EMC Effect and Related Issues

G. A. Miller, U. W., Seattle Outline

EMC effect & Drell Yan DY Hadron dynamics fails EMC/DY Nucleon is modified Models and consequences Structure and shape of the nucleon

Nucleon structure is modified: valence quark momentum depleted, sea or gluon enhanced. How do quarks work in a nucleus?

BUT EFFECTS ARE SMALL ~10% EMC – "Everyone's Model is Cool (1985)

One thing I learned since '85

One model is not cool

Deep Inelastic scattering from nucleinucleons only free structure function

 $\frac{F_{2A}(x_A)}{A} = \int_{-\infty}^{A} dy f_N(y) F_{2N}(x_A/y)$

y=A k⁺/P⁺

 Hugenholz van Hove theorem nuclear stability implies (in rest frame) P⁺=P⁻=M_A

average nucleon $p^+=M_N^-8$ MeV, y $F_{2A}/A \sim F_{2N}$ no EMC effect Nucleons and pions

$P_{\pi}^+/M_A = .04$, explain EMC

try Drell-Yan, Bickerstaff, Birse, Miller 84

Nucleons and pions $P_A^+ = P_N^+ + P_{\pi}^+ = M_A$ $P_{\pi}^+/M_A^- = .04$, explain EMC Drell-Yan, E772

Single nucleon modification by nuclei

- Does it make sense?
- Neutron in nucleus is modified, lifetime changed from 15 minutes to forever
- Binding changes energy denominator, suppresses pey component
- Change energy denominator change wave fun
- Strong fields polarize nucleons- analog of Stark effect

Medium Modification Models

- Chiral restoraton: $m_q! m_q-g \sigma$
- QCD Stark color neutrality U» $\sum_{q} r_{q}^2$
- Modified energy denominator
- Modified confinement
- Medium Modifications-/ (p²-m²)¹/₄ 2mV=U Cioffi, Kaptari, FS 0706.2937
- Changes depend strongly on nucleon momentum, limits weaker
- Virtuality enters in all model considered here

Requirements -Goals

- Model the free distributions
- Good support
- Consistency with nuclear properties
- Describe deep inelastic and di-muon production data- valence plus sea
- Predict new phenomena

Nucleon in medium- 3 models

- 1. QMC- quarks in nucleons (MIT bag) exchange mesons with nuclear medium, quark mass
- 2. CQSM- quarks in nucleons (soliton) exchange infinite pairs of pions, vector mesons with nuclear medium, m_α
- 3. Suppression of point-likeconfigurations, polarization

Spin experiments examine LoC

• ^g_{1n}, g_{1p} in nuclei

1.0

1.2 other way to enhance EMC? 1.0 R_{A/N} (x) 8.0 ł ratio of g₁ $= 10.0 \text{ GeV}^2$ ດ² medium to $\rho = 0.17 \text{ fm}^{-3}$ free 0.6 Spin Infinite Nuclear Matter Data: I. Sick and D. Day, Phys. Lett. B, 274 (1992) 16. **QMC** type 0.4 0.2 0.4 0.6 0.8 0.0 х

Chiral Quark Soliton Model of Nucleus-

Smith, Miller

2 π exchange – attraction ω (vector meson) exchange repulsion

Double self consistency profile function and k_f

Results Smith & Miller '03,04,05

sea is not much modified

Polarization Transfer in ⁴He(\vec{e} , $e'\vec{p}$)

Previous data effectively described by proton medium modified form fac

- Alternative explanation given by spin-dependent charge exchange FSI
- Neither accounts for preliminary Q² = 0.8 GeV² data

Summary

- nucleon structure is modified by nucleus
- minimum model requirements- EMC, DY, nuclear saturation
- predict new phenomena
- needed –better evaluations of models
- experimental tests –form factors in medium, (eA \Diamond e' X N) spectator tag, nuclear gluon distribution, σ_L
- new experiments Jlab and others to find out how quarks work in a nucleus

SPARES FOLLOW

energy denominator increased

EMC ratio Frank, Jennings Miller '95

PLC has NO int. with medium

evaluated as QCD Stark, not modified energy denominator

1995 Frank, Jennings, Miller

Spin-dependent density

 Spin dependent densities probability that quark has given momentum K and spin in direction n

$$\hat{\rho}(\mathbf{K},\mathbf{n}) = \int \frac{d^3r}{(2\pi)^3} e^{i\mathbf{K}\cdot\mathbf{r}} \bar{\psi}(\mathbf{r}) \frac{\widehat{Q}}{e} (\gamma^0 + \boldsymbol{\gamma}\cdot\mathbf{n}\gamma_5) \psi(\mathbf{0})$$

lattice calculations plus can be measured in semi-inclusive DIS arXiv:0708.2297 [nucl-th]

Closer look needed! Lower components LoC

- LoC account for QF_2/F_1
- LoC gives nonspherical shape of proton

- Medium modifies LoC
- Medium modifies shape

Challenge to experimentmeasure either

Quark energy levels in π field

Quark Meson Coupling Model – Guichon, Thomas, Saito plus more

Chiral Quark Soliton Model –

Diakonov, Petrov, Polykov, quarks couple to vacuum instantons

- Vacuum dominated by instantons
- quarks with spontaneously generated masses interact with pions

$$\mathcal{L}_{\text{eff}} = \bar{q} \left[i \partial \!\!\!/ - M \exp(i \gamma_5 \pi^A \lambda^A / F_\pi) \right] q,$$

- Nucleon is soliton in pion field
- M=420 MeV
- good nucleon properties

Negele et al hep-lat/9810053 topological charge density

Results – Nuclear Matter

Smith-Miller

$-\langle \overline{\psi}\psi \rangle_0^{1/3}$	$g_v^2/4\pi$	k_F	Κ
[MeV]		$[fm^{-1}]$	[MeV]
225	7.22	1.81	291.7
210	8.96	1.51	312.5
200	10.55	1.38	348.5
-	10.47	1.42	560

Suppression of Point Like Configurations- Frankfurt, Strikman

place in medium:

normal size components attracted energy goes down

PLC does not interact- color screening

energy denominator increased, PLC suppressed

quarks lose momentum in medium

Need model of free nucleon wave function

- 3 quark anti-symmetric
- relative variables, frame independent
- eigenstate of spin operator- rotational invariant
- \bullet reduces to non-relativistic if $m \to \infty$

 $\Psi = \Phi(M_0^2)u(p_1)u(p_2)u(p_3 = K)\psi(s_i, t_i)$ Terentev, Coester spatial dist DIRAC SPINORS spin-ispin color amp Schlumpf Mom space wf $\Phi(M_0) = N/(M_0^2 + \beta^2)^{\gamma}$ $\beta = 0.607$ GeV $\gamma = 3.5 m = 0.267$ GeV Ratio of Pauli to Dirac Form Factors calculation '95 data 2000

Induced Polarization in ⁴He($e, e' \vec{p}$)

- Observed final-state interaction small and with only very weak Q² dependence
- RDWIA results consistent with data
- Spin-dependent charge exchange terms not constrained by N-N scattering and possibly overestimated
- E03-104 took specific data that will set tight constraints on FSI

Inner uncertainties are statistical only; full analysis of E03-104 will have reduced systematic uncertainties

Strauch June '07