delta u_A + \Delta d_A \equiv \Sigma \ (P_p + P_n)$ $g_A^{(A)} = \Delta u_A - \Delta d_A \equiv g_A \ (P_p - P_n)$

	Δu	Δd	\sum	g_A
p	0.97	-0.30	0.67	1.267
⁷ Li	0.91	-0.29	0.62	1.19
^{11}B	0.88	-0.28	0.60	1.16
15 N	0.87	-0.28	0.59	1.15
27 Al	0.87	-0.28	0.59	1.15
Nuclear Matter	0.79	-0.26	0.53	1.05

• Quark Spin \implies orbital angular momentum

Nucleon distributions: ²⁷**Al**

Nucleon distributions: ²⁷**Al**

EMC ratios ⁷Li

Nuclear Matter

Regularization

- ✤ Theme
- Hadronic Tensor
- Calculation
- Quark Dis.
- NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. 27 AI
- ♦ Quark Dis. 27 Al
- ✤ Polarized EMC
- Conclusions

Proper-time regularization

$$\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \, \tau^{n-1} \, e^{-\tau \, X}$$
$$\longrightarrow \quad \frac{1}{(n-1)!} \int_{1/(\Lambda_{UV})^2}^{1/(\Lambda_{IR})^2} d\tau \, \tau^{n-1} \, e^{-\tau \, X}.$$

• Λ_{IR} eliminates unphysical thresholds for the nucleon to decay into quarks: \rightarrow simulates confinement.

G. Hellstern, R. Alkofer and H. Reinhardt, Nucl. Phys. A 625, 697 (1997).

• Needed for: nuclear matter saturation, Δ baryon.

W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)

Model Parameters

- ♦ Theme
- Hadronic Tensor
- Calculation
- Quark Dis.
- NJL model
- Finite Density
- Nucleon Dis.
- ♦ Nucleon Dis. ¹¹B
- ♦ Quark Dis. 27 Al
- ♦ Quark Dis. 27 Al
- ✤ Polarized EMC
- Conclusions

- Free Parameters: Λ_{IR} , Λ_{UV} , M_0 , G_{π} , G_s and G_a .
- Constraints:

♦ $f_{\pi} = 93$ MeV, $m_{\pi} = 140$ MeV and $M_N = 940$ MeV

- $(\rho, E_B/A) = (0.16 \, \text{fm}^{-3}, -15.7 \, \text{MeV})$
- $\int_0^1 dx \; (\Delta u_v(x) \Delta d_v(x)) = g_A = 1.267$

• We obtain:

♦ $\Lambda_{IR} = 240 \text{ MeV}, \Lambda_{UV} = 644 \text{ MeV}, M_0 = 400 \text{ MeV}$

- ♦ $G_{\pi} = 19 \text{ GeV}^{-2}, G_s = 7.5 \text{ GeV}^{-2}, G_a = 2.8 \text{ GeV}^{-2}$
- ♦ $M_s = 690$ MeV, $M_a = 990$ MeV,